IZA DP No. 14263

Out of Communal Land: Clientelism through Delegation of Agricultural Tenancy Contracts

Takashi Kurosaki
Saumik Paul
Firman Witoelar

APRIL 2021
IZA – Institute of Labor Economics

IZA – Institute of Labor Economics
Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany
Phone: +49-228-3894-0
Email: publications@iza.org
www.iza.org

DISCUSSION PAPER SERIES

IZA DP No. 14263
Out of Communal Land: Clientelism through Delegation of Agricultural Tenancy Contracts

Takashi Kurosaki
Hitotsubashi University

Saumik Paul
Newcastle University and IZA

Firman Witoelar
Australian National University

APRIL 2021

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793
ABSTRACT

Out of Communal Land: Clientelism through Delegation of Agricultural Tenancy Contracts*

Do local institutions influence the nature of political clientelist exchange? We find a positive answer in the context of a village institution prevalent in Java since the Dutch colonial rule, where democratically elected village heads receive usufruct rights over a piece of communal village land (bengkok land) as a compensation for their service in lieu of salary. To formulate how limited-term private ownership of bengkok land promotes clientelism, we model a timely delegation of agricultural tenancy contracts to villagers-cum-voters as an incumbent re-election strategy. Based on a household survey fielded in 2018 across 130 villages in Java, Indonesia, we find that the chances of a bengkok plot being rented out increase by 6 percentage points as the time of the next election becomes closer by one year, and sharecropping is preferred to a fixed-rental contract as the election approaches. The empirical results are statistically significant and remain largely unchanged against a series of robustness checks. We also find suggestive evidence of short-term efficiency loss from clientelist politics over bengkok land.

JEL Classification: D72, H77, H83, O17, O18
Keywords: tanah bengkok, political budget cycle, clientelism, agricultural tenancy, electoral competition, Indonesia

Corresponding author:
Saumik Paul
Newcastle University
Newcastle upon Tyne
NE1 7RU
United Kingdom
E-mail: paulsaumik@gmail.com

* The authors are grateful to Rasyad Parinduri for many helpful discussions during the initial stage of the field survey, and Hiroyoshi Kano and Hitoshi Yonekura for insightful comments on an earlier draft. The authors would also like to thank Yutaka Arimoto, Sujata Bisaria, Pierre van der Eng, Matthias Heible, Pushkar Maitra, Peter Morgan, Naoyuki Yoshino, seminar participants at the Hitotsubashi Summer Institute in 2018, and seminar participants at the ADIBI for their useful comments and helpful discussions. The authors would also like to thank Reiko Doi, Hiroyuki Kuribayashi, and Yoko Oishi for their timely research assistance and Akiko Ito, Michie Kano, Yuki Matsuzaki, Makiko Miki, Sawako Ueda and Eriko Yoshida for their excellent administrative support during the fieldwork stage. The authors also acknowledge the efficient and helpful support from the field survey team of SurveyMETER, Yogyakarta, Indonesia. Funding from a JSPS Grant-in-Aid for Scientific Research-A (17H02520) for providing financial support to our primary survey is acknowledged. The usual disclaimer applies.
1. Introduction

Political clientelism is generally understood as a *quid pro quo* exchange of citizens’ votes for benefits from politicians (Kitschelt and Wilkinson, 2007; Hicken, 2011; Bardhan and Mukherjee, 2020).¹ The nature and size of clientelism vary across countries as they adapt to different levels of democracies and autocracies. While a vast literature documents that clientelism subverts the functionality of democracy through higher levels of rent-seeking especially in low- and middle-income countries,² the existing knowledge is limited on how local institutions influence the nature of clientelist exchange and the channels through which clientelism conditions economic development.

We study the origin of clientelism and its welfare consequences in the context of a unique village institution prevalent in Java, Indonesia, where democratically elected village heads and other officials receive usufruct rights over a piece of communal village land (known as *tanah bengkok*, hereinafter, bengkok land) as compensation for their service to the village in lieu of salary.³ Starting from the period of Dutch colonial rule, this institution has been in place until now because the village governance in Java is largely viewed in economic terms and the goal has always been to keep the central budget for village administration low (Mortimer, 1974).

The feudal nature of the village government in Java continued since the colonial period as the elected village heads often pursued economic interests like landlords. Village elections follow a six-year cycle and the incumbent village heads utilize bengkok land until the end of their tenure. Re-election motives and fixed-term private ownership of bengkok land command its utilisation for amassing political support. At the same time, stiff competition over access to bengkok land makes patronage through the landlord-tenant relationship an integral part of clientelist exchange (Kammen, 2003).⁴

In this paper, we argue that the means of clientelist exchange is shaped by strategic delegation of agricultural tenancy contracts over bengkok land. We define and measure clientelist exchange based on the nature and frequency of tenancy contracts over time akin to

¹ The other key elements of clientelist exchange are hierarchy and iteration (Hicken, 2011).
³ The institution of *tanah bengkok* was legally codified under the Dutch colonial rule, but there are disputes over its origin. According to many scholars (Moertono, 1968; Soetrisno, 1993; Tjondronegoro, 2013), an old system of appanage land from the precolonial Javanese kingdom predates the *tanah bengkok* institution (see Section 2).
⁴ In the context of Indonesian politics, many researchers view patronage through material benefits distributed by politicians as a subset of clientelism broadly defined as the power relationship (Aspinall and Sukmajati, 2016). The 1979 reform transformed the role of a village head from a mere community leader to an agent of the state (Antlov, 1994; 2004; Maurer 1994), and a broker between the state and the rural community (Aspinall, 2014).
the notion of political budget cycles (Persson and Tabellini, 2003; Brender and Drazen, 2007). To decipher the mechanisms of clientelist exchange, we build a theoretical model in the spirit of political budget cycles over bengkok land. In a two-period framework, the village head acts as the landlord and hires tenants on either a fixed rental or sharecropping basis in each period, and the election takes place after the second period. Assuming the present quality of the land is inversely related to the level of raw material used in the past, at equilibrium the amount of raw material used increases under a fixed rental contract. Our model predicts that an incumbent village head, driven by a re-election motive, delegates more tenancy contracts as the next village election approaches. Moreover, sharecropping contracts are preferred over fixed rental contracts to preserve the quality of land if the incumbent foresees higher chances of re-election.

Fielded in 2018 across 130 Javanese villages in Central and East Java, our novel household survey data is applied to test if (1) the number of the total tenancy contracts on bengkok plots increases and (2) sharecropping as a share of total land tenancy contracts over bengkok plots increases as the election approaches. We utilise the variation in the time to the election across villages to examine the causal link between tenancy contracts and political budget cycles. The village level characteristics are highly exogenous to the time to the election, and as such do not confound this causal channel. After controlling for plot-level, household-level and village-level characteristics, the OLS estimates suggest that the chance of a bengkok plot being rented out (either fixed rental or sharecropping) increases by 6 percentage points as the time of the next election becomes closer by one year, and sharecropping as the share of bengkok land tenancy contracts exhibit a U-shaped relationship as the election approaches. These empirical results are statistically significant and remain largely unchanged against a series of robustness checks, while placebo tests confirm that the outcomes with bengkok plots do not hold on private plots. In addition, sharecropped bengkok

5 Political budget cycles are prevalent in less-developed countries (Shi and Svensson, 2006).
6 Applying a similar model, Roy and Serfes (2001) show that a fixed rental contract is always offered in the second period whereas a sharecropping (fixed rental) contract is offered in the first period if the landlord is less (more) myopic than the tenant.
7 In Indonesian village politics, it is a common practice to buy votes through direct cash payments to prospective voters in the days leading up to an election. The nature of this type of vote buying is typically a once-off and does not necessarily take the form of clientelist exchange (Aspinall, 2014; Muhtadi, 2018), which we study in this paper.
8 We collected data at the village, household, and agricultural plot levels covering more than 1,800 households that were sampled either from landlord or tenant populations. See Kurosaki et al. (2020) for further details.
plots are less productive than fixed rental bengkok plots in terms of rice yield per hectare, indicating that clientelist politics over bengkok land is less efficient in terms of agricultural productivity, at least in the short run. Overall, the role of tenancy contracts in clientelist exchange appears robust.

The key contribution of this study lies in the creation of new knowledge on the role of institutions in political clientelist exchange in the context of bengkok land in Java, Indonesia. The three main implications of the study are as follows. Firstly, the *quid pro quo* nature of clientelist exchange in the absence of monitoring leads to an enforcement problem as both parties may not follow through on their promises (Kitschelt and Wilkinson, 2007; Robinson and Verdier, 2003). The outcomes of this study suggest that the clientelist enforcement problem has been historically mitigated through delegation of tenancy contracts out of communal village land. To this extent, tenancy contracts over bengkok land satisfy all three components of clientelist exchange proposed by Hicken (2011), contingency or reciprocity, hierarchy or unequal power between the village head and the tenants, and an iteration where the relationship is not expected to be one-off.

Secondly, in densely populated Java, the village heads have limited opportunities to interact with each villager. Bengkok tenants thus serve as political brokers to garner support from voters. As the incumbent village head mobilises bengkok tenants for the purpose of re-election, the tenants serve as political brokers playing the role of intermediaries between the incumbent village head and the villagers (Bardhan and Mukherjee, 2020).

Thirdly, the outcomes on agricultural productivity suggests that clientelist politics are less efficient in the short-term, although it could be possible that the prospects of the long-term welfare gain increase through preserving the quality of land. The net welfare gain depends on the relative strength of the short-term and long-term effects.

Our study contributes to the broad strands of literature on elite capture10 and democratic consolidation. It is widely documented that democratic consolidation is achieved through clientelism and elite capture.11 The redistributive gains from bengkok land are associated with democratic consolidation where the village heads remain an important

9 Rice cultivation is the primary source of income from bengkok land in our study area. In some other areas, there exist other income-generating channels out of bengkok land (e.g., sugarcane production), which are outside the scope of this study.

10 See Nunn (2012) for a comprehensive survey on this topic.

11 See Bardhan and Mukherjee (2020, 2012, 2000); Baland and Robinson (2008); Persson and Zhuravskaya (2011); Robinson and Verdier (2002); Dal Bo and Di Tella (2003); Wantchekon (2003); Acemoglu and Robinson (2006); Dal Bo (2007); Baland and Robinson (2008); among others.
component of the hierarchical structure of state bureaucracy (Maurer, 1994).12 The wealthiest households in a village who have resources to contest for a village election, often become the village head and control their use rights over bengkok land (Booth, 2012; Mortimer, 1974). The prize of victory in the village election is access to land (Maurer, 1994; Kammen, 2003; Antlov, 2004), and through an iterative process of the renewal of tenancy contracts, the outputs from cultivation of bengkok land is repeatedly shared between the tenant and the village head.13

Lastly, this study contributes to the field of research on the political economy of Indonesia. Studies on the patronage and clientelism in Indonesia have largely focused on national, provincial and district legislatures and executive elections (Aspinall and Sukmajati, 2016; Martinez-Bravo, 2014; Martinez-Bravo et al., 2017; Dell and Olken, 2020). At the same time, attention has mostly been paid to vote-buying through non-clientelist exchange, primarily in the form of retail vote-buying (Muhtadi, 2018). The current study provides evidence on clientelism rooted in the use of communal land in village politics. Despite a voluminous literature on the political economy of Indonesia,14 only Lim (2019) provides a systematic empirical study of bengkok land. In two respects, our study differs from Lim (2019). Firstly, Lim (2019) examines the long-term impact of bengkok land institutions on productivity and poverty reduction whereas we explore the relationship between land tenancy contract choices and the political budget cycles over bengkok land. Secondly, our survey covers 130 villages with bengkok land spread across 13 districts in Central and East Java, compared to the two districts studied by Lim (2019). The unavailability of systematic data on bengkok land15 has bottlenecked in-depth research on this historic institution that takes the centre stage in the political economy in Javanese villages. To the best of our knowledge, this is the first large-scale empirical study performed on bengkok land.

Three caveats are in order, all of which are not addressed in this study due to the lack of detailed data. Firstly, clientelist politics in the present context benefits only voters-cum-

12 In Java, the rural areas of each province are successively divided into districts, sub-districts and villages. Villages thus constitute the smallest unit of territorial administration in the rural area of Java.

13 The unique features of bengkok land dub the village as de jure landlord and the village head as de jure tenant of bengkok land. The village head on the other hand acts as the de facto landlord, who use her authority for political manipulation and private economic gain.

14 See Fisman (2001); Olken (2009, 2006); Skoufias et al. (2014); Martinez-Bravo (2014); Martinez-Bravo et al. (2017); Lim (2019); Alatas et al. (2019); Dell and Olken (2020), among others.

15 Scattered ethnographic studies, agricultural surveys (Antlov, 1994; Maurer, 1994; Hart, 1986; Kano, 1977; White and Wiradi, 1979, among others) and intermittent census figures have so far been the only sources available on bengkok land. The available resources from the Village Potential Statistics (PODES), conducted in line with the implementations of the Population Census, Agriculture Census and Economic Census in Indonesia, do not provide detailed information on the distribution of bengkok land among different administrators, either.
tenants at the expenses of other voters. However, in the standard models of political budget cycles, manipulation of fiscal aggregates (increases in deficits and expenditures or cuts in taxes) to buy votes benefits all citizens (Persson and Tabellini, 2003; Brender and Drazen, 2007).16 Secondly, as we have limited data on electoral outcomes, we do not examine the direct relationship between clientelist exchange and the electoral outcomes for tenants and landlords involved in bengkok tenancy. Thirdly, while we explicitly model clientelist exchange as the vote-buying strategy, a widespread practice in legislative and executive elections at the national, provincial and district level in Indonesia is retail vote-buying through direct cash payments to potential voters on the day of the election (Hadiz, 2010; Aspinall and Sukmajati, 2016). Candidates sometimes also engage in pork-barrel politics, offering publicly funded programs or small projects to targeted groups (Aspinall and Rohman, 2017).

We organise the rest of the paper in the following manner. Section 2 provides a brief history of bengkok land touching upon its origin and geographic spread and electoral competition for bengkok land. In section 3, we build a simple theoretical model on tenancy contracts and political cycles in a village administrative system characterised by bengkok land. Section 4 describes the data and discusses the empirical results, which is followed by a concluding section.

2. The political economy of Bengkok land - A brief history

2.1. The origin and geography

While disputes remain about its origin (Moertono, 1968; Soetrisno, 1993), according to some scholars (Tjondronegoro, 2013), an old system of appanage land from the precolonial Javanese kingdom predates the bengkok land institution, which was legally codified under the Dutch colonial rule. In 1866, the Dutch colonial government decided to give the village heads official land in lieu of salary, which proved to be an inexpensive and convenient means of administration and cooperation with the local economy. In 1906, the provision for the

16 The literature on political business cycles (Nordhaus, 1975; Rogoff and Sibert, 1988; Rogoff, 1990 and Persson and Tabellini, 1990) precedes the literature on political budget cycles. Brender and Drazen (2007) argue that the lack of convincing evidence on political business cycles led researchers to shift their attention to political budget cycles.
election of a village head was constituted by law, which also designated the revenue given to the village heads and other village officials (Kano, 1994). At that time, the village heads and other village officials also enjoyed various labour services by the villagers. While labour service practices were gradually abolished (Kano, 1994), the bengkok land system continued, predominantly in the central and eastern parts of Java.

In the absence of systematic data, we resort to scattered ethnographic pieces of evidence and census figures to describe the size and distribution of bengkok land in Java. According to the 1883 colonial statistics, bengkok land occupied 13.9% of total farmland in Java excluding Batavia, Yogyakarta, Surakarta and Madura. The percentage was reduced to 5.9% in 1932 and the similar figure for the whole Java in 1932 was 6.0%. Looking at the absolute size, however, the same data source shows that the farmland classified as bengkok increased from 340,000 ha in 1882 to 360,000 ha in 1932 in Java excluding Batavia, Yogyakarta, Surakarta and Madura.

Collecting information from an Indonesian Law book, Kammen (2003) reports that bengkok land is found in the former Cirebon Residency of West Java, and in the entire region of Central Java and East Java. Other independent research reports also support this geographic spread of Bengkok land, with more extensive spread of bengkok land in riverine areas than in highland areas (Kano, 1977; Hefner, 1990; Booth and Sundrum, 1981). Kano (1977, p.31) estimates the size of bengkok plots to be between 5 to 15% of the available communal land in the village during the colonial era. The unequal distribution of bengkok land was also partly due to the local customs at various places, which influenced the terms and conditions of the reward that village heads and other village officials enjoyed against their services (Kano, 1994).

Since independence, there have been several attempts to create a more equitable distribution of bengkok land across Java, including reclassifying communal land as bengkok land or even allocating funds available at the district level to purchase additional land for villages (Soetrisno, 1993; Kurosaki, et al., 2020). Kano (1994), surveying 500 villages in Java in 1990, concludes that the percentage of bengkok land in the village land remain virtually unchanged between 1903 and 1990. Data from PODES shows that in 2000 bengkok land is concentrated in Central Java, Yogyakarta and East Java (Appendix 1A).

17 Data sources: Koloniaal Verslag van 1883 [Nederl. (Oost-) Indie.], Appendix P. for the 1882 value and Indisch Verslag 1934 - II, Statistisch Jaaroverzicht van Nederlandsch-Indië, for the 1932 values. We appreciate the help from Pierre van der Eng for obtaining these numbers.

18 We converted the acreage in “bouw” using 0.71 ha per bouw into the numbers in hectares.
2.2. Electoral competition over bengkok land

In both the colonial and post-colonial era, to keep the central budget for village administration low, villages were mostly autonomous and village heads had authority to levy various fees/taxes and could summon villagers to work on building or maintaining public infrastructure (Antlov, 2004; Kammen, 2003). While village heads had always been elected from local people at least since the early 19th century (Hüsken, 1994), the position enabled them to accumulate wealth. The main source of this wealth was bengkok land, often the most fertile pieces of land in the village, which was of immense value in densely populated Java (Maurer, 1994).

The access to resources allowed village heads to accumulate wealth that was passed on to their children. At the same time, the position of power and access to bengkok land allowed them to provide patronage to sharecroppers and farm labourers who could be mobilised for various purposes, including winning the election. Standing for a village election in Java is an expensive affair, and candidates must invest significant financial and political resources to be competitive. This may explain why, while village heads have always been elected, electoral competition has often stayed between a small number of families with long histories in village administration. This is true even after the introduction of the term limit in 1979. Maurer (1994), observing village elections in Java in 1990, found that many village heads and candidates were from the fifth or sixth generation of village administrators.

Studying widespread protests during village elections in Java during the tumultuous years of political transformations in 1997-1999, Kammen (2003) argues that the protests over village elections portrays the competition within the village to gain greater control over community assets and collective resources. In 1998, more than 6250 village elections that were scheduled to be held in 1999 were postponed when Soeharto stepped down from power. This had two immediate effects. On the one hand, a huge administration cost to meet the formal logistics including the formation of electoral committees, scheduling the election date and selecting candidates became a sunk cost. On the other hand, selected candidates incurred considerable campaigning costs in the quest of becoming an elected village head.

As a predictable response, the suspension of village elections led to social and political unrest, often escalating to outright violence in central Java. This is supported by appendix 1B, which shows more frequent incidents of electoral protests in regions with a higher density of villages with substantial bengkok land. The high correlation between
villages with bengkok land (appendix 1A) and protests over village elections (appendix 1B) is not a mere coincidence; rather, it points to the fierce electoral competition in the village where the prize of electoral victory was much-coveted access to bengkok land. The protests over village elections became intensified as the proportion of bengkok plot to the size of the village land increased. This refers to a direct relationship between the size of bengkok land and election competition in a village. Villages with large and productive bengkok land typically have a long list of potential candidates. Conversely, less fertile and smaller tracts of bengkok land attract fewer candidates.

During the 1980s and the 1990s there were sporadic attempts to replace the bengkok land institution with a fixed salary for village heads. However, in most parts these were half-hearted efforts that failed to make any significant impact (Kammen, 2003). A stronger threat came much later, in 2014, as part of the new Village Law. As part of the implementation of the new law, the government started consolidating village funds (dana desa) to support the salaries of village administrators (Lewis, 2015). Following the law, Government Regulation 43 was passed, which governs village assets so that village administrators will be paid from village budget. The regulation made concrete suggestions to abolish the bengkok land institution, and instead for village heads and other village officials to receive a stipulated monthly salary (penghasilan tetap), various allowances (tunjangan) and medical benefits (jaminan kesehatan) from the financial resources available at the subdistrict level (dana perimbangan) (Kano, 2017).

The new regulation received strong reactions from villages. Throughout the first few months of 2015 there were a number of public demonstrations involving dozens and sometimes hundreds of village administrators from Central and East Java, who travelled to the presidential palace in Jakarta, to retain bengkok as part of the salary of village administrators. Under pressure from the villages, in June 2015, Government Regulation 47 was enacted to retain the status of bengkok land as an additional means of support for village administrators.

19 Large bengkok land is often also seen as a potential source of conflict during election. In preparation for the 2019 election in 116 of villages in the Kudus district, Central Java, the police chief used the size of bengkok land to map villages most vulnerable to conflicts (Tribun Jateng, 2019).

20 In 2019, for example there were shortages of candidates running for village head elections in a few villages where bengkok land was considered too small. In 28 out of 216 villages in Temanggung District, Central Java, to circumvent the rule requiring at least two candidates for the election, the main candidates enlisted their spouses to run against them. The small size of bengkok land was cited as the reason why there was a low interest in the position (Kedaulatan Rakyat Yogyakara, 2019; Kompas, 2019).

administrators, over and above their paid salary. This clearly marked a victory for the villages. Districts in Central and East Java issued legislation to formalise this. However, around this time, some districts decided to get rid of bengkok land.23

Village heads had sources other than bengkok land to generate income. As the chief administrator of the village, village heads were often involved in most development projects and welfare programs. Village heads served as state clients (Antlov, 2004) and had close connections with the bureaucracy and officials at higher levels. These close connections enabled some village heads to channel part of these funds for private use. In addition, from land transactions, rental agreements, issuing building permits, registration of marriages, divorces, birth and deaths – these routine village affairs all needed the approval and signature of the village head against a fee. The fee for such activities varied and was often left at the discretion of the village head, which also provided heads with an opportunity for rent seeking. Furthermore, village heads often served outside interests by coercing villagers to sell or rent land to outsiders, often followed by the illegal sale of village property and private land of the villagers (Fauzi, 1995; Aspinall and Rohman, 2017; Ito, 2011). Under the Village Law of 2014, which prevailed at the time of our survey, and with the large increase in the village budget, it is not surprising that the position of village heads continues to be attractive and heavily contested.

3. Theory

We work with a village level framework combining agricultural tenancy choices and probabilistic voting. Our model differs from the standard models of electoral competition in several ways. The public good in our model enters indirectly in the form of community protection that villagers receive from the village head.24 For this reason, we do not consider the role of tax and government budget to finance public goods and instead assume that they are provided by the village head through resources from bengkok land. The direct benefit

22 In a number of public speeches, President Joko Widodo ensured that village heads and officials can continue to manage bengkok land (Tempo, 2015).
23 At the time of our survey in 2018, three out of thirteen districts that were initially identified as core regions of the bengkok land institution had just implemented district laws to abolish bengkok land (Kurosaki et al., 2020).
24 This is supported by an ethnographic study that documents the emergence of another form of social cleavages where voters equally cared for the protection of village assets when they saw an outsider, with vested interest in the village land, was trying to take control of the village resources (Kammen, 2003). The outsiders could be anybody from private developers to a state official of a higher rank. Thus, the mobilisation of resources (access to land in particular) created tensions within the village, as well as between the village and the outsiders.
from bengkok land comes in the form of private income that only a contract holder or tenant receives. It is noteworthy to mention that our model of the political budget cycle only concerns villages where bengkok land is available. The electoral process of selecting a village head also exists in Javanese villages that do not possess bengkok land, and in such cases the village heads receive a salary instead of gaining access to bengkok land.25

Appendix 2 provides a detailed description of the theoretical model. Sections A2.1 and A2.2 provide the preliminaries. In section A2.1, we describe the model assumptions and timing of the events. In our framework, the village head acts as a landlord who employs tenants for two periods by offering them a contract in each period, and the election takes place after the second period. Section A2.2 presents a modified version of the tenancy choice model of Roy and Serfes (2001). In a similar two-period set-up, with no uncertainty and asymmetric information of any kind, Roy and Serfes (2001) derive a tenancy contract mechanism. Based on the assumptions that the present quality of the land is inversely related to the level of raw material used in the past and the amount of raw material used increases as the type of tenancy contract changes from sharecropping to fixed rental, Roy and Serfes (2001) show that a fixed rental contract is always offered in the second period whereas a sharecropping (fixed rental) contract is offered in the first period if the landlord is less (more) myopic than the tenant.26

Section A2.3 presents a simple model of electoral competition between the incumbent and the challenger without a political cycle motive. The two parties announce their electoral platforms before the realisation of political parameters. It characterises the decisive voter and determinants of the incumbent’s winning probability. Finally, in section A2.4 we introduce the case of an incumbent village head having a strong motivation for re-election so that she utilises any strategy of vote buying, which is central to this paper. We extend the Roy and Serfes model to incorporate hiring of additional tenants on bengkok plots in the second period, and the provision of village elections after the second period using a standard probabilistic voting model. In the case of electoral competition without a vote-buying strategy, we reach equilibrium tenancy contracts, as in Roy and Serfes (2001).

25 For example, Martinez-Bravo (2014) compared the elected and the appointed village heads to study if different systems of selecting the village heads affect the level of incentives for district-level officials to influence the voters.

26 Conventional wisdom on Marshallian efficiency suggests that landlords prefer fixed rental to sharecropping as a tenancy choice.
The role of clientelism in the village-level political budget cycle is best understood in the case of the electoral competition with a vote-buying strategy with the help of the following propositions.

Proposition 1. An increase in the number of the total tenancy contracts improves the chances of incumbent re-election.

Proof: See section A2.4.2 (Appendix 2).

Proposition 2. New tenancy contracts as the time to an election becomes shorter are more likely to be sharecropping.

Proof: See section A2.4.2 (Appendix 2).

An opportunist incumbent village head, as derived from our theory, increases the number of the total tenancy contracts on bengkok land in pursuit of garnering a larger vote bank for re-election. Moreover, new tenancy contracts are more likely to be sharecropping, as opposed to the case of electoral competition with no vote-buying strategy, when the election approaches. The second theoretical proposition is based on the premise that an opportunist village head gives more weight to preserving the quality of land foreseeing a higher probability of winning the election again, which makes the equilibrium contract choice to be sharecropping as opposed to fixed rental as the election time becomes nearer.

Based on the above two propositions, we empirically test the following hypotheses: (H1) the number of total tenancy contracts on bengkok plots increases as the time to an election becomes shorter, and (H2) the share of bengkok land tenancy contracts under sharecropping first decreases and then increases as the election time approaches, i.e., a U-shaped relationship between the share of sharecropping tenancy contracts and the time to the election.

The second hypothesis integrates two mechanisms. The theory discussed in A2.2 predicts that across all bengkok plots that are rented out in period 1, the percentage of sharecropping contracts declines in period 2, while the theory discussed in section A2.4 predicts that bengkok plots that are newly rented out in period 2 are more likely to be under sharecropping. As our empirical setting has a six year political cycle, as explained in the next section, we expect the first mechanism to dominate when the time of the election is far away while the second mechanism to dominate when the election approaches.

4. Empirical findings
4.1. Empirical strategy

As our dataset is cross-sectional, we cannot test these hypotheses directly. Instead, we examine whether two measures of \(Y \) (the dummy variable for a bengkok plot under tenancy for H1 and the dummy variable for a leased bengkok plot under sharecropping for H2) are correlated with \(X \) (the time till the election) as predicted by the theory. Note that the second hypothesis is tested conditional on a bengkok plot being rented out, which is examined in the first hypothesis.

It is possible that village level variables that affect the tenancy choice through other mechanisms (not modelled in our theoretical model) are correlated with \(X \) but omitted from our empirical model. In the standard tenancy theories in agricultural development economics, type and quality of the farmland, tenants’ liquidity constraint and risk aversion, landlords’ risk aversion, relative positions of landlord-tenant wealth status and comparative advantages, market access for output and input among others are pointed out as important correlates of tenancy choice (Otsuka, 2007). We therefore run regressions using \(X \) (and its transformations) as the main explanatory variables, but with control variables such as characteristics of plots and landlord or tenant households. Village-level controls will be added in the robustness check.

Despite our finding of strong empirical support to H1 and H2 in the baseline model, it is possible that \(X \) can capture something else due to its correlation with some unobservable village-level characteristics that affect tenancy choices in general. To check this possibility, we run placebo tests using private land plots owned by private landlords, some (or all) of which is rented out to tenants either on a fixed rental or sharecropping contract.\(^\text{27}\) For these plots, we can calculate two dummy variables of \(Y' \) (the dummy variable for a private plot under tenancy and the dummy variable for a leased private plot under sharecropping). As these plots are not directly affected by the political budget cycle, we expect no correlation between \(Y' \) and \(X \), as far as \(X \) correctly captures the political factor.

Finally, we conduct several robustness checks. In addition to standard robustness checks with respect to the specification of empirical variables and functional forms, we use three sources of information on bengkok plots allocated to village heads. In our main

\(^{27}\) In our dataset, some of bengkok landlords also own private farmland (Kurosaki et al., 2020). How the tenancy management of these private plots responds to the political cycle factor is highly complicated, beyond the scope of this paper. We thus do not use information on these private plots.
analysis, we use plot-level information collected from sample landlord households. As robustness checks, we also use village-level information collected from village administrators and plot-level information collected from sample tenant households.

4.2. Data

For the empirical analysis, we use survey data, administered in February-April 2018 in two provinces of Central Java and East Java, where the bengkok institution is more prevalent, and both provinces were under the same Dutch colonial rule. From government statistics, we first selected a total of 13 rural districts (kabupaten)\(^{28}\) where the bengkok land institution is prevalent and the main crop is paddy, ten districts from the eastern part of Central Java and three districts from the western part of East Java. From each district, two sub-districts (kecamatan) were selected. The selection of sub-districts was based on the farmland characteristics. Within each district, using the most recent agricultural statistics, we excluded sub-districts where the area of the dry farmland is larger than that of the wet farmland. From the remaining sub-districts, we randomly selected two sub-districts. A total of 26 sub-districts spread across 13 districts are shown in Appendix 3. A comparison with Appendix 1A suggests that our study villages were chosen from Javanese regions with a higher frequency of villages with substantial bengkok land.

The purpose of the survey was to collect detailed information on bengkok land at three levels: village, household, and agricultural plot. The survey covered 130 villages and more than 1,800 households that were sampled from both landlord and tenant populations in the study villages. See Kurosaki et al. (2020) for details of the survey design and distribution of key variables regarding the management of bengkok land.

The main explanatory variable is \(X\) (the time to the next election). We had to exclude three villages where the incumbent village heads were ineligible for further elections due to the term limit. The distribution of \(X\) is shown in Figure 1. Its mean (S.D.) is 1.6 years (1.3 years) ranging from the minimum of 0.25 year (i.e., 3 months) to the maximum of 5.75 years (5 years and 9 months). Its median is 1.25 years (i.e., 1 year and 3 months).

\(^{28}\) In Indonesia, districts are classified into two types: kabupaten districts, which mostly prevail in rural areas and the majority of its villages are known as desa where village heads are directly elected, and kota districts, which mostly prevail in urban areas and the majority of its villages are known as kelurahan where village heads are appointed by the district mayor. Martinez-Bravo (2014) utilises the difference between desa and kelurahan to identify the impact of elections in Indonesian local politics. Our survey covered desa villages in kabupaten districts.
To calculate the dependent variables, we mainly use the plot-level information in the landlord household data. This dataset contains information on 2,500 plots owned by 930 sample landlords. The sample landlords fall under one of the three exclusive categories: pure bengkok landlords without any private farmland, landowning bengkok landlords and pure private landlords (Kurosaki et al., 2020). For the main analysis, from the first two groups of bengkok landlords in eligible villages, we exclude bengkok landlords who are not village heads themselves. This is to identify the subset of bengkok plots that are under the direct influence of the political cycle. We have 273 plots available for the main analysis. Two dummy variables are compiled: Y_1, the dummy variable for the bengkok plot under lease (either on a fixed rental or sharecropping basis), and Y_2, the dummy variable for the leased bengkok plot under sharecropping. The mean of Y_1 is 0.857 ($n=273$) and the mean of Y_2 conditional on $Y_1=1$ is 0.440 ($n=234$).

For the placebo test we employ private plots owned by pure private landlords, who reside in villages administered by eligible village heads. We have 735 plots falling in this category. The mean of Y_1' is 0.839 ($n=735$) and the mean of Y_2' conditional on $Y_1'=1$ is 0.588 ($n=617$).

As control variables, we employ plot characteristics (dummy variables for unirrigated lowland plot, upland plot and size larger than 1ha), landlords’ characteristics (age, years of education and asset index score29), tenants’ characteristics (age, years of education and asset index score) and village characteristics (total area of the village, population to farmland ratio, number of factories and distance to the district capital city).

4.3. Time until the next election and village characteristics

Bivariate correlation coefficients between X and ten village-level variables are shown in Table 1. None of the ten coefficients is statistically significant at the 1% level and only one is statistically significant at the 5% level (number of factories in the village).

Table 1 also shows the regression results with X as the dependent variable and the ten village-level variables as explanatory variables. No variable has a statistically significant coefficient. Furthermore, the F-test for no slopes shows the overall insignificance of the

29 "Asset index score" is the predicted value of the first principal component, aggregating 13 dummy variables for the household ownership of TV, satellite disc, refrigerator, LPG tube, air conditioner, mobile phone, computer, tablet, pump, generator, vehicle, boat and motorcycle (the loading coefficients, all positive, were estimated from the pooled sample of both tenant and landlord households).
regression model and R^2 is very low. As several of the ten explanatory variables are highly correlated, we also estimated a parsimonious version excluding mutually correlated variables (last column of Table 1), which confirms the previous result. Therefore, village-level observables do not have explanatory power for X.

We thus conclude that our measure of X (years until the next election of the village head) is highly exogenous to village-level characteristics. This justifies our main specification with plot and household characteristics and the specification with village-level controls as a robustness check.

4.4. Effect of the political cycle on tenancy choice

4.4.1 Main results

The actual values of Y are plotted on X in appendix 4A, which suggests that the probability of a bengkok plot being rented out increases as the time of election draws nearer. As shown in column (1) of Table 2, the OLS regression coefficient on the linear term of X is -0.064 and statistically significant at the 10% level even with controls at the plot and household level. As shown in column (2) of Table 2, the coefficient on the quadratic term is insignificant. By imposing the restriction that the quadratic coefficient is zero, the model (2) turns into the model (1). Different combinations of control variables show that the coefficient is estimated robustly at around -0.06, implying that the probability increases by 6 percentage points when the election becomes closer by one year. Thus, H1 is supported.

As shown in appendix 4B, the probability of a leased bengkok plot under sharecropping first decreases and then increases as the time of election draws nearer (U-shaped relation). As shown in column (4) of Table 2, the quadratic model is supported against the linear model with coefficient of -0.35 on the linear term and 0.07 on the quadratic term, where both are statistically significant at the 5% level. Different combinations of control variables show that the coefficients are estimated robustly at approximately -0.3 on the linear term and 0.07 on the quadratic term. Thus, H2 is supported. Based on specification (4), the U-shape has the minimum at approximately $X = 2.5$ (i.e., 2 years and 6 months until the next election). From Table 2, we notice that control variables have much larger explanatory power on Y_2 (sharecropping vs. fixed rental) than on Y_1 (renting out vs. own cultivation). This implies that the choice between sharecropping and fixed rental is affected not only by the
political cycle but also by standard sets of variables discussed in the land tenancy literature (Otsuka, 2007), the details of which are reported in appendix 5.

Instead of using linear and quadratic terms of \(X \), we can characterise the time effects using a set of dummy variables in the spirit of time fixed effects. Appendix 6 shows the fitted effects of the time dummies on the lease probability. Similarly, appendix 7 shows the fitted effects of the time dummies on the sharecropping probability given that the plot is leased. Regardless of the way in which we define the time fixed effects, both H1 and H2 are supported from these figures as well.

4.4.2. Placebo tests

If our interpretation that \(X \) (the time until the next election) represents the political factor that is related to clientelism and specifically to bengkok plots, we do not expect to find similar relations when we examine private plots owned by pure private landlords (those who are not allocated any bengkok land). As shown in appendix 8A, the probability of a bengkok plot being rented out is almost flat regardless of the time until the next election. As shown in column (1) of Table 3, the OLS regression coefficient on the linear term of \(X \) is statistically insignificant. We thus conclude that the pattern similar to H1 does not exist on private plots (placebo test has been passed).

As shown in appendix 8B, the probability of a leased bengkok plot being under sharecropping has a slightly positive slope but is not showing a U-shaped relationship. As shown in column (3) of Table 3, the linear model has an insignificant coefficient on \(X \). In sharp contrast to Table 2, the quadratic model has insignificant coefficients on both linear and quadratic terms in Table 3. This is robustly supported when the list of controls is permuted. We thus conclude that the pattern like H2 does not exist on private plots.

4.4.3. Robustness checks

We start with village level data for testing H2 (for H1, we have very little variation as the average of the dependent variable is very close to 1). Out of 130 villages, 11 villages were dropped because either the village head was ineligible for re-election, or the village head had not yet received the bengkok plots at the time of our survey, or the village head self-
cultivated all of the bengkok plots. The information is not at the plot level, so we cannot control for plot-level characteristics. The dependent variable is a dummy variable for the village head to rent out some or all of bengkok plots to sharecropping, which has a mean of 0.395 (n=119).

As shown in appendix 9A, village-level data also show the U-shaped relationship. Column (2) of Table 4 shows that the quadratic model is supported against the linear model with a coefficient of -0.38 on the linear term and 0.07 on the quadratic term, both of which are statistically significant at the 1% level. Thus, H2 is supported from this alternative data source.

We can use plot-level data collected from the tenant household survey. However, because of the sampling design, we cannot test H1 (H1 is on plots owned by landlords, which were, by construction, collected in the landlord household survey). On the other hand, we can still test H2 for bengkok plots using data on rented-in plots by sample tenant households. In the tenant household survey, we collected information on 2,652 plots managed by 913 tenant households. Out of these 2,652 plots, 724 plots were bengkok plots rented-in from village administrators. Out of these 724 plots, we exclude those in ineligible villages and those allocated to village officials other than the village head. As a result, we have 132 bengkok plots, for which the average of sharecropping dummy is 0.333.

As shown in appendix 9B, tenant household data also show the U-shaped relationship, although some irregularity occurs when the election is very close. Column (4) of Table 4 shows that the quadratic model is supported against the linear model with a coefficient of -0.30 on the linear term and 0.05 on the quadratic term, both of which are statistically significant at the 5% level. The coefficient estimates for these two parameters remain highly stable when we churn the list of controls. Thus, H2 is supported from the data reported by sample tenants as well. It should be noted that about one half of these tenants’ plots overlap with the plot-level data collected in the landlord household survey (matched tenant-landlord data). Therefore, the analysis in columns (3) and (4) of Table 4 is not wholly independent of the analysis in columns (3) and (4) of Table 2. Due to the small number of observations, we do not attempt an analysis using the matched data.

Regarding different specifications, we already discussed the robustness when we employed a different parametrisation of X using time fixed effects (appendix 6 and 7). The results were similar when the monthly thresholds defining the year dummies were changed (i.e., whether the equality is put on the upper or lower threshold, or the treatment of large values of X for which the number of observations is small). The results based on probit
specifications are highly similar to those of the OLS results (appendix 10A). The addition of village-level controls did not change the results, either (appendix 10B). The robustness against the inclusion of village-level variables is especially important as our main variable of interest is defined at the village level. Overall, both H1 and H2 are supported robustly.

4.5. Tenancy choice and agricultural productivity

As the last subsection on empirics, we provide some evidence on the welfare effects of clientelist politics over bengkok land. In the literature, patterns of resource allocation consistent with clientelism are examined to understand their implications for welfare (Bardhan et al., 2020). For instance, public expenditure on infrastructure across Indian states is low despite a large demand for infrastructure services, which as Khemani (2015) argues, could be because infrastructure projects are not well-suited for clientelism.

In our theoretical model of land tenancy contracts, an opportunist village head offers sharecropping as an equilibrium contract choice in the second period as she gives more weight to preserving the quality of land, foreseeing a higher probability of winning the election again (the second hypothesis in the theoretical model). We test the validity of this theoretical argument by comparing the rice yield (ton per hectare) between sharecropped and fixed rental bengkok plots. After controlling for plot-level, household-level and village-level characteristics, we find robust and statistically significant empirical evidence that sharecropped bengkok plots are less productive than fixed rental bengkok plots (appendix 11). This supports our theoretical construct that clientelist politics over bengkok land is less efficient in terms of agricultural productivity.

On the other hand, clientelist politics could enhance the prospects of future welfare gain by preserving the quality of land as our theory predicts. Tenants newly hired in the last period before the election gain incomes irrespective of the type of tenancy contracts in comparison to the state without tenancy on bengkok plots. Despite an income loss in the current period in comparison to the fixed rental case, sharecroppers on bengkok land can foresee an income gain in the future as the quality of land in the current period is restored. We consider it a positive externality in the long run. However, it is beyond the scope of this study to provide empirical support on how future-income prospects generate welfare gains for the villagers. The net welfare gain depends on the relative strength of the positive and negative externalities arising from clientelist politics associated with bengkok land.
To conclude, the redistributive gains from bengkok land are closely associated with clientelism and democratic consolidation at the village level. The prize of victory in the village election is access to land (Maurer, 1994; Kammen, 2003; Antlov, 2004; Aspinall and Rohman, 2017), and the elected village heads pursue similar economic interests as landlords. While the village head mobilises bengkok tenants for private gains, the tenants could also serve as political brokers, and as such, play an important role in overcoming monitoring and enforcement problems (Bardhan and Mukherjee, 2020). This reciprocal relationship helps mitigate the clientelist enforcement problem in this unique political institution.

5. Conclusion

In this study, we provide an empirical case that suggests the strategic delegation of agricultural tenancy contracts borne out of communal village land as the means of clientelist exchange. We achieve this in the context of the historic bengkok land institution in Java, Indonesia, which grants usufruct rights to village heads over a parcel of village land in lieu of salary. A theoretical model provides the justification for linking tenancy arrangements with the political budget cycle associated with the election of village heads. Empirical support comes from a novel household level survey administered in 2018 across 130 Javanese villages in Central and East Java.

This study brings out novel insights on the role of institutions in shaping the nature of clientelist exchange. It shows how the iterative process of clientelist exchange through agricultural tenancy contracts is linked to democratic consolidation and welfare gains for the citizens in the short- and long-term. To this extent, a recent study by Lim (2020) finds that salaried village heads can generate more public goods compared to bengkok villages. One possible explanation to this outcome could be a higher level of rent seeking in bengkok villages.

The welfare implications of this study have direct bearings on the recent state attempts to replace the bengkok land institution with a system of fixed salary for the village heads. In 2014, after the new Village Law was passed, the government started consolidating village funds to support the salaries of village administrators (Lewis, 2015). However, the new 2014 regulation received strong opposition from the village officials, which forced the government in June 2015 to eventually retain the status of bengkok land as a means of supporting them, over and above their paid salary.
A fruitful way to extend the current study is to understand the mechanisms of the long-term welfare effects of clientelist exchange. From such a study, the role of clientelism in economic development over time can be compared across different types of political institutions.
References

Dulu dan Sekarang: Beberapa Catalan Sementara

Figure 1. Distribution of the time until the next election of the village head

Note: $n=127$.
Table 1. Time until the next election and village characteristics

<table>
<thead>
<tr>
<th>Village characteristics</th>
<th>Summary statistics</th>
<th>Bivariate correlation w/ X (months until next election)</th>
<th>Multiple regression (OLS) w/ X as the dependent variable</th>
<th>Full list of explanatory variables</th>
<th>Parsimonious specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total land (1000 ha)</td>
<td>0.33</td>
<td>0.21</td>
<td>0.086</td>
<td>0.338</td>
<td>-0.442</td>
</tr>
<tr>
<td>Total farmland (1000 ha)</td>
<td>0.23</td>
<td>0.17</td>
<td>0.120</td>
<td>0.179</td>
<td>1.929</td>
</tr>
<tr>
<td>Population (1000 persons)</td>
<td>4.15</td>
<td>2.54</td>
<td>0.021</td>
<td>0.813</td>
<td>0.015</td>
</tr>
<tr>
<td>Population/farmland</td>
<td>21.32</td>
<td>12.50</td>
<td>-0.067</td>
<td>0.456</td>
<td>-0.002</td>
</tr>
<tr>
<td>Number of factories</td>
<td>1.48</td>
<td>1.19</td>
<td>-0.178</td>
<td>0.046</td>
<td>-0.164</td>
</tr>
<tr>
<td>Distance to bus terminal (km)</td>
<td>6.64</td>
<td>7.24</td>
<td>0.053</td>
<td>0.556</td>
<td>0.004</td>
</tr>
<tr>
<td>Distance to post office (km)</td>
<td>3.62</td>
<td>2.61</td>
<td>-0.002</td>
<td>0.987</td>
<td>-0.009</td>
</tr>
<tr>
<td>Distance to district capital city (km)</td>
<td>20.54</td>
<td>12.13</td>
<td>-0.001</td>
<td>0.988</td>
<td>0.001</td>
</tr>
<tr>
<td>Total bengkok land (ha)</td>
<td>28.17</td>
<td>28.24</td>
<td>0.126</td>
<td>0.158</td>
<td>-0.008</td>
</tr>
<tr>
<td>Bengkok/farmland</td>
<td>0.15</td>
<td>0.16</td>
<td>0.117</td>
<td>0.189</td>
<td>2.373</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.335</td>
</tr>
<tr>
<td>F-stat for zero slope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>p-value (Prob > F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.571</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.069</td>
</tr>
</tbody>
</table>

Notes: The number of observations is 127 (3 villages whose head is ineligible for re-election are excluded). Mean (Std.Dev.) of X is 1.6 years (1.3 years). Significance levels of ** (5%) and *** (1%) appear for the regression results. In the parsimonious specification, explanatory variables that are highly correlated with another explanatory variable (using 0.2 or -0.2 of correlation coefficient as the cut-off) are excluded.
Table 2. Probability of renting-out/sharecropping and the time until the next election (bengkok plots of village heads in eligible villages)

<table>
<thead>
<tr>
<th></th>
<th>OLS regression with the dependent variable:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dummy for the bengkok plot to be rented-out</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>X (years until the next election)</td>
<td>-0.064 *</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
</tr>
<tr>
<td>X^2</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>273</td>
</tr>
<tr>
<td>Mean of the dependent variable</td>
<td>0.857</td>
</tr>
<tr>
<td>F-stat for zero slope</td>
<td>1.03</td>
</tr>
<tr>
<td>p-value (Prob > F)</td>
<td>0.414</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.065</td>
</tr>
</tbody>
</table>

Notes: The observations in columns (1) and (2) are bengkok plots of village heads who are eligible to run for the next elections. The observations in columns (3) and (4) are bengkok plots of eligible village heads that are rented out. Linear probability model is estimated by OLS. Village-clustered standard errors are in parenthesis, with significance levels of * (10%), ** (5%), and *** (1%). In addition to X and X^2, plot characteristics (dummy variables for unirrigated lowland plot, upland plot, and the size larger than 1ha) and landlords’ characteristics (age, years of education, and asset index score) are also included as explanatory variables. See Appendix 5 for the full regressions results for specification (1) and (4). Full regression results for other specifications are available from the authors on request.
Table 3. Probability of renting-out/sharecropping and the time until the next election
(placebo: private plots of private landlords in eligible villages)

OLS regression with the dependent variable:

<table>
<thead>
<tr>
<th></th>
<th>Dummy for the plot to be rented-out</th>
<th>Dummy for the rented-out plot to be under sharecropping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>X (years until the next election)</td>
<td>0.008</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.058)</td>
</tr>
<tr>
<td>X^2</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>735</td>
<td>735</td>
</tr>
<tr>
<td>Mean of the dependent variable</td>
<td>0.839</td>
<td>0.839</td>
</tr>
<tr>
<td>F-stat for zero slope</td>
<td>0.85</td>
<td>0.76</td>
</tr>
<tr>
<td>p-value (Prob > F)</td>
<td>0.547</td>
<td>0.636</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.012</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Notes: The observations in columns (1) and (2) are private plots of private landlords in the eligible villages. The observations in columns (3) and (4) are private plots that are rented out. Linear probability model is estimated by OLS. Village-clustered standard errors are in parenthesis, with no coefficients significant at 10% or less. Plot characteristics (dummy variables for unirrigated lowland plot, upland plot, and the size larger than 1ha) and landlords’ characteristics (age, years of education, and asset index score) are also included as explanatory variables. Full regression results are available from the authors on request.
Table 4. Probability of sharecropping and the time until the next election using different datasets

<table>
<thead>
<tr>
<th></th>
<th>OLS regression with the dummy for the rented-out bengkok plot to be under sharecropping as the dependent variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Village data</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>X (years until the next election)</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
</tr>
<tr>
<td>X²</td>
<td>0.071 ***</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>119</td>
</tr>
<tr>
<td>Mean of the dependent variable</td>
<td>0.395</td>
</tr>
<tr>
<td>F-stat for zero slope</td>
<td>1.26</td>
</tr>
<tr>
<td>p-value (Prob > F)</td>
<td>0.292</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Notes: The observations in columns (1) and (2) are village level data excluding villages where the village heads are not eligible for the next elections, the village heads self-cultivate the bengkok land, or the village heads have not been allocated bengkok plots at the time of the survey. The observations in column (3) and (4) are bengkok plots that are rented in by the sample tenants. Linear probability model is estimated by OLS. Robust standard errors ((1) and (2)) or village-clustered standard errors ((3) and (4)) are in parenthesis, with significance levels of * (10%), ** (5%), and *** (1%). For (1) and (2), landlords’ characteristics (age and years of education) are included; for (3) and (4), plot characteristics (dummy variables for unirrigated lowland plot, upland plot, and the size larger than 1ha) and tenants’ characteristics (age, years of education, and asset index score) are also included as explanatory variables. Full regression results are available from the authors on request.
Appendix 1. Locations of villages with bengkok land and village electoral protests

A. Location of villages with bengkok land

B. Locations of political unrest / electoral protests

Note: This map shows the percentage of bengkok land in the total area of each village, averaged at the sub-district level.

Source: Drawn from the information in PODES 2000; Kammen (2003)
Appendix 2. Theoretical model

A2.1. Model assumptions and timing of the events

- The players: (1) incumbent village head, (2) the challenger in the village head election, and (3) voters including potential pool of tenants. Contract choices on bengkok land are determined between the tenants and the incumbent village head, who acts as the *de facto* landlord of bengkok land.\(^{30}\)

- The village election takes place every other period. We denote the first period (the period after the previous election) as \(t = 1\), and the second period (the period right before the next election) as \(t = 2\).

- The size of bengkok land is denoted as \(B\), which is the number of plots with the same acreage and subject to the same production technology. \(B\) is fixed in a village. At the beginning of \(t = 1\), the incumbent is allocated \(B\) plots of bengkok land from the village. She rents out \(B_R\) plots to tenants and keeps \(B - B_R\) plots for herself to cultivate.\(^{31}\)

- The production technology of each plot is characterised by \(Y_t = q_t f(x_t)\), where \(Y_t\) is the gross value of the output, \(q_t\) is the quality of land, \(f(x_t)\) is a per plot production function that satisfies \(f(0) = 0\), \(f'(.) > 0\) and \(f''(.) < 0\), and \(x_t\) is the amount of production inputs (fertilisers, pesticides, casual labour, etc.) whose price is exogenously given by \(\bar{w}\). The quality of land in period \(t = 1\), \(q_1\), is exogenously given. In contrast, the quality of land in period \(t = 2\), \(q_2\), depends on the level of input used in period \(t = 1\), i.e., \(q_2 = q_2(x_1)\). The quality of land deteriorates with the amount of raw materials used, but at an increasing rate so that \(q'(.) < 0\) and \(q''(.) < 0\). We assume no role of asymmetric information of any kind. As a result, the tenant’s effort level does not play any role in our model.

- Each tenancy contract decision is taken either over two periods, or over one period. The subjective intertemporal discount factor for the tenant and the incumbent village head (bengkok landlord) are denoted as \(\delta_T\) and \(\delta_I\), respectively, which are fixed for each agent but may vary across different agents \((0 < \delta_T, \delta_I < 1)\). When \(\delta_T > \delta_I\) holds, it implies that the tenant voter cares about the future more than the incumbent village head, but the opposite may hold as well.

\(^{30}\) Bengkok land is owned by the village. Therefore, the village is the *de jure* landlord and the incumbent village head is the *de jure* tenant. However, as it is legal and common for village administrators to rent out bengkok land to others, which is subletting in the strict sense, we call this arrangement as the land rental arrangement and call the incumbent the *de facto* landlord of the bengkok land.

\(^{31}\) As is similar for private land transactions, when the new village head obtains several bengkok plots, it is natural for her to keep a portion of them for self-cultivation to assess the quality of new land. As simplification of this, we assume that she allocates an exogenously fixed portion of bengkok plots for this purpose in period 1. Endogenising \(B_R\) is left for future research.
The electoral platform consists of indirect benefits outside bengkok transactions and tenancy contract offers on bengkok plots. Let us denote the fraction of total output attributable to the tenant as s_t, and the lumpsum amount of rent payment to the bengkok landlord as r_t. Due to institutional constraints, s_t cannot be larger than 1 and cannot be negative. $s_t = 1$ implies a fixed rental contract, and $0 < s_t < 1$ implies a sharecropping contract. Each contract is renewed annually but for the incumbent, she can announce at the beginning of $t = 1$, her electoral platform, which includes a set of all possible tenancy contracts for both periods (s_1, r_1, s_2, r_2) and hires tenants.

At the beginning of period $t = 2$, the incumbent updates her suitability as the village head and the probability of re-election. Based on this, she decides whether to contest in the election or not. If she decides not to contest in the election, then she maintains her electoral platform as announced at the beginning of period $t = 1$ without any change. If she decides to contest the election, then she amends her electoral platform by renting out some or all her own-cultivated bengkok plots, $B - B_R$, as a vote-buying strategy.

At the beginning of period $t = 2$, the incumbent and the challenger simultaneously and non-cooperatively announce their electoral platforms (in case of the incumbent, the bengkok tenancy portion has already been announced so that she additionally announces indirect benefits outside bengkok transactions). At this moment, the candidates know the distributions of political support parameters, but not their realised values. At the end of period $t = 2$, the actual values of political parameters are realised. The village election takes place and the winner is decided.

A2.2. Tenancy choice and discount factors

The structure of the equilibrium tenancy choice conditions closely follows the model of Roy and Serfes (2001). For simplicity, we start with the case in which the discount factor is homogeneous among the potential tenants so that the landlord offers a single set of contracts to the homogenous tenants. Heterogeneity in the discount factor is introduced at the end of this subsection.

A2.2.1. Intertemporal preference of the tenant

At the beginning of period $t = 2$, the optimisation problem for a representative tenant voter becomes:

\[
\max_{x_2} \quad \pi_2^B = s_2 q_2(x_1) f(x_2) - \bar{w} x_2 - r_2, \quad (A1)
\]

where \bar{w} are the constant unit prices of the raw materials. Let x_2^* be the solution to equation A1. Given this outcome, the tenant voter maximises the optimisation problem over two periods, which at the beginning of period 1 looks as:
Consider x_1^* be the solution to equation A2.

A2.2.2. Intertemporal preference of the landlord (incumbent village head)

Given the full information about potential tenants, the incumbent village head solves the following problem for the optimal contract offer for one candidate of the tenants:

\[
\max_{x_1} \pi_1^B = [s_1 q_1 f(x_1) - \bar{w} x_1 - r_1] + \delta_T[s_2 q_2 (x_1^*) f(x_2^*) - \bar{w} x_2 - r_2] \tag{A2}
\]

subject to (i) \(s_1 q_1 f(x_1^*) - \bar{w} x_1^* - r_1 \geq \bar{U} \)
and (ii) \(s_2 q_2 (x_1^*) f(x_2^*) - \bar{w} x_2^* - r_2 \geq \bar{U} \)

The participatory constraints are separately defined for both periods as there is a possibility of contract renewal or the tenant running away at the beginning of period 2.

The incumbent village head cares about the quality of land so that the payoff from bengkok land is maximised over two periods. The re-election concerns take the central stage after period \(t = 1 \), which we discuss later. In equation A3, \(\bar{U} \) represents the reservation utility of the tenant if he does not work on bengkok land.

As shown by Roy and Serfes (2001) who use a similar mathematical model of 2-period tenancy choice, our model also predicts that

A. Sharecropping contract is offered in period 1 if \(\delta_T < \delta_I \).
B. Fixed rental contract is offered in period 1 if \(\delta_T \geq \delta_I \).
C. Fixed rental contract is always offered in period 2.

Unlike the setting adopted by Roy and Serfes (2001), whose model is for a single pair of landlord-tenant, our setting has a pool of potential tenants from which the incumbent employs her tenant(s). In period 1, the incumbent employs \(B_r \) tenants and in period 2, she additionally employs tenants up to \(B-B_r \). We now discuss how matching is realised with equilibrium contract parameters.

Regardless of the type of the tenant, the first-order conditions (FOCs) for his optimal production decision are given by

\[
s_2 q_2 (x_1) f'(x_2) = \bar{w} \tag{A4}
\]

and
\[s_1 q_1 f(x_1) = \bar{w} - \delta_T s_2 q_2'(x_1) f(x_2) \]
\[\text{(A5)} \]

As these FOCs do not depend on fixed rent parameters, \(r_1 \) and \(r_2 \), the incumbent chooses their levels to satisfy the participation constraint as equality, leaving the tenant at his reservation utility level. Therefore, in equilibrium, we will have

\[s_1 q_1 f(x_1) - \bar{w} x_1 - r_1 = \bar{U} \]
\[\text{(A6)} \]

and

\[s_2 q_2(x_1) f(x_2) - \bar{w} x_2 - r_2 = \bar{U} \]
\[\text{(A7)} \]

We now assume that the potential tenant-cum-voters belong to one of the two types with different levels of discount factor, \(\delta_T^L < \delta_i < \delta_T^H \) (superscript \(L \) corresponds to a low-discount-factor tenant and superscript \(H \) corresponds to a high-discount-factor tenant). We assume that the per-period reservation utility is the same for the two types. Given these assumptions, we characterise the FOCs separately for the two types.

Case 1. \(\delta_T^L < \delta_i \) (tenants are more myopic than the incumbent village head)

In this case, the optimal contract is sharecropping in period 1 \((0 < s_1^{*L} < 1)\) and fixed rental in period 2 \((s_2^{*L} = 1)\). Adding these to tenants’ FOCs appended with the landlord’s FOC for the optimal \(s_1 \), the resulting equilibrium is characterised by:

\[s_1^{*L} = \frac{\bar{w} - \delta_T^L q_2'(x_1^{*L}) f(x_2^{*L})}{\bar{w} - \delta_T^L q_2'(x_1^{*L}) f(x_2^{*L})} \]
\[\text{(A8)} \]

\[r_1^{*L} = s_1^{*L} q_1 f(x_1^{*L}) - \bar{w} x_1^{*L} - \bar{U} \]
\[\text{(A6') } \]

\[r_2^{*L} = q_2(x_1^{*L}) f(x_2^{*L}) - \bar{w} x_2^{*L} - \bar{U} \]
\[\text{(A7') } \]

\[q_2(x_1^{*L}) f'(x_2^{*L}) = \bar{w} \]
\[\text{(A4') } \]

\[s_1^{*L} q_1 f'(x_1^{*L}) = \bar{w} - \delta_T^L q_2'(x_1^{*L}) f(x_2^{*L}) \]
\[\text{(A5') } \]

Solving these five equations for five unknowns of \(s_1^{*L}, x_1^{*L}, x_2^{*L}, r_1^{*L}, \) and \(r_2^{*L} \), we completely characterise the contract and the resulting production on this bengkok plot \((s_2^{*L} = 1)\).

Case 2. \(\delta_i < \delta_T^H \) (tenants are less myopic than the incumbent village head)

In this case, the optimal contract is fixed rental in both periods \((s_1^{*H} = s_2^{*H} = 1)\). Adding these to tenants’ FOCs, the resulting equilibrium is characterised by:

\[r_1^{*H} = q_1 f(x_1^{*H}) - \bar{w} x_1^{*H} - \bar{U} \]
\[\text{(A6’’)} \]

\[r_2^{*H} = q_2(x_2^{*H}) f(x_2^{*H}) - \bar{w} x_2^{*H} - \bar{U} \]
\[\text{(A7’’)} \]

\[q_2(x_1^{*H}) f'(x_2^{*H}) = \bar{w} \]
\[\text{(A4’’)} \]

\[q_1 f'(x_1^{*H}) = \bar{w} - \delta_T^H q_2'(x_1^{*H}) f(x_2^{*H}) \]
\[\text{(A5’’)} \]
Solving these four equations for four unknowns of $x_1^{*H}, x_2^{*H}, r_1^{*H}$, and r_2^{*H}, we completely characterise the contract and the resulting production on this bengkok plot ($s_1^{*H} = s_2^{*H} = 1$).

Benchmark case of first-best resource allocation

As the benchmark case to compare the two cases above, it is informative to analyse the case for $\delta_T = \delta_i = \delta_T^H$. We can think of this as the case when the incumbent’s time preference is the same as the tenant’s or the case where the incumbent self-cultivates the bengkok plot with the same production technology (which we assume away in our setting). The optimisation problem is simplified as

$$\max_{x_1, x_2} q_1 f(x_1) - \bar{w} x_1 + \delta_i q_2(x_2) f(x_2) - \bar{w} x_2$$ \quad (A9)

whose FOCs are:

- $r_1^{**} = q_1 f(x_1^{**}) - \bar{w} x_1^{**} - \bar{U}$ \quad (A6'"
- $r_2^{**} = q_2(x_1^{**}) f(x_2^{**}) - \bar{w} x_2^{**} - \bar{U}$ \quad (A7’”
- $q_2(x_1^{**}) f'(x_2^{**}) = \bar{w}$ \quad (A4’’’)
- $q_1 f'(x_1^{**}) = \bar{w} - \delta_i q_2'(x_1^{**}) f(x_2^{**})$ \quad (A5’’’)

By solving these four equations for four unknowns of $x_1^{**}, x_2^{**}, r_1^{**}$, and r_2^{**}, this completely characterises the contract and the resulting production if the bengkok plot is managed in the most efficient manner from the viewpoint of the incumbent.

As this is the first best and the tenant always received his reservation utility U, any deviation from (A4’’’) and (A5’’’) involves efficiency loss to the incumbent in the form of reduced income in r_1 and r_2. Intuitively, when the tenant is more myopic than the incumbent, the efficiency loss occurs due to the necessity of adopting sharecropping (which reduces production incentive) for the purpose of land quality conservation; when the tenant is less myopic than the incumbent, the efficiency loss occurs due to the institutional constraint that the share parameter cannot exceed 1 (see Roy and Serfes, 2001).

The above results hold when $\frac{dx_1}{ds_1} > 0$ and $\frac{dx_2}{ds_2} > 0$, i.e., the amount of raw material use increases as the type of tenancy contract changes from sharecropping to fixed rental (Roy and Serfes, 2001). Thus, the solution set for the village head’s problem consists of one of the following equilibrium possibilities. Denoting the optimal contract by $(s_1^*, r_1^*, s_2^*, r_2^*)$, we obtain $(s_1^*, r_1^*, 1, r_2^*)$ if $\delta_T^L < \delta_i$. This is because the tenant cares less for the future compared to the landlord and is likely to use more raw materials to make a higher profit in period $t = 1$. To avoid a faster deterioration of the land quality, the landlord offers a sharecropping contract in period 1, which provides the tenant with less incentive for more raw material use. If $\delta_T = \delta_i$, the tenant and the landlord equally care for the future so that there is no conflict of interest. By offering
the full production incentive to the tenant by offering a fixed rental contract \((1, r_1^*, 1, r_2^*) \), production efficiency is achieved. Finally, if \(\delta_l < \delta_T^H \), production efficiency would require \(s \) greater than 1, which is assumed away in our model, as in the standard literature on land tenancy (Otsuka, 2007). Due to this institutional constraint, the tenant is offered a fixed rental contract \((s=1) \) in both periods \((1, r_1^*, 1, r_2^*) \). The point is that the landlord provides a fixed rental contract by giving the tenant additional incentive to use more raw materials and produce more.

When the pool of potential tenants is heterogeneous in terms of the discount factor, and the incumbent has perfect information on it, it is possible that the incumbent employs both types of tenants at the beginning of period 1. Myopic \((\delta_T < \delta_I) \) tenants are offered a sharecropping contract for period 1 followed by a fixed rental contract in period 2, while patient \((\delta_T > \delta_I) \) tenants are offered a fixed rental contract in both periods. See section A2.4.1 below for the full discussion. With the uncertainty about re-election, to maximise income from bengkok plots, the village head-cum-landlord offers a fixed-rental contract in period 2 to ensure maximum gain in the last period.

A2.3. Electoral competition without a vote-buying strategy

In the spirit of Downsian electoral competition, we consider two candidates to contest in the election: the incumbent village head (I) and a challenger (C). In this section, we assume that the incumbent village head does not have a very strong motivation for re-election so that she does not go for the vote-buying strategy, which prompts her not to offer any adjustment to tenancy contracts with those tenants who were employed in period 1 and not to search for additional tenants on bengkok land she self-cultivates in period 1. We denote electoral platforms for the incumbent and challenger as \(P_I \) and \(P_C \), respectively. For the incumbent village head, the electoral platform consists of an equilibrium level of tenancy contracts and additional announcement of other transfers out of non-bengkok transactions. The challenger promises competitive tenancy contracts and other transfers that are equivalent to the proposed platform of the village head. The electoral platforms become a vector of tenancy contract choices. Both the incumbent village head and the challenger also offer indirect benefits to the villagers, which could be thought as public goods (e.g., law and order, or security in the village) that benefit non-tenant voters.

A2.3.1. Preferences of the voters

Now let us assume that there are two groups of voters, who are distinguished by different discount factors. The first group of voters has a lower discount factor than that of the incumbent, and the second group of voters has a higher discount factor than that of the incumbent. Each group consists of potential and actual tenants, who are employed at the
beginning of period 1. Based on the results of equilibrium tenant contracts as discussed in section A2.2, tenancy contracts for voters in the first group are likely to be $(s_1^L, r_1^L, 1, r_2^L)$, with $0<s_1^L<1$, whereas those for the second group of voters are $(1, r_1^H, 1, r_2^H)$, where superscript L corresponds to a low-discount-factor tenant and superscript H corresponds to a high-discount-factor tenant.

The voter i in the group k draws utility from electoral platforms announced by both candidates, and she votes for the incumbent village head if

$$U_i^k(P_I) > U_i^k(P_C) + \Phi_i^k + \gamma,$$ \hspace{1cm} (A10)

where Φ_i^k measures voter i’s ideological bias towards the challenger. If $\Phi_i^k > 0$, then the voter prefers to elect the challenger. Following the standard treatment of the probabilistic voting model, we further assume that Φ_i^k follows a uniform distribution on $\left[\frac{1}{2\beta^k}, \frac{1}{2}\right]$, with density β^k in the kth group of voters. On the other hand, γ measures the relative popularity of the challenger, which also follows a uniform distribution on $\left[\frac{1}{2\theta}, \frac{1}{2}\right]$, with density θ. The value of γ increases as the popularity of the challenger increases relative to that of the incumbent.

A2.3.2. Equilibrium

As the final step, we show the voting equilibrium based on a standard probabilistic voting model. Let α_1 be the share of voters in group 1. We define the swing voters in group k ($= 1, 2$) based on equation A10. Swing voters are indifferent between the two candidates after electoral platforms are announced, i.e.,

$$\Phi^k = U_i^k(P_I) - U_i^k(P_C) - \gamma$$ \hspace{1cm} (A11)

Equation A11 suggests that all voters i in group k vote for the incumbent candidate if $\Phi_i^k \leq \phi^k$. Then the vote share for the incumbent becomes

$$\Delta_I = \text{prob} (\Phi_i^k \leq \phi^k)$$ \hspace{1cm} (A12)

Using the distribution of Φ_i^k, we derive the vote share as

$$\Delta_I = \frac{1}{2} + \alpha_1\beta^1\Phi^1 + (1 - \alpha_1)\beta^2\Phi^2$$ \hspace{1cm} (A13)

In equation A13, the vote share for the incumbent village head is a random variable because Φ_i^k depends on the realised value of γ.

From equation A13, the probability of incumbent win can be calculated. We write

$$P_I = \text{Prob} \left(\Delta_I \geq \frac{1}{2} \right)$$
$$= \text{Prob} (\alpha_1\beta^1\Phi^1 + (1 - \alpha_1)\beta^2\Phi^2 \geq 0)$$

38
\[\text{Prob} \left[\alpha_1 \beta^1 \{ U^1(P_I) - U^1(P_C) \} + (1 - \alpha_1) \beta^2 \{ U^2(P_I) - U^2(P_C) \} \right] \geq \gamma \left[\alpha_1 \beta^1 + (1 - \alpha_1) \beta^2 \right] \]
\begin{equation} \text{(A14)} \end{equation}

Using the distribution of \(\gamma \), we can write

\[\pi_I = \frac{1}{2} + \frac{\theta}{\alpha_1 \beta^1 + (1 - \alpha_1) \beta^2} \left[\alpha_1 \beta^1 \{ U^1(P_I) - U^1(P_C) \} + (1 - \alpha_1) \beta^2 \{ U^2(P_I) - U^2(P_C) \} \right]. \]

\begin{equation} \text{(A15)} \end{equation}

To conclude, if the incumbent village head does not pursue a strong re-election motive, then her electoral platform follows the equilibrium tenancy contract choices as discussed in section A2.2.

A2.4. Electoral competition with a vote-buying strategy by the incumbent

We now assume that the incumbent village head has a strong motivation for re-election so that she utilises any strategy to buy votes. In a land-scarce economy of Java (see Section 2), providing access to farmland through bengkok land tenancy can function as one of such strategies. Therefore, at the beginning of period 2, she amends her electoral platform by renting out some or all her own-cultivated bengkok plots, \(B - B_R \), over a two-period contract as a vote-buying strategy. The new tenants could be from either group of voters. The new two-period contracts in the form of either sharecropping or fixed rental give an immediate access to bengkok land in period 2 (which is already under the control of the incumbent) and a promised access to bengkok land in the period after the re-election. The electoral platforms are updated accordingly, where \((s_2^{\text{new}}, r_2^{\text{new}})\) enters in the vector of tenancy contract choices in period 2 as a component of the incumbent’s electoral platform.

We further assume that \(\gamma \), which measures the relative popularity of the challenger, now becomes a function of the total number of tenants, \(T \), such as \(\gamma = \frac{1}{T} \), where \(\frac{d\gamma}{dT} < 0 \). This implies an increase in the number of tenants hired on bengkok plots lowers the relative popularity of the challenger. The role of bengkok tenants as the brokers/intermediaries is reflected in this assumption. We rewrite equation (A10) as

\[U_I^R(P_I) > U_I^R(P_C) + \Phi_I^R + \gamma(T), \]

\begin{equation} \text{(A10') \text{ }} \end{equation}

where \(\gamma \) is replaced by \(\gamma(T) \). The rest of the calculation to find the probability of an incumbent win remains the same, and we rewrite equation A15 after replacing \(\theta \) with \(f(\gamma) \), both represent the density of the uniform distribution \(\gamma \) on \(\left[\frac{1}{-2\theta}, \frac{1}{2\theta} \right] \).

\[\pi_I = \frac{1}{2} + \frac{f(\gamma)}{\alpha_1 \beta^1 + (1 - \alpha_1) \beta^2} \left[\alpha_1 \beta^1 \{ U^1(P_I) - U^1(P_C) \} + (1 - \alpha_1) \beta^2 \{ U^2(P_I) - U^2(P_C) \} \right]. \]

\begin{equation} \text{(A15')} \end{equation}
A2.4.1. A note on the selection of tenants in period 1

In period 1, the incumbent hires BR tenants out of a pool of potential tenant-cum-voters, which consists of two groups with (1) a high discount factor ($\delta_I < \delta_T^H$) and (2) a low discount factor ($\delta_T^L < \delta_I$), and the incumbent village head has perfect knowledge about it. Both groups of voters include ideologically biased (to the landlord) voters and the size of their share is not a common knowledge to the landlord. For this reason, driven by the re-election motive, the incumbent village head randomly hires tenants from both groups. This conclusion can also be reached if we assume that the relative size of deviation of δ_T^L (δ_T^H) from δ_I is such that the efficiency loss is approximately comparable so that the incumbent is indifferent between myopic and patient tenants from the viewpoint of maximising rent income. In this case as well, she randomly employs myopic and patient types, resulting in the replication of population shares of these two types among those who are employed as tenants.

A2.4.2. Tenancy contracts, incumbent-re-election and sharecropping

Proposition 1. An increase in the number of the total tenancy contracts improves the chances of incumbent re-election.

Proof. Since $\gamma = \frac{1}{T}$, applying the rule of transformation of variables following uniform distribution, we can write $f(T) = f(\gamma(T)) \left| \frac{dT}{d\gamma} \right|$, or $f(T) = \frac{f(\gamma)}{T^2}$. Replacing the expression of $f(\gamma)$ as $f(T) T^2$ in equation A15’, it can be easily shown that $\frac{d\pi_T}{dT} > 0$.

Proposition 2. New tenancy contracts as the time to an election becomes shorter are more likely to be sharecropping.

Proof: In period 2, the incumbent employs additional tenants as many as BR out of the pool of potential tenant-cum-voters who are not employed in period 1. Given our assumption of the positive impact of hiring a tenant on the incumbent’s popularity, she employs fully, i.e., as many as BR tenants are employed at the beginning of period 2. The incumbent offers a similar 2-period contract, with the second period (period 3) comes after the election. As the incumbent has a strong re-election motive, her effective discount factor between period 2 and period 3 is close to the value as before (δ_I). However, from the viewpoint of potential tenants, the subjective probability of re-election is likely to be less than 1 ($0 < k < 1$). Therefore, when the incumbent village head offers a 2-period contract at the beginning of period 2, she needs to use the tenant’s effective discount factor between period 2 and period 3 calculated as $k\delta_T$. In a closely-knit society of Javanese villages, we can assume that the incumbent can obtain some good estimate for k when she contacts a potential tenant and finalises the contract. If the newly employed tenant’s effective discount factor satisfies $k\delta_T < \delta_I$, he will be offered a
sharecropping contract for the first period (period 2). Therefore, with this adjustment for \(k \), the percentage of sharecropping on total bengkok plots including that are rented out from period 2 is likely to be higher than the percentage of sharecropping on total bengkok plots that are rented out from period 1.

The adjustment parameter \(k \) may differ from tenant to tenant. Even if the newly employed tenant’s innate discount factor is larger than that of the landlord, she will be offered a sharecropping contract if her \(k \) is sufficiently small. When two potential tenants of type \(L \) and \(H \) compete for a bengkok plot, the incumbent will find the \(H \) type more attractive in terms of rent income receipt if \(k \) is the same, but she will find the \(L \) type more attractive if \(k \) for the \(H \) type is much smaller than \(k \) for the \(L \) type. Therefore, newly employed tenants in period 2 can include both \(L \) and \(H \) types, like the case in period 1.

The intuition is that the subjective probability of re-election from the viewpoint of the additional tenants is surely less than 1. The potential tenant, when offered a 2-period contract at the beginning of period 2, discounts the payoff in period 3 by the factor of his own discount factor further discounted by the re-election probability. As an extreme case, the new contract may be regarded essentially as lasting for one year from the viewpoint of the new tenant. Logically, the tenants attempt to maximise their profit from bengkok plots by extensive use of raw materials. Due to tenant’s myopic behaviour and an extremely low discount factor, the village head will only offer sharecropping contracts independent of the initial discount factor that the tenants were characterised by.

It is interesting to note that in our model, patient tenant-cum-voters are offered a fixed rental contract if they are hired in period 1 but the same type of tenants could receive a sharecropping contract in the first cropping season if they are hired in the beginning of period 2. The difference in the outcome is driven purely by the incumbent village head’s re-election motive, which further discounts the tenant’s payoff in period 3 (after re-election) as they consider the subjective probability of re-election of the incumbent to be less than unity.

Last but not the least, as the election approaches, our theory predicts that the percentage of sharecroppers increases but it does not preclude the possibility of having new fixed rental contracts at the beginning of period 2. Such cases may arise when potential tenants of type \(H \) with a high adjustment parameter \(k \) compete for the access to bengkok plots.
Appendix 3. Districts and sub-districts of the study areas

Note: The light brown segments show our sample sub-districts and the light green segments surrounding them show the districts to which our sample sub-districts belong.
Source: SurveyMETER.
Appendix 4. Probability of renting-out/sharecropping and the time until the next election (bengkok plots of village heads in eligible villages)

A. Renting out of the bengkok plot (n=273).

B. Sharecropping, given renting-out (n=234)

Notes: Plots show raw observations. The red curve shows fitted values from a locally weighted regression (LOWESS).
Appendix 5. Full regression results with plot and landlord household characteristics

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Dummy for the bengkok plot to be rented-out</th>
<th>Dummy for the rented-out bengkok plot to be under sharecropping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff. Std.Error</td>
<td>Coeff. Std.Error</td>
</tr>
<tr>
<td>Key variables of political cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X (years until the next election)</td>
<td>-0.064 * 0.036</td>
<td>-0.350 ** 0.158</td>
</tr>
<tr>
<td>X^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot characteristics (reference category = irrigated lowland plot whose size is 1ha or less)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy for unirrigated lowland plot</td>
<td>-0.057 0.053</td>
<td>-0.139 0.137</td>
</tr>
<tr>
<td>Dummy for upland plot</td>
<td>-0.013 0.094</td>
<td>-0.052 0.192</td>
</tr>
<tr>
<td>Dummy for the size larger than 1ha</td>
<td>-0.029 0.052</td>
<td>-0.210 ** 0.104</td>
</tr>
<tr>
<td>Landlord household characteristics (standardised variables)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of the household head</td>
<td>-0.022 0.026</td>
<td>0.124 ** 0.057</td>
</tr>
<tr>
<td>Years of education of the hh head</td>
<td>0.012 0.030</td>
<td>0.087 0.062</td>
</tr>
<tr>
<td>Asset index score</td>
<td>-0.042 0.031</td>
<td>-0.087 ** 0.040</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.991 *** 0.059</td>
<td>0.833 *** 0.133</td>
</tr>
<tr>
<td>Number of observations</td>
<td>273</td>
<td>234</td>
</tr>
<tr>
<td>Mean of the dependent variable</td>
<td>0.480</td>
<td>0.440</td>
</tr>
<tr>
<td>F-stat for zero slope</td>
<td>1.03</td>
<td>7.53</td>
</tr>
<tr>
<td>p-value (Prob > F)</td>
<td>0.414</td>
<td>0.000</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.065</td>
<td>0.278</td>
</tr>
</tbody>
</table>

Notes: The observations in columns (1) and (2) are bengkok plots of village heads who are eligible to run for the next elections. The observations in columns (3) and (4) are bengkok plots of eligible village heads that are rented out. Linear probability models are estimated by OLS. Significance levels of * (10%), ** (5%), and *** (1%), based on the village-clustered standard errors.
Appendix 6. Fitted effects of the time until the next election on rental probability
(bengkok plots of village heads in eligible villages)

(Annual fixed effects)

(Quintile fixed effects)

Notes: n=273. The 95% confidence intervals are shown by whiskers. “Annual fixed effects” were created as: time_rem1 for $X < 1$, time_rem2 for $1 \leq X < 2$, time_rem3 for $2 \leq X < 3$, time_rem4 for $3 \leq X < 4$, and time_rem5 for $4 \leq X$, while time_rem represents time remaining (in years) before the next election. “Quintile fixed effects” were created from quintile dummy variables constructed from time_rem variable, which is a continuous variable. In the regression analysis, we used the mid-category as the reference and the same plot-level and household-level controls were included, which are listed in the footnote to Table 2.
Appendix 7. Fitted effects of the time until the next election on sharecropping probability (rented-out bengkok plots of village heads in eligible villages)

(Annual fixed effects)

(Quintile fixed effects)

Notes: $n=234$. See notes to Appendix 6 for other details.
Appendix 8. Probability of renting-out/sharecropping and the time until the next election (placebo: private plots of pure private landlords in eligible villages)

A. Renting out of the private plot ($n=735$).

B. Sharecropping, given renting-out ($n=617$)

Notes: Plots show raw observations. The red curve shows fitted values from a locally weighted regression (LOWESS).
Appendix 9. Probability of sharecropping out and the time until the next election
(different datasets)

A. Sharecropping, given renting-out, village-level administrators’ data (n=119).

B. Sharecropping, given renting-out, tenants’ plot data (n=132)

Notes: Plots show raw observations. The red curve shows fitted values from a locally weighted regression (LOWESS).
Appendix 10. Robustness checks of the main result
(bengkok plots of village heads in eligible villages)

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dummy for the bengkok plot to be rented-out</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>A. Probit regression</td>
<td></td>
</tr>
<tr>
<td>X (years until the next election)</td>
<td>-0.253 **</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
</tr>
<tr>
<td>X^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LR chi2 stat for zero slope</td>
<td>8.34</td>
</tr>
<tr>
<td>p-value (Prob > chi2)</td>
<td>0.304</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.074</td>
</tr>
<tr>
<td>B. OLS regression with village-level characteristics controlled</td>
<td></td>
</tr>
<tr>
<td>X (years until the next election)</td>
<td>-0.067 *</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
</tr>
<tr>
<td>X^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F-stat for zero slope</td>
<td>2.85</td>
</tr>
<tr>
<td>p-value (Prob > F)</td>
<td>0.004</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.073</td>
</tr>
<tr>
<td>Number of observations</td>
<td>273</td>
</tr>
<tr>
<td>Mean of the dependent variable</td>
<td>0.480</td>
</tr>
</tbody>
</table>

Notes: The observations in columns (1) and (2) are bengkok plots of village heads who are eligible to run for the next elections. The observations in columns (3) and (4) are bengkok plots of eligible village heads that are rented out. Village-clustered standard errors are in parenthesis, with significance levels of * (10%), ** (5%), and *** (1%). Plot characteristics (dummy variables for unirrigated lowland plot, upland plot, and the size larger than 1ha) and landlords’ characteristics (age, years of education, and asset index score) are included in both Panel A and Panel B. Village characteristics (total area of the village, population to farmland ratio, number of factories, and distance to the district capital city) are also included in Panel B. Full regression results are available from the authors on request.
Appendix 11 Agricultural productivity, tenancy contracts and bengkok land

Paddy yield (tons/ha), all seasons in the past year

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharecropping</td>
<td>-0.66***</td>
<td>-0.63***</td>
<td>-0.63***</td>
<td>-0.13</td>
<td>-0.63***</td>
<td>-0.20</td>
</tr>
<tr>
<td></td>
<td>(0.158)</td>
<td>(0.157)</td>
<td>(0.156)</td>
<td>(0.129)</td>
<td>(0.180)</td>
<td>(0.150)</td>
</tr>
<tr>
<td>Bengkok land</td>
<td>-0.11</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.144)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share cropping * bengkok</td>
<td>-0.85***</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.254)</td>
<td>(0.247)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Control variables

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasons</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Plot characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Village characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenant characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Village fixed effects</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations	2,435	2,435	2,435	2,435	2,435	2,435
R-squared	0.199	0.204	0.211	0.445	0.212	0.446
Number of villages	130					

Notes: Observations are plots that are either sharecropped or rented out in the last 12 months. Village-clustered standard errors are in parenthesis, with significance levels of * (10%), ** (5%), and *** (1%). Two season dummy variables are included to indicate two seasons of paddy planting within the last 12 months before the most recent one. Plot characteristics include dummy variables for lowland plot, lowland unirrigated plot, and the size larger than 1 ha. Tenant characteristics include age, years of education, and asset index score. Village characteristics (total area of the village, population to farmland ratio, number of factories, and distance to the district capital city) are also included in columns (3) and (5).