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Foundations of the Rank-Dependent 
Probability Weighting Function

The psychological basis for rank-dependent probability weighting, and for an inverse-S 

probability weighting function (PWF) in particular, has often been questioned. I examine 

the existence and shape of the PWF in a model allowing for optimism/pessimism over 

probability distributions and for loss averse/gain loving stochastic reference dependence. 

I give commonly observed shapes of PWF a psychological interpretation. In particular, 

I establish a deep connection between two of the most established phenomena in 

decisionmaking: loss aversion and the inverse-S PWF: the former is a pre- condition for the 

latter.

JEL Classification:	 D81, D01

Keywords:	 probability weighting, rank dependent expected utility, loss 
aversion, reference dependence, optimism, pessimism

Corresponding author:
Matthew D. Rablen
Department of Economics
University of Sheffield
9 Mappin Street
Sheffield, S1 4DT
United Kingdom

E-mail: m.rablen@sheffield.ac.uk



1 Introduction

Rank-dependent expected utility (RDEU) is one of the most prominent alternatives to ex-

pected utility. Introduced by Quiggin (1982), RDEU preserves standard axioms of rational-

ity, such as monotonicity, transitivity, stochastic dominance and the book-making principle

of de Finetti (1937), yet is capable of accounting for most of the well-known violations of

expected utility theory, including Allais’paradox (Quiggin, 1985; Segal, 1987), the common

ratio effect, and the preference reversal effect (Karni and Safra, 1987). The psychological

foundation of rank-dependent probability transformations has been questioned, however,

with some suggesting that this concept is purely a technical tool with no intuitive or psy-

chological content.1 In this paper, therefore, I explore the psychological interpretation of

RDEU.

The only difference between expected utility and RDEU is that the latter transforms the

probability distribution according to a probability weighting function (PWF) before comput-

ing the expectation of utility. But why would a PWF exist, and what determines its shape?

I explore two routes that address these questions. The first route draws on the idea that the

PWF reflects a stable preference for optimism or pessimism over probability distributions

in the same way that the utility function reflects stable preferences over monetary amounts

(e.g., Quiggin, 1982). The second route is based on the idea that the PWF indirectly re-

flects the emotions associated with the anticipation of experiencing gains and losses (e.g.,

Brandstätter et al., 2002).

For either such route to offer a satisfactory account of the shape of the PWF, it should

account for two stylized facts that emerge from an abundant experimental literature. First,

behavior in experimental contexts is frequently consistent with an inverse-S shape for the
1For mathematical axiomatizations of RDEU see Abdellaoui (2002) and the references therein. While

important, such approaches do not constitute an intuitive psychological justification for rank-dependent
probability weighting.
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PWF (see, e.g., Table 1 in Booij et al. (2010) for a summary).2 Second, there is significant

heterogeneity across subjects, some of whose choices are incompatible with an inverse-S

shaped PWF. Evidence consistent with a strictly convex PWF is relatively plentiful (Jullien

and Salanié, 2000; Goeree et al., 2002; Qiu and Steiger, 2011; Harrison et al., 2010; van de

Kuilen and Wakker, 2011; Krawczyk, 2015). In a typical experiment at least a minority of

subjects will exhibit an S-shaped or strictly concave PWF (see, e.g., Hey and Orme, 1994;

Birnbaum and Chavez, 1997; Humphrey and Verschoor, 2004; Blavatskyy, 2010).3

Meeting these two stylized facts transpires to defeat explanations stemming separately from

the two routes discussed above. In particular, as I shall show in what follows, both ap-

proaches are compatible with the existence of a PWF, but cannot replicate an inverse-S

shaped PWF.4 Hence the lingering doubts over the meaningful psychological interpretation

of RDEU. Accordingly, a key contribution of this study is to examine whether the conjunc-

tion of these routes can account for these phenomena. I consider a (composite) model of

decisionmaking in which decisionmakers both have preferences for optimism/pessimism over

probability distributions and experience gain-loss emotions arising from stochastic reference

dependence à la Kőszegi and Rabin (2006, 2007).5

I characterize the underlying psychological traits of optimism/pessimism and loss aver-

2For complementary evidence from non-laboratory environments see, e.g., Polkovnichenko and Zhao
(2013), Rieger et al. (2017), and the references therein.

3Given the heterogeneity in experimentally estimated PWFs across subjects I focus away from approaches
that are compatible with only a single shape of the PWF. An example is Tversky and Kahneman’s (1992)
principle of diminishing sensitivity, according to which people become less sensitive to changes in probability
as they move away from a reference point. In the probability domain, it is argued, the two endpoints, zero
and one, serve as reference points, thereby generating an inverse-S shape for the PWF. Other axiomatic
and psychophysical approaches that focus purely on an inverse-S shape for the PWF include Luce (2001)
and Takahashi (2011). These studies yield not only an inverse-S shape for the PWF, but indeed a specific
parameterization of this shape proposed in Prelec (1998).

4The disappointment aversion models of, e.g., Bell (1985) and Gul (1991) also admit an RDEU represen-
tation, but only for the special case of binary lotteries (see, e.g., Abdellaoui and Bleichrodt, 2007). Moreover,
the resulting PWF cannot take an inverse-S shape.

5A related composite model is discussed in the context of empirical applications in Barseghyan et al.
(2013, 2018), but its potential to offer psychological foundations for RDEU has yet to be explored carefully.
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sion/gain lovingness that give rise to particular shapes of PWF. A key finding in this context

is that the model relates the inverse-S PWF to a unique psychological profile: necessary con-

ditions for the PWF to be inverse-S shaped are that the decisionmaker is (i) optimistic (i.e.,

displays optimism over probability distributions); and (ii) loss averse. In this way I relate two

of the most central features of decisionmaking: loss aversion and the inverse-S PWF. When

I represent preferences for optimism/pessimism with a simple power function, an inverse-S

shape for the PWF emerges for low enough levels of optimism and high enough levels of loss

aversion.

The plan of the paper is as follows. Section 2 develops the model, and Section 3 examines

the properties of the composite PWF. In Section 4 I present a simulation of the model for a

simple parameterization. Section 5 concludes, and Figure 1 appears at the very rear.

2 Model

To investigate the psychological foundations of RDEU I now construct a model composed of

two readily interpretable psychological underpinnings: decisionmakers may be (i) optimistic

or pessimistic in their preferences over probability distributions, and (ii) evaluate lotteries

relative to a stochastic reference point. The model is constructed to admit specifically an

RDEU representation in which both preferences over probability distributions and the effects

of stochastic reference dependence are represented simultaneously by a composite PWF.

2.1 Preferences over Probabilities

LetX be a random variable taking values on a finite subset of the real numbers, {x1, . . . , xn},

ordered such that x1 < x2 < . . . < xn. Each outcome xi occurs with probability pi. The

decisionmaker’s preferences over the cumulative distribution function of X are represented

by an optimism-pessimism function, π : [0, 1]→ [0, 1], a continuous and increasing function,
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satisfying π(0) = 0 and π(1) = 1. Following Quiggin (1982), to allow a role for π, I suppose

that the decisionmaker weighs outcome i not by its objective probability, pi, but rather by

the decision weight of outcome i, as given by

πi = π

(
n∑
j=i

pj

)
− π

(
n∑

j=i+1

pj

)
i ∈ {1, . . . , n} . (1)

The potential for π to represent optimism/pessimism over probability distributions was first

suggested by Quiggin (1982). The idea is described in full in Yaari (1987) and Diecidue and

Wakker (2001), among other studies. Optimism corresponds to the situation in which an

improvement in the ranking position of outcome xi (by lowering the probability
∑n

j=i+1 pj

of receiving a better outcome) increases πi. It is equivalent to requiring π to be concave.

Similarly, pessimism is equivalent to requiring π to be convex. Accordingly, to give π its

desired psychological interpretation as an optimism-pessimism function, I therefore assume

that either (i) π′′ (p) ≤ 0 for all p ∈ [0, 1] (“pessimism”); or (ii) π′′ (p) ≥ 0 for all p ∈ [0, 1]

(“optimism”). Note that these conditions rule out switches in the sign of π′′ on the unit

interval.

2.2 Stochastic Reference Dependence

Following Kőszegi and Rabin (2006) the utility of an outcome x is judged relative to a

stochastic reference lottery R.6 The reference lottery is a random variable taking values on

a finite subset of the real numbers, {r1, . . . , rm}, ordered such that r1 < r2 < . . . < rm. Each

outcome ri occurs with probability qi. As I permit the decisionmaker to have preferences for

optimism/pessimism over the distribution function of X, so I likewise allow preferences for

optimism/pessimism over the distribution function of R. These preferences are represented

by a function θ defined in an exactly analogous manner to π. The decision weight assigned

6For an excellent review of models of reference-dependent decisionmaking see O’Donoghue and Sprenger
(2018).
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to reference outcome ri under θ is then

θi = θ

(
m∑
j=i

pj

)
− θ

(
m∑

j=i+1

pj

)
i ∈ {1, . . . ,m} .

Various considerations will impel me to assume θ and π to be identical functions in much

of the analysis, but permitting these functions to be distinct initially is instructive when

seeking to disentangle features of the model.

To introduce reference-dependence into utility I write the utility of an outcome x as

u (x|R) = v (x) + λ (x|R) , (2)

where v (x) is absolute utility and λ (x|R) is “gain—loss utility.” I assume v : R → R is a

continuous and increasing function, unique up to a positive affi ne transformation. Gain-loss

utility is specified to reflect the idea that an outcome x is compared to every outcome that

might have occurred in the reference lottery R:

λ (x|R) =
m∑
i=1

θiµ (v (x)− v (ri)) ,

where the function µ is Kőszegi-Rabin’s “universal gain—loss function.”As in many contexts,

I adopt a piecewise-linear specification for µ:

µ (z) =

{
z if z ≥ 0;
[1 + λ] z if z < 0;

λ ∈ [−1, 1] . (3)

When λ > 0 the specification of µ in (3) captures the psychological concept of loss aversion,

according to which losses loom larger than equivalent gains (Kahneman and Tversky, 1979).

When λ ∈ (−1, 0] gain loving preferences are implied.

Let ζ (i) =
∑m

j=1 1xi≥rk denote the number of distinct values of R that do not exceed xi. The

indicator function 1a is one when condition a is true, and zero otherwise. Then the utility
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u (xi|R) in (2) writes in full as

u (xi|R) = v (xi) +

ζ(i)∑
j=1

θi [v (xi)− v (rj)]− [1 + λ]

m∑
j=ζ(i)

θi [v (rj)− v (xi)] . (4)

A key insight of Kőszegi and Rabin (2006) is to interpret the reference lottery R as being

the decisionmaker’s expectation over the lottery X. In their choice-acclimating personal

equilibrium (Kőszegi and Rabin, 2007) they argue that if a decisionmaker commits to a

lottery X well in advance of the resolution of uncertainty, then by the time the uncertainty

is resolved the decisionmaker will have come to expect the lottery X, and thus it becomes

the reference lottery around which gains and losses are defined. Hence R coincides with X.

Under this interpretation of R, (4) becomes

u (xi|X) = v (xi) +
i∑

j=1

θj [v (xi)− v (xj)]− [1 + λ]
n∑
j=i

θj [v (xj)− v (xi)] . (5)

2.3 Lottery Evaluation

Putting together the two planks of the model embodied by πi in (1) and u (xi|X) in (5), the

ex ante evaluation of lottery X is therefore

U(X|X) =
n∑
i=1

πiu (xi|X) .

U(X|X) can be written more informatively as a weighted sum of the absolute utilities:

Lemma 1 The ex ante evaluation of X is given by

U(X|X) =
n∑
i=1

{
πi

[
2 + λ

n∑
j=i

θj

]
− θi

[
1 + λ

i∑
j=1

πj

]}
v (xi) .

Lemma 1 clarifies that the probability weight of an individual outcome utilizes the whole

distribution of outcomes, and the rank of the outcome in the distribution, as proposed in
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Quiggin (1982). In the next section I show there exists an exact RDEU representation for

U(X|X).

2.4 Rank-dependent Representation

To admit a RDEU representation, it must be possible to write U(X|X) in the form

U(X|X) =
n∑
i=1

wiv (xi) ,

where

wi = w

(
n∑
j=i

pj

)
− w

(
n∑

j=i+1

pj

)
,

and w —a function I term the composite PWF —satisfies w (0) = 0 and w (1) = 1.

Proposition 1 U(X|X) admits an RDEU representation with a composite weighting func-

tion w of the form

w (p) = [2π (p)− θ (p)]− λθ (p) [1− π (p)] .

Proposition 1 generalizes results found in Delquié and Cillo (2006), who implicitly assume

θ (p) = p, and Masatlioglu and Raymond (2016) and Barseghyan et al. (2018), who implicitly

assume θ (p) = π (p). To understand the separate roles of π and θ, I differentiate pointwise

in w (p) to obtain

∂w

∂π
≥ 0; ∂w

∂θ
≤ 0; ∂2w

∂π∂θ
= λ. (6)

From (6) it is seen that π and θ enter the composite PWF with opposing signs. In particular,

as θ enters w negatively, optimism in θ translates into pessimism in w. The cross partial

derivative confirms that if gains and losses are weighted equally (λ = 0) then there is no

interaction in the composite PWF between probability weighting in the choice and reference

lotteries. In the presence of loss aversion (λ > 0), however, these probability weightings
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interact positively in the composite PWF, and negatively under gain loving preferences

(λ < 0).

Having clarified the separate roles of π and θ, it seems desirable to set these functions

identical, in the absence of a compelling psychological reason for assuming some probability

distributions would be weighted differently from others by the same decisionmaker. An

alternative motivation for this step arises when, as is conventional, I require the normative

property of stochastic dominance to hold:

Proposition 2 U(X|X) satisfies stochastic dominance for all {λ, p} if and only if θ = π.

In this case w (p) becomes

w (p) = π (p)− λπ (p) [1− π (p)] . (7)

Using Proposition 2, it is now possible to show formally that, on their own, the two planks

of our model cannot predict an inverse-S shaped PWF. In the absence of stochastic refer-

ence dependence (λ = 0) I obtain w (p) = π (p). As, however, π (p) reflects a stable trait

for optimism or pessimism, it cannot take an inverse-S shape.7 In the absence of opti-

mism/pessimism (π (p) = p) the composite PWF reduces to the linear-quadratic function

w (p) = p−λp [1− p]. In this case, the sign of w′′ (p) is the sign of λ, so again the composite

weighting function cannot take an inverse-S shape. Accordingly, in the next section I inves-

tigate whether and how combining these two psychological features enables an explanation

of the inverse-S PWF.

3 Understanding the Composite PWF

I now analyze the possible shapes of the composite PWF in (7). Differentiating (7) I have

7Only under what Neilson (2003: 181) describes as a “rather strange pattern of optimism and pessimism”
in which a decisionmaker may be at once both optimistic and pessimistic with respect to different outcomes
in the same gamble can the inverse-S PWF be explained in terms of optimism and pessimism alone. For
evidence that preferences for optimism/pessimism are stable and heritable traits see, e.g., Bates (2015).
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w′ (p) = [1− λ+ 2λπ(p)] π′ (p) ; (8)

w′′ (p) = [1− λ+ 2λπ(p)] π′′(p) + 2λ [π′(p)]2 . (9)

The common forms of the PWF observed experimentally, i.e., inverse-S, S, concave, and

convex, may all be distinguished with respect to (8) and (9), when evaluated at the endpoints

p ∈ {0, 1} as in Table 1:

w′ (0) w′ (1) w′′ (0) w′′ (1)
Inverse-S > 1 > 1 < 0 > 0
S < 1 < 1 > 0 < 0
Concave ≥ 1 ≤ 1 ≤ 0 ≤ 0
Convex ≤ 1 ≥ 1 ≥ 0 ≥ 0

Table 1: Characterizing the shapes of the composite PWF

With respect to the inverse-S PWF we then have:

Proposition 3 If the composite PWF is inverse-S the decisionmaker is optimistic and loss

averse.

Proposition 3 associates the inverse-S PWF to a unique underlying psychological profile: to

observe this shape of PWF loss aversion is a prerequisite feature of preferences. Alongside

loss aversion, an inverse-S decisionmaker must also be optimistic. No other underlying

psychology is consistent with an inverse-S PWF. Rabin (2000) has described loss aversion

as “the most firmly established feature of risk preferences.”Demonstrating a link between

loss aversion and another much-replicated feature of decisionmaking, the inverse-S PWF,

therefore unifies two central, and apparently disjoint, phenomena. Intuitively, to ensure

concavity of w (p) for p close to zero requires the concavity of π (optimism). To then also

generate steepness of w (p) for p close to one requires the additional property of loss aversion.
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As an immediate corollary of Proposition 3, necessary conditions for an S-shaped PWF are

simply the opposite characteristics, i.e., gain lovingness and pessimism.

4 Parameterization

To explore the insights of the model further, I explore the shape of the composite PWF

in (7) for a simple exponential choice of optimism-pessimism function: π (p) = pγ, γ > 0.

Optimism in π corresponds to γ < 1 while pessimism corresponds to γ > 1. Figure 1 shows

in (log γ, λ)-space the parameter combinations that induce each shape of PWF in Table 1.8

It is seen that an inverse-S PWF arises for loss aversion and optimism when the former effect

is suffi ciently strong and the latter effect is suffi ciently weak. An S-shaped PWF is associated

with suffi ciently strong gain lovingness and suffi ciently weak pessimism. Global convexity

of the PWF, which is relatively frequently observed in experimental data, is associated with

loss aversion and pessimism. Indeed, for this specification of π (p) (though not in general)

pessimism is a necessary condition for a convex PWF. Last, a concave PWF is associated

with optimism and weak loss aversion (or outright gain lovingness). In this way, a meaningful

psychological interpretation may be given to a wide range of commonly observed shapes of

PWF observed in experimental data.

<Figure 1 here —see p. 17>

5 Conclusion

Although one of the most prominent alternatives to expected utility, rank-dependent ex-

pected utility has often been thought to lack psychological foundations. In this paper I

8The distribution of decisionmakers on this space may well not be uniform, however. In particular,
experimental evidence would suggest that the distribution might be more dense in the region consistent with
loss aversion (the upper half of Figure 1) than the region consistent with gain lovingness.
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sought to provide an intuitive explanation for the existence and shape of the probability

weighting function. My model combines optimistic/pessimistic preferences over probabil-

ity distributions with loss averse/gain loving gain-loss preferences. My key finding is that

the inverse-S probability weighting function occurs for a unique combination of these pref-

erences, namely loss aversion and optimism. As such, I forge a link between the hitherto

disjoint concepts of loss aversion and the inverse-S probability weighting function. Future

research should seek to validate experimentally the model by correlating the features of

preferences I identify to the shape of the observed PWF.
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Appendix
Proof of Lemma 1. Beginning from (5) I have

u (X|X) =
n∑
i=1

πi

{
v (xi) +

i∑
j=1

θj [v (xi)− v (xj)]− [1 + λ]

n∑
j=i

θj [v (xj)− v (xi)]
}

=

n∑
i=1

{
πi

[
1 +

i−1∑
j=1

θj + [1 + λ]

n∑
j=i+1

θj

]
− θi

[
n∑

j=i+1

πj + [1 + λ]

i−1∑
j=1

πj

]}
v (xi)

=
n∑
i=1

{
πi

[
1 +

i∑
j=1

θj + [1 + λ]

n∑
j=i

θj

]
− θi

[
n∑
j=i

πj + [1 + λ]

i∑
j=1

πj

]}
v (xi)

=
n∑
i=1

{
πi

[
2 + θi + λ

n∑
j=i

θj

]
− θi

[
1 + πi + λ

i∑
j=1

πj

]}
v (xi)

=
n∑
i=1

{
πi

[
2 + λ

n∑
j=i

θj

]
− θi

[
1 + λ

i∑
j=1

πj

]}
v (xi) .

Proof of Proposition 1. Write w (p) as w (p) = w1 (p) + w2 (p), where w1 (p) = 2π (p)−
θ (p) and w2 (p) = −λθ (p) [1− π (p)]. So wi = w1i + w2i . Then

w1i = w1

(
n∑
j=i

pj

)
− w1

(
n∑

j=i+1

pj

)
= 2πi − θi (A.1)

and

w2i = w2

(
n∑
j=i

pj

)
− w2

(
n∑

j=i+1

pj

)

= −λ
{[
1− π

(
n∑
j=i

pj

)]
θ

(
n∑
j=i

pj

)
−
[
1− π

(
n∑

j=i+1

pj

)]
θ

(
n∑

j=i+1

pj

)}
.

Noting that

π

(
n∑
j=i

pj

)
=

n∑
j=i

πj
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I may rewrite w2i as

w2i = −λ
{[
1− π

(
n∑
j=i

pj

)]
n∑
j=i

θj −
[
1− π

(
n∑

j=i+1

pj

)]
n∑

j=i+1

θj

}

= −λ
{[
1− π

(
n∑
j=i

pj

)]
n∑
j=i

θj −
[
1− π

(
n∑

j=i+1

pj

)][
−θi +

n∑
j=i

θj

]}

= −λ
[
θi − πi

n∑
j=i

θj − θiπ
(

n∑
j=i+1

pj

)]

= −λ
[
θi − πi

n∑
j=i

θj − θi
n∑

j=i+1

πj

]

= −λ
[
θi

i∑
j=1

πj − πi
n∑
j=i

θj

]
. (A.2)

So, combining (A.1) and (A.2),

wi = 2πi − θi − λ
[
θi

i∑
j=1

πj − πi
n∑
j=i

θj

]

= πi

[
2 + λ

n∑
j=i

θj

]
− θi

[
1 + λ

i∑
j=1

πj

]
,

which matches the expression in Lemma 1.
Proof of Proposition 2. Stochastic dominance is equivalent to w′ (p) > 0. We first show
that θ 6= π ⇒ w′ (p) < 0 for at least one p. Using (8) and (9) it is straightforward to obtain
that

w′ (0) ≷ 1⇔ π′ (0) ≷ 1

1− λ ; (A.3)

w′ (1) ≷ 1⇔ π′ (1) ≷ 1

1 + λ
; (A.4)

and

w′′ (0) ≷ 0⇔ π′′(0)

π′ (0)
≷ −2λπ

′ (0)

1− λ ; (A.5)

w′′ (1) ≷ 0⇔ π′′(1)

π′ (1)
≷ −2λπ

′ (1)

1 + λ
. (A.6)

Suppose λ = −1 then, at p = 1 w′ (1) ≥ 0 requires π′ (1) ≥ θ′ (1). As {π, θ} are smooth
functions that can only be concave, convex, or both concave and convex, and which must
respect π (0) = θ (0) = 0 and π (1) = θ (1) = 1, it holds that π′ (1) = θ′ (1) only if θ = π.
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Hence, for distinct {π, θ} w′ (1) ≥ 0 implies π′ (1) > θ′ (1). The aforementioned properties of
{π, θ} also entail that the condition π′ (1) > θ′ (1) implies π′ (0) < θ′ (0). But at p = 0 and
λ = 1 w′ (p) ≥ 0 requires π′ (0) > θ′ (0). Hence, any distinct {π, θ} that induces w′ (1) ≥ 0
for λ = −1 will induce w′ (0) < 0 for λ = 1. Having shown θ 6= π ⇒ w′ (p) < 0 we complete
the proof by showing the reverse implication w′ (p) < 0 ⇒ θ 6= π. Suppose w′ (p) < 0 then
π′ (p) /θ′ (p) < 1+λ[1−π(p)]

2+λθ(p)
. But, if θ = π then π′ (p) /θ′ (p) = 1 ≥ 1+λ[1−π(p)]

2+λπ(p)
, which is a

contradiction.
Proof of Proposition 3. The inverse-s is characterised by w′′ (0) < 0 and w′ (1) > 1.
From (A.5) I have that

w′′ (0) < 0⇒ π′′(0) < 0⇒ π′′(p) < 0,

where the last inference follows as π′′(p) cannot switch sign. Hence the decisionmaker is
optimistic. Then, given that π is increasing and satisfies π(0) = 0 and π(1) = 1, it follows
that π′′(p) < 0 ⇒ π′(1) < 1. Also, from (A.4), w′ (1) > 1 ⇔ π′ (1) > [1 + λ]−1. Combining
these two inequalities implies that [1 + λ]−1 < π′(1) < 1. For this condition to hold a
necessary condition is that [1 + λ]−1 < 1, which holds if and only if λ > 0. Hence the
decisionmaker is loss averse.
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Figure 1: Shapes of the composite PWF in (log (γ) , λ)-space.
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