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1 Introduction

This lecture commemorates the 100th anniversary of the birth of Sir John Hicks. In most

of his work, Hicks relied on the Marshallian fiction of a representative agent and abstracted

from heterogeneity and variability among people and firms. Economic theory now recognizes

the importance of accounting for heterogeneity among agents in explaining a variety of phe-

nomena. See the survey in Browning et al. (1999). A major discovery of microeconometrics is

that diversity among agents is a central feature of economic life (see Heckman, 2001). While

Hicks generally ignored heterogeneity, he did discuss uncertainty. The distinction between

ex ante and ex post income played a central role in his analysis of economic dynamics (see

Hicks, 1946, p.178). It is featured in our analysis.

This paper develops and implements a method for estimating the importance of uncer-

tainty about lifetime earnings facing agents at the stage of their life cycles when they make

their college-going decisions. We estimate what components of measured lifetime income

variability among persons are due to uncertainty realized after that stage and discuss what

assumptions must be maintained to identify the distributions of these components. In accom-

plishing this task, we distinguish unobservables from the point of view of the econometrician

from unobservables from the point of view of the agents being studied. We distinguish

components of outcome variability that are forecastable and acted on at a given stage of

the life cycle from unpredictable components. If agents act on (make choices based on)

all forecastable information, under the conditions specified in this paper, we can estimate

components of intrinsic uncertainty and distinguish them from components of forecastable

uncertainty. Using the tools presented here, analysts can determine how much of lifetime
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earnings variability or inequality is forecastable at a given age and how much is unfore-

castable ‘luck.’ With concavity in utility and lack of full insurance, at the same level of mean

income, the greater the fraction of variability in lifetime incomes that is unforecastable, the

lower the welfare of agents. Like Hicks, we distinguish ex ante returns from ex post returns.

We build on, and extend, methods developed in Carneiro et al. (2003) who separate

earnings heterogeneity (defined here as information about future earnings known to agents

and acted on in their choices) from unforecastable (at the date choices are made) uncertainty.

They assume an environment of complete autarky. In this paper, we consider a complete

markets environment. A companion paper, Cunha et al. (2004), considers an environment

with partial insurance of the type analyzed by Aiyagari (1994) and Laitner (1992).

A major theoretical issue discussed in this paper is the difficulty in separately identifying

the market structure facing an agent from the agent’s information set. We develop methods

for distinguishing components of future outcomes that are both forecastable and are acted on

from those components that cannot be acted on. What can be acted on and the magnitude

of the effects of the actions depends upon the market structure facing agents and their

preferences.

A major empirical finding reported in all three of our papers is that across a variety

of market environments and for different assumptions about and estimates of risk aversion,

a substantial part of the variability in the ex post returns to schooling is predictable and

acted on by agents. Variability cannot be equated with uncertainty and this has important

empirical consequences.

The plan of the rest of this paper is as follows. Section 2 states the problem of dis-

tinguishing between predictable earnings heterogeneity and unpredictable uncertainty for a
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specified market environment and presents the empirical strategy used in this paper. Section

3 motivates the econometric method we use. This part of the paper is an intuitive summary

of the methods formally developed in Carneiro et al. (2003) and our extensions of it. Section

4 discusses the fundamental problem of separating preferences from market structures and

information. Section 5 presents our empirical analysis and simulations of the model and

discusses the implications of the findings. Section 6 concludes. Two appendices describe our

approach to identification and how we pool data sets to create synthetic life cycles. A third

appendix posted at http://jenni.uchicago.edu/Hicks2004/ describes our data.

2 Distinguishing between heterogeneity and uncertainty

In the literature on earnings dynamics (e.g., Lillard and Willis, 1978), it is common to

estimate an earnings equation of the sort

Yi,t = X i,tβ + Siτ + vi,t, (1)

where Yi,t,X i,t, Si, vi,t denote (for person i at time t), the realized earnings, observable char-

acteristics, educational attainment, and unobservable characteristics, respectively, from the

point of view of the observing economist. We use bold characters to denote vectors and

distinguish them from scalars. The variables generating outcomes realized at time t may or

may not have been known to the agents at the time they made their schooling decisions.

Often the error term vi,t is decomposed into two or more components. For example, it is
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common to specify that

vi,t = φi + εi,t. (2)

The term φi is a person-specific effect. The error term εi,t is generally assumed to follow

an ARMA (p, q) process (see, e.g., MaCurdy, 1982) such as εi,t = ρεi,t−1 + mi,t, where

mi,t is a mean zero innovation independent of X i,t and the other error components. The

components X i,t, φi, and εi,t all contribute to measured ex post variability across persons.

However, the literature is silent about the difference between heterogeneity and uncertainty,

the unforecastable part of earnings as measured from a given age—what Jencks et al. (1972)

call ‘luck.’

An alternative specification of the error process postulates a factor structure for earnings,

υi,t = θiαt + δi,t, (3)

where θi is a vector of skills (e.g., ability, initial human capital, motivation, and the like), αt

is a vector of skill prices, and the δi,t are mutually independent mean zero shocks independent

of θi. See Hause (1978) and Heckman and Scheinkman (1987) for analysis of such a model.

Any process in the form of equation (2) can be written in terms of (3). The latter specification

is more directly interpretable as a pricing equation than (2) and is a natural starting point

for human capital analyses. It is the one used in this paper.

Depending on the available market arrangements for coping with risk, the predictable

components of vi,t will have a different effect on choices and economic welfare than the un-
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predictable components, if people are risk averse and cannot fully insure against uncertainty.

Statistical decompositions based on (1), (2), and (3) or versions of them describe ex post

variability but tell us nothing about which components of (1) or (3) are forecastable by

agents ex ante. Is φi unknown to the agent? εi,t? Or φi + εi,t? Or mi,t? In representation

(3), the entire vector θi, components of the θi, the δi,t, or all of these may or may not be

known to the agent at the time schooling choices are made.

The methodology presented in this paper provides a framework within which it is possible

to identify components of life cycle outcomes that are forecastable and acted on at the

time decisions are taken from ones that are not. The essential idea of the method can be

illustrated in the case of educational choice, the problem we study in our empirical work.

In order to choose between high school and college, say at age 19, agents forecast future

earnings (and other returns and costs) for each schooling level. Using information about

educational choices at age 19, together with the ex post realization of earnings and costs

that are observed at later ages, it is possible to estimate and test which components of

future earnings and costs are forecast by the agent at age 19. This can be done provided

we know, or can estimate, the earnings of agents under both schooling choices and provided

we specify the market environment under which they operate as well as their preferences

over outcomes. For certain market environments where separation theorems are valid, so

that consumption decisions are made independently of the wealth maximizing decision, it

is not necessary to know agent preferences to decompose realized earnings outcomes in this

fashion. Our method uses choice information to extract ex ante or forecast components

of earnings and to distinguish them from realized earnings. The difference between forecast

and realized earnings allows us to identify the distributions of the components of uncertainty
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facing agents at the time they make their schooling decisions.

To be more precise, consider a version of the generalized Roy (1951) economy with two

sectors.1 Let Si denote different schooling levels. Si = 0 denotes choice of the high school

sector for person i, and Si = 1 denotes choice of the college sector. Each person chooses

to be in one or the other sector but cannot be in both. Let the two potential outcomes

be represented by the pair (Y0,i, Y1,i), only one of which is observed by the analyst for any

agent. Denote by Ci the direct cost of choosing sector 1, which is associated with choosing

the college sector (e.g., tuition and non-pecuniary costs of attending college expressed in

monetary values).

Y1,i is the ex post present value of earnings in the college sector, discounted over horizon

T for a person choosing at a fixed age, assumed for convenience to be zero,

Y1,i =
T∑
t=0

Y1,i,t

(1 + r)t
,

and Y0,i is the ex post present value of earnings in the high-school sector at age zero,

Y0,i =
T∑
t=0

Y0,i,t

(1 + r)t
,

where r is the one-period risk-free interest rate. Y1,i and Y0,i can be constructed from time

series of ex post potential earnings streams in the two states: (Y0,i,0, . . . , Y0,i,T ) for high

school and (Y1,i,0, . . . , Y1,i,T ) for college. A practical problem is that we only observe one or

1See Heckman (1990) and Heckman and Smith (1998) for discussions of the generalized Roy model. In
this paper we assume only two schooling levels for expositional simplicity, although our methods apply more
generally.
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the other of these streams. This partial observability creates a fundamental identification

problem which we address in this paper.

The variables Y1,i, Y0,i, and Ci are ex post realizations of returns and costs, respectively.

At the time agents make their schooling choices, these may be only partially known to the

agent, if at all. Let Ii,0 denote the information set of agent i at the time the schooling choice

is made, which is time period t = 0 in our notation. Under a complete markets assumption

with all risks diversifiable (so that there is risk neutral pricing) or under a perfect foresight

model with unrestricted borrowing or lending but full repayment, the decision rule governing

sectoral choices at decision time ‘0’ is

Si =


1, if E (Y1,i − Y0,i − Ci | Ii,0) ≥ 0

0, otherwise.2
(4)

Under perfect foresight, the postulated information set would include Y1,i, Y0,i, and Ci. In

either model of information, the decision rule is simple: one attends school if the expected

gains from schooling are greater than or equal to the expected costs. Under either set

of assumptions, a separation theorem governs choices. Agents maximize expected wealth

independently of how they consume it.

The decision rule is more complicated in the absence of full risk diversifiability and de-

pends on the curvature of utility functions, the availability of markets to spread risk, and

possibilities for storage. (See Cunha et al., 2004, and Navarro, 2004, for a more extensive

discussion.) In more realistic economic settings, the components of earnings and costs re-

quired to forecast the gain to schooling depend on higher moments than the mean. In this

2If there are aggregate sources of risk, full insurance would require a linear utility function.
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paper we use a model with a simple market setting to motivate the identification analysis of

a more general environment we analyze elsewhere (and is analyzed in Carneiro et al., 2003).

Suppose that we seek to determine Ii,0. This is a difficult task. Typically we can only

partially identify Ii,0 and generate a list of candidate variables that belong in the information

set. We can usually only estimate the distributions of the unobservables in Ii,0 (from the

standpoint of the econometrician) and not individual person-specific information sets. To fix

ideas, we start the analysis discussing identification of Ii,0 for each person but in our empirical

work we only partially identify person-specific Ii,0 and instead identify the distributions of

the remaining unobserved components.

To motivate the objectives of our analysis we offer the following heuristic discussion. We

seek to decompose the ‘returns coefficient’ in an earnings-schooling model into components

that are known at the time schooling choices are made and the components that are not

known. For simplicity we assume that, for person i, returns are the same at all levels of

schooling. Write discounted lifetime earnings of person i as

Yi = ρ0 + ρ1,iSi + Ji, (5)

where ρ1,i is the person-specific ex post return, Si is years of schooling, and Ji is a mean zero

unobservable. We seek to decompose ρ1,i into two components ρ1,i = ηi + νi, where ηi is

a component known to the agent when he/she makes schooling decisions and νi is revealed

after the choice is made. Schooling choices are assumed to depend on what is known to the

agent at the time decisions are made, Si = λ (ηi,Zi, τ i), where the Zi are other observed

determinants of schooling and τ i represents additional factors unobserved by the analyst

9



but known to the agent. We seek to determine what components of ex post school lifetime

earnings Yi enter the schooling choice equation.

If ηi is known, it enters λ. Otherwise it does not. Component νi and any measurement

errors in Y1,i or Y0,i should not be determinants of schooling choices. Neither should future

skill prices that are unknown at the time agents make their decisions. If agents do not use ηi

in making their schooling choices, even if they know it, ηi would not enter the schooling choice

equation. Determining the correlation between realized Yi and schooling choices based on

ex ante forecasts enables us to identify components known to agents making their schooling

decisions. Even if we cannot identify ρ1,i, ηi, or νi for each person, under conditions specified

in this paper we can identify their distributions.

Suppose that the model for schooling can be written in linear in parameters form:

Si = λ0 + λ1ηi + λ2νi + λ3Zi + τ i, (6)

where τ i has mean zero and is independent of Zi. Zi is assumed to be independent of ηi

and νi. The Zi and the τ i proxy costs and may also be correlated with Ji in (5).3 In this

framework, the goal of the analysis is to determine if λ2 = 0, i.e., to determine if agents pick

schooling based on ex post shocks to returns and, if they do, the relative magnitude of the

variance of ηi to that of νi.

Application of Zi as an instrument for Si in outcome equation (5) does not enable us to

decompose ρ1,i into forecastable and unforecastable components. Only if agents do not use

ηi in making their schooling decisions does the instrumental variable (IV ) method recover

3Card (2001) presents a model that can be written in this form.
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the population mean of ρ1,i. In that case, standard random coefficient models can identify

the variance of (ηi + νi) which is assumed to be independent of Si.
4

Notice that even under the most favorable conditions for applications of the IV method,

we are only able to recover the ex post mean and total ex post variability of ρ1,i = ηi + νi.

We cannot, however, decompose V ar (ηi + νi) into its components. That is, we are not able

to assign the proportion of the variance in the return that is due to ηi and that due to νi.

Since we cannot identify how much of the ex post return to schooling is unknown to the

agent at the time he makes his decision, we cannot solve the stated problem using just the

instrumental variable method.

Our procedure is not based on the method of instrumental variables. Rather, it exploits

certain covariances that arise under different information structures. To see how the method

works, simplify the model down to two schooling levels. Suppose, contrary to what is possible,

that the analyst observes Y0,i, Y1,i, and Ci. Such information would come from an ideal data

set in which we could observe two different lifetime earnings streams for the same person

in high school and in college as well as the costs they pay for attending college. From such

information we could construct Y1,i−Y0,i−Ci. If we knew the information set Ii,0 of the agent,

we could also construct E (Y1,i − Y0,i − Ci | Ii,0). Under the correct model of expectations,

we could form the residual

VIi,0 = (Y1,i − Y0,i − Ci)− E (Y1,i − Y0,i − Ci | Ii,0) ,

4One can use the residuals from Yi − ρ̂0 − ρ̂1Si = Ûi to decompose the variance components, where
instrumental variables are used to generate the coefficient estimates.
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and from the ex ante college choice decision, we could determine whether Si depends on

VIi,0 . It should not if we have specified Ii,0 correctly. In terms of the model of equations (5)

and (6), if there are no direct costs of schooling, E (Y1,i − Y0,i | Ii,0) = ηi, and VIi,0 = νi.

A test for correct specification of candidate information set Ĩi,0 is a test of whether Si

depends on VĨi,0 , where VĨi,0 = (Y1,i − Y0,i − Ci)−E
(
Y1,i − Y0,i − Ci | Ĩi,0

)
. More precisely,

the information set is valid if Si ⊥⊥ VĨi,0 | Ĩi,0, where X ⊥⊥ Y | Z means X is independent

of Y given Z. In terms of the simple model of (5) and (6), νi should not enter the schooling

choice equation (λ2 = 0). A test of misspecification of Ĩi,0 is a test of whether the coefficient

of VĨi,0 is statistically significantly different from zero in the schooling choice equation.

More generally, Ĩi,0 is the correct information set if VĨi,0 does not help to predict schooling.

We can search among candidate information sets Ĩi,0 to determine which ones satisfy the

requirement that the generated VĨi,0 does not predict Si and what components of Y1,i−Y0,i−Ci

(and Y1,i − Y0,i) are predictable at the age for the specified information set.5 For a properly

specified Ĩi,0, VĨi,0 should not cause (predict) schooling choices. The components of VĨi,0 that

are unpredictable are called intrinsic components of uncertainty, as defined in this paper.

Usually, we cannot determine the exact content of Ii,0 known to each agent. If we could,

we would perfectly predict Si given our decision rule. More realistically, we might find

variables that proxy Ii,0 or their distribution. Thus, in the example of equations (5) and (6)

we would seek to determine the distribution of νi and allocation of the variance of ρ1,i to

ηi and νi rather than trying to estimate ρ1,i, ηi, or νi for each person. This is the strategy

pursued in this paper for a two-choice model of schooling.

5This procedure is a Sims (1972) version of a Wiener-Granger causality test.
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Inference

The procedure just described is not practical for general models of educational outcomes.

We do not know all of the information possessed by the agent. We do not observe Y1,i,t and

Y0,i,t together for anyone. We must solve the problem of constructing counterfactuals. This

entails solving the selection problem.

One conventional way to solve the selection problem is to invoke a ‘common coefficient’

assumption,

Y1,i,t = ϕt (X i,t) + Y0,i,t, t = 0, . . . , T,

where ϕt (X i,t) is the same for everyone with the same X i,t. A special case is where

ϕt (X i,t) = ϕ, a constant. This specification assumes that for each person i, the earn-

ings in college at age t differ from the earnings in high school by a constant, or a constant

conditional on X i,t. Under standard assumptions, conventional econometric methods such

as matching, instrumental variables, or control functions recover ϕt (X i,t) for everyone (see

Heckman and Robb, 1986, reprinted 2000, for discussions of alternative assumptions).

A common coefficient returns to schooling assumption for all groups with the same values

of X i,t rules out comparative advantage in the labor market that has been shown to be

empirically important (see Carneiro et al., 2004, and Heckman, 2001). This assumption can

be tested nonparametrically and is decisively rejected (Heckman et al., 1997). An alternative

and weaker assumption is that ranks in the distribution of Y1,i,t can be mapped into ranks

in the distribution of Y0,i,t (e.g., the best in the Y1,i,t distribution is the best in the Y0,i,t

distribution or the best in one is the worst in the other). We present evidence against that
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assumption below.

An alternative approach is to use matching. Given matching variables Qi, we can form

counterfactual marginal distributions from observed distributions using the matching as-

sumption that

F (Y1,i,t |X i,t, Si = 1,Qi) = F (Y1,i,t |X i,t, Si = 0,Qi)

= F (Y1,i,t |X i,t,Qi) , t = 0, . . . , T.

If the matching assumptions are valid, we can construct counterfactuals for everyone since the

first distribution is observed and the second is the distribution of the counterfactual (what

persons who do not attend college would have earned if they had attended college). By a

parallel analysis of F (Y0,i,t |X i,t, Si = 0,Qi), we can construct F (Y0,i,t |X i,t, Si = 1,Qi) =

F (Y0,i,t |X i,t,Qi) for everyone, t = 0, . . . , T . This is the distribution of high school out-

comes for those who attend college. The marginal distributions acquired from matching are

not enough to construct the distribution of returns Y1,i − Y0,i because they do not identify

the covariance or dependence between Y1,i,t and Y0,i,t, unless it is assumed that the only

dependence across the Y1,i,t and Y0,i,t is due to Qi and/or X i,t, and the parameters of this

dependence can be determined from the marginal distributions, or else special assumptions

about dependence across outcomes are invoked.

Matching makes strong assumptions about the richness of the data available to analysts

and does not, in general, identify joint distributions of counterfactual returns and hence the

distribution of the rate of return. It assumes that the return to the marginal person is the

same as the return to the average person (Heckman and Navarro, 2004).
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Either matching or IV solves the selection problem under their assumed identifying

conditions. Neither method provides a way for identifying the information agents act on

ex ante. In this paper, we build on Carneiro et al. (2003) and use the factor structure

representation (3) to construct the missing counterfactual earnings data without invoking

either type of ad hoc identifying assumption.

To understand the essential idea underlying our method, consider the following linear in

parameters model:

Y0,i,t = X i,tβ0,t + v0,i,t, t = 0, . . . , T,

Y1,i,t = X i,tβ1,t + v1,i,t,

Ci = Ziγ + vi,C .

We assume that the life cycle of the agent ends after period T . Linearity of outcomes in

terms of parameters is convenient but not essential to our method.

Suppose that there exists a vector of factors θi = (θi,1, θi,2, . . . , θi,L) such that θi,k and

θi,j are mutually independent random variables for k, j = 1, . . . , L, k 6= j. Assume we can

represent the error term in earnings at age t for agent i in the following manner:

υ0,i,t = θiα0,t + ε0,i,t,

υ1,i,t = θiα1,t + ε1,i,t,

where α0,t and α1,t are vectors and θi is a vector distributed independently across persons.

The ε0,i,t and ε1,i,t are mutually independent of each other and independent of the θi. We
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can also decompose the cost function Ci in a similar fashion:

Ci = Ziγ + θiαC + εi,C .

All of the statistical dependence across potential outcomes and costs is generated by θ,

X, and Z. Thus, if we could match on θi (as well as X and Z), we could use matching

to infer the distribution of counterfactuals, and capture all of the dependence across the

counterfactual states through the θi. However, in general, not all of the required elements

of θi are observed.

The parameters αC and αs,t for s = 0, 1, and t = 0, . . . , T are the factor loadings. εi,C

is independent of the θi and the other ε components. In this notation, the choice equation

can be written as:

Ii = E

(
T∑
t=0

(
X i,tβ1,t + θiα1,t + ε1,i,t

)
−
(
X i,tβ0,t + θiα0,t + ε0,i,t

)
(1 + r)t

− (Ziγ + θiαC + εiC)

∣∣∣∣∣ Ii,0
)

Si = 1 if Ii ≥ 0; Si = 0 otherwise. (7)

The sum inside the parentheses is the discounted earnings of agent i in college minus the

discounted earnings of the agent in high school. The second term is cost. Constructing (7)

entails making a counterfactual comparison. Even if the earnings of one schooling level are

observed over the lifetime using panel data, the earnings in the counterfactual state are not.

After the schooling choice is made, some components of the X i,t, the θi, and the εi,t may

be revealed (e.g., unemployment rates, macro shocks) to both the observing economist and

the agent, although different components may be revealed to each and at different times.
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Examining alternative information sets, one can determine which ones produce models for

outcomes that fit the data best in terms of producing a model that predicts date t = 0

schooling choices and at the same time passes our test for misspecification of predicted

earnings and costs. Some components of the error terms may be known or not known at the

date schooling choices are made. The unforecastable components are intrinsic uncertainty

as we have defined it.6

To formally characterize our empirical procedure, it is useful to introduce some additional

notation. Let � denote the Hadamard product (a� b = (a1b1, . . . ,aLbL)) for vectors a and

b of length L. Let ∆X , ∆Z , ∆θ, ∆εC , ∆εt , t = 0, . . . , T , denote coefficient vectors associated

with the X, the Z, the θ, the ε1,t − ε0,t, and the εC , respectively. These coefficients will

be estimated to be nonzero in a schooling choice equation if there is a deviation between

the proposed information set and the actual information set used by agents. For a proposed

information set Ĩi,0 which may or may not be the true information set on which agents act

we can define the proposed choice index Ĩi in the following way:

Ĩi =
T∑
t=0

E
(
X i,t | Ĩi,0

)
(1 + r)t

(
β1,t − β0,t

)
+

T∑
t=0

[
X i,t − E

(
X i,t | Ĩi,0

)]
(1 + r)t

(
β1,t − β0,t

)
�∆X (8)

+E(θi | Ĩi,0)

[
T∑
t=0

(α1,t −α0,t)

(1 + r)t
−αC

]
+
[
θi − E

(
θi | Ĩi,0

)]{[ T∑
t=0

(α1,t −α0,t)

(1 + r)t
−αC

]
�∆θ

}

+
T∑
t=0

E
(
ε1,i,t − ε0,i,t | Ĩi,0

)
(1 + r)t

+
T∑
t=0

[
(ε1,i,t − ε0,i,t)− E

(
ε1,i,t − ε0,i,t | Ĩi,0

)]
(1 + r)t

∆εt

−E
(
Zi | Ĩi,0

)
γ −

[
Zi − E

(
Zi | Ĩi,0

)]
γ �∆Z − E

(
εiC | Ĩi,0

)
−
[
εiC − E

(
εiC | Ĩi,0

)]
∆εC ,

6As pointed out to us by Lars Hansen, the term ‘heterogeneity’ is somewhat unfortunate. Under this
term, we include trends common across all people (e.g., macrotrends). The real distinction we are making
is between components of realized earnings forecastable by agents at the time they make their schooling
choices vs. components that are not forecastable.
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To conduct our test, we fit a schooling choice model based on the proposed model (8).

We estimate the parameters of the model including the ∆ parameters. This decomposition

for Ĩi assumes that agents know the β, the γ, and the α. We discuss this assumption in

section 5. If it is not correct, the presence of additional unforecastable components due to

unknown coefficients affects the interpretation of the estimates. A test of no misspecification

of information set Ĩi,0 is a joint test of the hypothesis that ∆X = 0, ∆θ = 0, ∆Z = 0,

∆εC = 0, and ∆εt = 0, t = 0, . . . , T . That is, when Ĩi,0 = Ii,0 then ∆X = 0, ∆θ = 0,

∆Z = 0, ∆εC = 0, ∆εt = 0, t = 0, . . . , T , and the proposed choice index Ĩi = Ii.

In a correctly specified model, the components associated with zero ∆j are the unfore-

castable elements or the elements which, even if known to the agent, are not acted on in

making schooling choices. To illustrate the application of our method, assume for simplicity

that the X i,t, the Zi, the εi,C , the β1,t,β0,t, the α1,t,α0,t, and αC are known to the agent,

and the εj,i,t are unknown and are set at their mean zero values. We can infer which compo-

nents of the θi are known and acted on in making schooling decisions if we postulate that

some components of θi are known perfectly at date t = 0 while others are not known at all,

and their forecast values have mean zero given Ii,0.

If there is an element of the vector θi, say θi,2 (factor 2), that has nonzero loadings

(coefficients) in the schooling choice equation and a nonzero loading on one or more potential

future earnings, then one can say that at the time the schooling choice is made, the agent

knew the unobservable captured by factor 2 that affects future earnings. If θi,2 does not

enter the choice equation but explains future earnings, then θi,2 is unknown (not predictable

by the agent) at the age schooling decisions are made. An alternative interpretation is that
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the second component of
[∑T

t=0
(α1,t−α0,t)

(1+r)t
−αC

]
is zero, i.e., that even if the component is

known, it is not acted on. Thus, we can only test for what the agent knows and acts on.

One plausible scenario is that εi,C is known but the future ε1,i,t and ε0,i,t are not, have

mean zero, and are insurable. If there are components of the εj,i,t that are predictable at age

t = 0, they will induce additional dependence between Si and future earnings beyond the

dependence induced by the θi. Under a perfect foresight assumption we can identify this

extra dependence. We develop this point further in section 3 after we introduce additional

helpful notation. Our procedure can be generalized to consider all components of (8). We

can test the predictive power of each subset of the overall possible information set at the

date the schooling decision is being made.

The intuition underlying our testing procedure is thus very simple. The components that

are forecastable and acted on in making schooling choices are captured by the components

of ex post realizations that are known by the agents when they make their educational

choices. In terms of the simple model of equations (5) and (6), and by decomposing ρ1,i into

ηi and νi so ρ1,i = ηi + νi, we determine how much of the ex post variability in ρ1,i is due

to forecastable ηi and unforecastable νi. The predictable components will be estimated to

have nonzero coefficients in the schooling choice equation. The uncertainty at the date the

decision about college is being made is captured by the factors that the agent does not act

on when making the decision of whether or not to attend college.7

A similar but distinct idea motivates Flavin’s (1981) test of the permanent income hy-

pothesis and her measurement of unforecastable income innovations. She picks a particular

7This test has been extended to a nonlinear setting, allowing for credit constraints, preferences for risk,
and the like. See Cunha et al. (2004) and Navarro (2004).
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information set Ĩi,0 (permanent income constructed from an assumed ARMA (p, q) time

series process for income, where she estimates the coefficients given a specified order of the

AR and MA components) and tests if VĨi,0 (our notation) predicts consumption. Her test

of ‘excess sensitivity’ can be interpreted as a test of the correct specification of the ARMA

process that she assumes generates Ĩi,0 which is unobserved (by the economist), although she

does not state it that way. Blundell and Preston (1998) and Blundell et al. (2004) extend her

analysis but, like her, maintain an a priori specification of the stochastic process generating

Ii,0. Blundell et al. (2004) claim to test for ‘partial insurance.’ In fact their procedure can

be viewed as a test of their specification of the stochastic process generating the agent’s in-

formation set. More closely related to our work is the analysis of Pistaferri (2001), who uses

the distinction between expected starting wages (to measure expected returns) and realized

wages (to measure innovations) in a consumption analysis.

In the context of our factor structure representation, the contrast between our approach

to identifying components of intrinsic uncertainty and the approach followed in the literature

is as follows. The traditional approach would assume that the θi are known to the agent

while the {ε0,i,t, ε1,i,t}Tt=0 are not.8 Our approach allows us to determine which components

of θi and {ε0,i,t, ε1,i,t}Tt=0 are known and acted on at the time schooling decisions are made.

Assuming that the problems raised by selection on Si are solved by the methods exposited

in the next section and their vector generalizations, we can estimate the distributions of the

components of (3) and the coefficients on the factors θi from panel data on earnings. This

statistical decomposition does not tell us which components of (3) are known at the time

8The analysis of Hartog and Vijverberg (2002) exemplifies this approach and uses variances of ex post
income to proxy ex ante variability.
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agents make their schooling decisions. If some of the components of {ε0,i,t, ε1,i,t}Tt=0 are

known to the agent at the date schooling decisions are made and enter (8), then additional

dependence between Si and future Y1,i − Y0,i due to the {ε0,i,t, ε1,i,t}Tt=0, beyond that due to

θi, would be estimated.

It is important to contrast the dependence between Si and future Y0,i,t, Y1,i,t arising from

θi from the dependence between Si and the {ε0,i,t, ε1,i,t}Tt=0. Some of the θi in the ex post

earnings equation may not appear in the choice equation, and some additional dependence

between Si and {ε0,i,t, ε1,i,t}Tt=0 may appear under certain information sets. The contrast

between the sources generating earnings outcomes and the sources generating dependence

between Si and εi income realized is the essential idea in this paper. The method can

be generalized to deal with nonlinear preferences and imperfect market environments.9 A

central issue, discussed in section 4, is how far one can go in identifying income information

processes without specifying preferences, insurance, and market environments.

9In a model with complete autarky with preferences G, ignoring costs,

Ii =
T∑
t=0

E

[
G
(
Xi,tβ1,t + θiα1,t + ε1,i,t

)
−G

(
Xi,tβ0,t + θiα0,t + ε0,i,t

)
(1 + ρ)t

∣∣∣∣∣ Ĩi,0
]
,

where ρ is the time rate of discount, we can make a similar decomposition but it is more complicated given
the nonlinearity in G. For this model we could do a Sims noncausality test where

VĨi,0 =
T∑
t=0

G
(
Xi,tβ1,t + θiα1,t + ε1,i,t

)
−G

(
Xi,tβ0,t + θiα0,t + ε0,i,t

)
(1 + ρ)t

−

T∑
t=0

E

[
G
(
Xi,tβ1,t + θiα1,t + ε1,i,t

)
−G

(
Xi,tβ0,t + θiα0,t + ε0,i,t

)
(1 + ρ)t

∣∣∣∣∣ Ĩi,0
]
.

This requires some specification of G. See Carneiro et al. (2003), who assume G(Y ) = lnY and that the
equation for lnY is linear in parameters. Cunha et al. (2004) and Navarro (2004) generalize that framework
to a model with imperfect capital markets where some lending and borrowing is possible.
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3 Identifying counterfactual distributions and extract-

ing components of unpredictable uncertainty using

factor models

To motivate our econometric procedures, it is useful to work with a slightly more abstract

notation and a simpler set up. Omit the individual i subscript to simplify the notation

and suppose that there is one period only (T = 0) so Y1 = Y1,0, Y0 = Y0,0. We relax

this assumption later in this section but initially use this framework to focus on the main

econometric ideas motivating our solution of the selection problem. Assume that (Y0, Y1)

have finite means and can be expressed in terms of conditioning variables X. Write

Y0 = µ0 (X) + U0, (9a)

Y1 = µ1 (X) + U1, (9b)

where E (U0 |X) = E (U1 |X) = 0, E (Y0 |X) = µ0 (X), and E (Y1 |X) = µ1 (X). The

ex post gain for an individual who moves from S = 0 to S = 1 is Y1 − Y0.

Write index I as a net utility,

I = Y1 − Y0 − C, (10)
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where C is the cost of participation in sector 1. We write C = µC(Z) + UC , where the Z

are determinants of cost. We may write

I = µI(X,Z) + UI . (11)

Under perfect certainty,

µI(X,Z) = µ1(X)− µ0(X)− µC(Z) and UI = U1 − U0 − UC .

More generally, we define UI as the error in the choice equation and it may or may not

include all future U1, U0, or UC . Similarly, µI(X,Z) may only be based on expectations of

future X and Z at the time schooling decisions are made. We write

S = 1 if I ≥ 0; S = 0 otherwise. (12)

A major advantage of our approach over previous work on estimating components of un-

certainty facing agents is that we control for the econometric consequences of endogeneity in

the choice of S and thereby avoid self-selection biases. The choice equation is also a source of

identifying information for extracting forecastable components. This paper builds on recent

research by Carneiro et al. (2003) that solves the problem of constructing counterfactuals by

identifying the joint distribution of (Y0, Y1) conditional on S (or I) using a factor structure

model. These models generalize the LISREL models of Jöreskog (1977) and the MIMIC

models of Jöreskog and Goldberger (1975) to produce counterfactual distributions. We now

exposit the main idea underlying our method, working with a one-factor model to simplify
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the exposition. Carneiro et al. (2003) develop the general multifactor model we use in our

empirical analysis.

3.1 Identifying counterfactual distributions

Identifying the joint distribution of potential outcomes is a difficult problem because we do

not observe both components of (Y0, Y1) for anyone. Thus, one cannot directly form the

joint distribution of potential outcomes (Y0, Y1). Heckman and Honoré (1990) show that

if (i) C = 0 for every person, (ii) decision rule (12) applies in an environment of perfect

certainty, (iii) there are distinct variables in µ1(X) and µ0(X), (iv) X is independent of

(U1, U0), and other mild regularity restrictions are satisfied, then one can identify the joint

distribution of (Y0, Y1) given X, even without additional Z variables. In this case the agents

choose S solely in terms of the differences in potential outcomes. However, in an environment

of uncertainty or if C varies across people and contains some variables unobserved by the

analyst, this method breaks down. We present a more general analysis without maintaining

the perfect certainty assumption.

As shown by Heckman (1990), Heckman and Smith (1998), and Carneiro et al. (2003),

under the assumptions that (i) (Z,X) are statistically independent from (U0, U1, UI), (ii)

µI (X,Z) is a nontrivial function of Z given X, (iii) µ0 (X) , µ1 (X), and µI (X,Z) have

full support, and (iv) the elements of the pairs (µ0(X), µI(X,Z)) and (µ1 (X) , µI(X,Z))

can be varied independently of each other, then one can identify the joint distributions of

(U0, UI), (U1, UI) up to a scale σ∗I for UI and also µ0 (X) , µ1 (X) , and µI (X,Z) , the last

expression up to scale σI .
10 Thus, one can identify the joint distributions of (Y0, I

∗) and

10Full support means that the support of µ1(X) matches (or contains) the support of U1; the support
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(Y1, I
∗) given X and Z where I∗ = I/σI . As a by-product we identify the mean functions.

One cannot recover the joint distribution of (Y0, Y1) or (Y0, Y1, I
∗) given X and Z without

further assumptions. We provide an intuitive motivation for why F (Y0, I
∗) and F (Y1, I

∗) are

identified in Appendix 1. Once we estimate these distributions, we perform factor analysis

on (Y0, I
∗) and (Y1, I

∗).

The factor structure approach provides a solution to the problem of constructing coun-

terfactual distributions. We show the essential ideas. Suppose that the unobservables follow

a one-factor structure (i.e., θ is a scalar). Carneiro et al. (2003) generalize these methods

to the multifactor case. We can extend these methods to nonseparable models using the

analysis reported in Heckman, Matzkin, Navarro, and Urzua (2004), but we do not do so in

this paper.

We assume that all of the dependence across (U0, U1, UI∗) is generated by a scalar factor

θ,

U0 = θα0 + ε0,

U1 = θα1 + ε1,

UI∗ = θαI∗ + εI∗ .

We assume that θ is statistically independent of (ε0, ε1, εI) and satisfies E (θ) = 0, and

E
(
θ2
)

= σ2
θ. All the ε’s are mutually independent with E (ε0) = E (ε1) = E (εI∗) = 0,

V ar (ε0) = σ2
ε0
, V ar (ε1) = σ2

ε1
, and V ar (εI) = σ2

εI
(the ε terms are called uniquenesses in

of µ0(X) matches (or contains) the support of U0 and the support of µI(X,Z) matches (or contains) the
support of UI . (See Heckman and Honoré, 1990, and Carneiro et al., 2003, for more precise formulations of
these conditions.) The support of a random variable is the set of values where it has a positive density.
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factor analysis). Because the factor loadings may be different, the factor may affect outcomes

and choices differently and may even have different signs in different equations.

To show how one can recover the joint distribution of (Y0, Y1) using factor models, we

break the argument into two parts. First we show how to recover the factor loadings, factor

variance, and the variances of the uniquenesses. This part is like traditional factor analysis

except that some latent variables (e.g., I∗) are only observed up to scale so their scale must

be normalized. Then, we show how to construct joint distributions of counterfactuals.

3.2 Recovering the factor loadings

We consider identification of the model when the analyst has different types of information

about the choices and characteristics of the agent.

3.2.1 The case when there is information on Y0 for I < 0 and Y1 for I > 0 and

the decision rule is (12)

Under the conditions stated in section 3.1 and the papers referenced there, after conditioning

on X and controlling for selection, one can identify F (U0, UI∗) and F (U1, UI∗). From these

distributions one can identify the left hand side of

Cov (U0, UI∗) = α0αI∗σ
2
θ

and

Cov (U1, UI∗) = α1αI∗σ
2
θ.
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The scale of the unobserved I is normalized, a standard condition for discrete choice

models. A second normalization that we need to impose is σ2
θ = 1. This is required since the

factor is not observed and we must set its scale. That is, since αθ = kα θ
k

for any constant k,

we need to set the scale by normalizing the variance of θ. We could alternatively normalize

some αj to one. Finally, we set αI∗ = 1, an assumption we can relax, as noted below.

Under these conditions, we can identify α1 and α0 from the known covariances above.

From the first covariance, we identify α0. From the second, we identify α1. From the nor-

malization, we know σ2
θ. Since

Cov (U1, U0) = α1α0σ
2
θ,

we can identify the covariance between Y1 and Y0 even though we do not observe the pair

(Y1, Y0) for anyone. We then use the variances V ar (U1) , V ar (U0) and the normalization

V ar (UI∗) = 1 to recover the variance of the uniquenesses σ2
ε0
, σ2

ε1
, σ2

εI∗
.

The fact that we needed to normalize both σ2
θ = 1 and αI∗ = 1 is a consequence of our

assumption that we have only one observation for Y1 and Y0. If we have access to more

observations on life cycle earnings from panel data, as we do in our empirical work, we can

use (Y0,0, . . . Y0,T , Y1,0, . . . , Y1,T ) to relax one normalization, say σ2
θ = 1, since then we can

form, conditional on X and Z, the left hand side of

Cov (U1,t′ , U1,t)

Cov (U1,t′ , UI∗)
= α1t
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and

Cov (U0,t′ , U0,t)

Cov (U0,t′ , UI∗)
= α0t,

and recover σ2
θ from, say, Cov (U1,t, UI∗) = α1,tσ

2
θ. Identification of the variances of the

uniquenesses follows as before.

The central idea motivating our identification strategy is that even though we never

observe (Y0, Y1) as a pair, both Y0 and Y1 are linked to S through the choice equation.

From S we can generate I∗, using standard methods in discrete choice analysis. From this

analysis we effectively observe (Y0, I
∗) and (Y1, I

∗). The common dependence of Y0 and

Y1 on I∗ secures identification of the joint distribution of Y0, Y1, I
∗. We next develop a

complementary strategy based on the same idea where, in addition to a choice equation,

we have a measurement equation observed for all observations whether or not Y1 or Y0

is observed. The measurement may be a test score which is a proxy for ‘ability’ θ. This

measurement plays the role of I∗ and, in certain respects, identification with a measurement

of this type is more transparent and more traditional.

3.2.2 Adding a measurement equation

Suppose that we have access to a measurement for θ that is observed whether S = 1 or

S = 0 in addition to data on outcomes S and Y0 or Y1. In educational statistics, a test score

is often used to proxy ability. Suppose that the analyst has access to one ability test M for

28



each person. Measured ability M is

M = µM (X) + UM .

Assume that

UM = θαM + εM ,

where εM is mutually independent from (ε0, ε1, εI) , and θ.11 We assume αM 6= 0. With this

additional information we can form

Cov (M,Y0|X,Z) = Cov (UM , U0) = αMα0σ
2
θ,

Cov (M,Y1|X,Z) = Cov (UM , U1) = αMα1σ
2
θ,

Cov (M, I∗|X,Z) = Cov (UM , UI∗) = αMαI∗σ
2
θ.

Conditioning on (X,Z), we can recover the error terms for the unobservables U0, UI∗ and

UM using the preceding arguments. If we impose the normalization αM = 1, which can

be interpreted as requiring that higher levels of measured ability are associated with higher

levels of factor θ, we can form the ratio

Cov (U0, UI∗)

Cov (UM , UI∗)
= α0

11For simplicity, we assume that this is a continuous measurement. Discrete measurements can also be
used. See Carneiro et al. (2003).
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and identify α0. In a similar fashion, we can form

Cov (U1, UI∗)

Cov (UM , UI∗)
= α1

and we can recover α1. From

Cov (UM , U0) = α0σ
2
θ,

we can obtain σ2
θ. Finally, we can identify αI∗ based on information from

Cov (UM , UI∗) = αI∗σ
2
θ,

so we can obtain αI∗ up to scale. Thus, with one measurement, one choice equation and

two outcomes we can identify σ2
θ and αI∗ up to scale. We can use the identified variances

V ar (U0) , V ar (U1) , V ar (UI∗) = 1, and V ar (UM) to recover the uniquenesses σ2
ε0
, σ2

ε1
, σ2

εI∗
,

and σ2
εM

. Thus, having access to a measurement (M) and choice data with decision rule

(10)–(12) allows us to estimate the covariances among the counterfactual states.12

But how to identify the distributions? Traditional factor analysis assumes normality. We

present a more general nonparametric analysis. Allowing for nonnormality is essential for

getting acceptable empirical results as we note below.

12We cannot dispense with the choice equation unless we have data on F (Y0,M | X,Z) and F (Y1,M |
X,Z). Recall that, in most cases, we observe data that allows us to construct F (Y0,M |X,Z, S = 0) and
F (Y1,M |X,Z, S = 1). The required information for dispensing with the choice equation might be obtained
when we have limit sets Z̄u and Z̄l such that Pr(S = 1 |X,Z) = 1 for z ∈ Z̄u and Pr(S = 0 |X,Z) = 0 for
z ∈ Z̄l. Then we can replace I with M and do factor analysis. (See Carneiro et al., 2001.)
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3.3 Recovering the distributions nonparametrically

Given the identification of factor loadings, factor variances, and uniquenesses, we show how

to identify the marginal distributions of θ and ε0, ε1, εI∗ nonparametrically (the last one up

to scale). The method is based on a theorem by Kotlarski (1967). For completeness, we

state his theorem.

Theorem 1 Suppose that we have two random variables T1 and T2 that satisfy:

T1 = θ + v1

T2 = θ + v2

with θ, v1, v2 mutually statistically independent, E (θ) < ∞, E (v1) = E (v2) = 0, that

the conditions for Fubini’s theorem are satisfied for each random variable, and that the

random variables possess nonvanishing (almost everywhere) characteristic functions. Then,

the densities fθ, fv1 , fv2 are identified.

Proof See Kotlarski (1967). �

Applied to the current context, we have a choice equation, two outcome equations, and

a measurement equation.13 Assume that we normalize αM = 1 so that all factor loadings,

13Again, for the sake of simplicity, we assume that M is continuous but our methods work for discrete
measurements. (See Carneiro et al., 2003).
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factor variances, and variances of uniquenesses are known. The system is

I∗ = µI∗ (X,Z) + θαI∗ + εI∗ ,

Y0 = µ0 (X) + θα0 + ε0,

Y1 = µ1 (X) + θα1 + ε1,

M = µM (X) + θ + εM .

Note that this system can be rewritten as

I∗ − µI∗(X,Z)

αI∗
= θ +

εI∗

αI∗
,

Y0 − µ0(X)

α0

= θ +
ε0

α0

,

Y1 − µ1(X)

α1

= θ +
ε1

α1

,

M − µM(X) = θ + εM .

Applying Kotlarski’s theorem to any pair of equations, we conclude that we can identify the

densities of θ, εI∗
αI∗
, ε0
α0
, ε1
α1
, εM . Since we know αI∗ , α0, and α1, we can identify the densities of

θ, εI∗ , ε0, ε1, εM .14 Thus, we can identify the distributions of all of the error terms. Finally,

to recover the joint distribution of (Y1, Y0), note that

F (Y1, Y0 |X) =

∫
F (Y1, Y0 | θ,X) dFθ (θ) .

From Kotlarski’s theorem, Fθ(θ) is known. Because of the factor structure, Y1, Y0, and S are

14Recall that UI is only known up to scale σI .
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independent once we condition on θ, so it follows that

F (Y1, Y0 | θ,X) = F (Y1 | θ,X)F (Y0 | θ,X) .

But F (Y1 | θ,X) and F (Y0 | θ,X) are identified once we condition on the factors since

F (Y1 | θ,X, S = 1) = F (Y1 | θ,X)

F (Y0 | θ,X, S = 0) = F (Y0 | θ,X) .

Note further that if θ were known to the analyst, our procedure would be equivalent to

matching on θ which is equivalent, for identification, to matching on the propensity score

Pr (S = 1 |X,Z, θ).15 Our method generalizes matching by allowing the variables that

would produce the conditional independence assumed in matching to be unobserved by the

analyst.

The discussion in this section is for a one-factor model. In our empirical work, we use a

multifactor model where the factors are used to characterize earnings dynamics and possible

dependence between future ε and S. Carneiro et al. (2003) provide the analysis we need for

the general multifactor case. The key idea is that, with enough measurements, outcomes

and choice equations, we can identify the number of factors generating dependence among

the Y1, Y0, C, S, and M and the distributions of the factors.16

15Carneiro et al. (2003) discuss the matching relationship between factor and matching models. For a
discussion of factor models and control functions, see Heckman and Navarro (2004).

16A precise statement of what is ‘enough’ information is given in Carneiro et al. (2003). See their discussion
of the Ledermann bound. The key idea is that the number of factors has to be small relative to the number of
measurements, outcomes and choice equations. This bound can be relaxed if there are a priori restrictions on
the factor loadings beyond innocuous normalizations. Using nonnormality one can also relax the Ledermann
bound.
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3.4 Models with multiple factors and tests for full insurance ver-

sus perfect certainty

Our empirical work is based on a 5 period (t = 0, . . . , 4) version of equations (1) and (8).

In fitting the model, we introduce the possibility of additional sources of dependence in the

choice equation (8), distinct from the dependence arising from some or all of the components

of θ. This additional dependence may be generated from future (ε1,i,t, ε0,i,t), t = 0, . . . , T

that affect schooling choices.

From the covariances between Si (or I∗i ) and Y0,i,t and Y1,i,t, t = 0, . . . , T , under certain

information sets, we can identify additional sources of dependence between (Y0,i,t, Y1,i,t) and

I∗i apart from θi arising from the dependence of ε0,i,t and ε1,i,t with
∑T

t=0
E(ε1,i,t−ε0,i,t|Ĩi,0)

(1+r)t
.

In our empirical specification discussed below, there are multiple earnings outcomes in each

schooling state, a choice equation and a vector of measurement equations to tie down the

distribution of θi and the distributions of the {ε0,i,t, ε1,i,t}Tt=0.

To see how additional sources of dependence might arise in fitting the data, consider a

model with perfect foresight. Following the analysis in section 3.2 and in the papers cited

there, we can estimate

Cov (Yj,i,t, I
∗
i |X,Z) =

α′j,t
σ∗I

ΣΘ

[∑T
t=0 (α1,t −α0,t)

(1 + r)t
−αC

]
+

(
1

σ∗I

)
V ar (εj,i,t)

(1 + r)t
, t = 0, . . . , T ; j = 0, 1,

where ΣΘ is the variance-covariance matrix of the θi. Conditional on X and Z, dependence

between Yj,i,t and I∗i can arise from two sources: from the θi and from the εj,i,t. Under
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complete markets, if the εj,i,t are unknown at date t = 0 and have mean zero given Ii,0,

the second term on the right hand side vanishes and the factors θi capture any dependence

between Yj,i,t and Si.

Using limit set arguments, as in Carneiro et al. (2003) and Cunha et al. (2004), we can

identify the αj,t, j = 0, 1, t = 0, . . . , T , the distribution of θi and the distributions of the

εj,i,t from earnings data alone in the limit sets.17 Under either complete markets or under

perfect foresight, we can identify αC up to scale σ∗I from the covariances between Yj,i,t, and

I∗i , provided a rank condition is satisfied. In the case of scalar θi, we can identify αC for a

fixed scale of I∗i from the preceding equation for perfect foresight as

1

αj,tσ2
θ

[
−Cov (Yj,i,t, I

∗
i |X,Z) +

V ar (εj,i,t)

(σ∗I) (1 + r)t
+
αj,t
σ∗I

σ2
θ

∑T
t=0 (α1,t − α0,t)

(1 + r)t

]
=
αC
σ∗I
.

Since we know all of the ingredients on the left hand side, we can identify αC up to scale σ∗I .

If there is an element of X not in Z, we can identify the scale σ∗I (See equation (7)). Since

αC is overidentified if T > 0, we can test between a perfect foresight model and a complete

contingent claims model by checking if the same αC is estimated for different Cov (Yj,i,t, I
∗)

terms.18 In the complete contingent claims model with uncertainty, the middle term in the

brackets would be zero for all εj,i,t.
19

17Footnote 12 defines the limit sets. See Carneiro et al. (2003) for a more complete discussion of identifi-
cation in limit sets.

18This procedure would break down only if
V ar(εj,i,t)

(1+r)t

αj,tΣΘ
∑T
t=0

(α1,t−α0,t)
(1+r)t

is constant across all t.

19This testing procedure generalizes to the case of vector θ provided that a rank condition

α′j,tΣΘ

∑T
t=0 (α1,t −α0,t)

(1 + r)t
6= 0

holds for a collection of L terms of the covariances of Yj,i,t with I∗i where L is the number of factors.
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4 More general preferences and market settings

To focus on the main ideas regarding model identification in this paper, we have deliberately

used the simple market structures of complete contingent claims markets. What can be

identified in more general environments? In the absence of perfect certainty or perfect

risk sharing, preferences and market environments also determine schooling choices. The

separation theorem we have used to this point breaks down.

If we postulate information processes a priori, and preferences up to some unknown

parameters as in Flavin (1981), Blundell and Preston (1998), and Blundell et al. (2004), we

can identify departures from specified market structures. In Cunha et al. (2004), we postulate

an Aiyagari (1994) – Laitner (1992) economy with one asset and parametric preferences to

identify the information processes in the agent’s information set. We take a parametric

position on preferences and a nonparametric position on the economic environment and the

information set.

An open question, not yet fully resolved in the literature, is how far one can go in non-

parametrically jointly identifying preferences, market structures and information sets. In

Cunha et al. (2004), we add consumption data to the schooling choice and earnings data

to secure identification of risk preference parameters (within a parametric family) and in-

formation sets, and to test among alternative models for market environments. Alternative

assumptions about what analysts know produce different interpretations of the same evi-

dence. The lack of full insurance interpretation given to their empirical results by Flavin

(1981) and Blundell et al. (2004) may be a consequence of their misspecification of the

agent’s information set generating process. We discuss this point further in section 5 when
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we present our estimates, to which we now turn.

5 Empirical results

We first describe our data and estimating equations. We then discuss the estimates obtained

from our model, and their economic implications.

5.1 The data, equations, and estimation

Appendix 2 considers a practical problem that plagues life cycle analysis. Few data sets

contain the full life cycle of earnings along with the test scores and schooling choices needed

to directly estimate our model and extract components of uncertainty. We need to combine

data sets. Otherwise, we can only obtain partial identification of the model. In our empirical

analysis, we use a sample of white males from the NLSY data pooled with PSID data, as

described in Appendix 3 (found at http://jenni.uchicago.edu/Hicks2004/), to produce life

cycle data on earnings and schooling.

Following the preceding theoretical analysis, we consider only two schooling choices: high

school and college graduation. From now on we use c, h to denote college and high school,

respectively. ‘c’ corresponds to 1 and ‘h’ corresponds to 0 in the previous notation. For

simplicity and familiarity, in this paper we assume complete contingent claims markets.

Because we assume that all shocks are idiosyncratic, schooling choices are made on the basis

of expected present value income maximization. Carneiro et al. (2003) assume the absence

of any credit markets or insurance. One of the goals of this paper is to check whether their

empirical findings about components of income inequality are robust to different assumptions
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about the operation of the credit market and insurance markets. Cunha et al. (2004) estimate

an Aiyagari-Laitner economy with a single asset and borrowing constraints and discuss risk

aversion and the relative importance of uncertainty.

The method developed in this paper is based on the idea that some or all components

of expected future earnings may affect current choices. In order to gain some preliminary

insights on whether components of future earnings (and returns) affect current schooling

choices, we present a simple empirical analysis in Table 1. Using the sample described below

and in Appendix 3 (found at http://jenni.uchicago.edu/Hicks2004/), we regress log ex post

earnings on schooling and schooling interacted with an ability test (ASVAB) to obtain an

estimate of the ex post return to schooling under the assumption that, conditional on the test

score, the ex post return is the same for everyone.20 This is a form of matching estimator

as described in Section 2. Assuming that the conditioning variable controls for selection,

we use the estimated return to schooling and plug it into a schooling choice model to test

whether future earnings affect college choices. In order to account for possible selection

biases not controlled for by matching, we repeat the exercise using instrumental variables

estimates of returns instead.21 The matching (OLS ) estimator is reported in the first row

of Table 1. The IV estimator is reported in the second row. The estimated effects of

these estimators on schooling choices are given in the third and fourth rows. For either

estimation method, we find statistically significant evidence that estimated ex post returns

affect current schooling choices. This evidence suggests that some components of future

earnings may predict schooling.

20We only use the NLSY sample because of the availability of instruments in it.
21See Heckman and Navarro (2004) for an exposition of the strong conditions required for this to be a

valid procedure.
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However, this evidence is not decisive. The estimates do not clearly delineate what is

unknown to the agent at the time schooling choices are made. They also do not distinguish

between the role of ability in generating future earnings from the role of ability in reducing

costs of schooling. The procedure developed in this paper makes these distinctions. We can

also determine the information set facing agents using the method developed in the previous

sections, which we now apply.22

Table 2.1 presents descriptive statistics of the data used to estimate the model. College

graduates have higher present value of earnings than high school graduates. College gradu-

ates also have higher test scores, come from better family backgrounds, and are more likely

to live in a location where college tuition is lower.

To simplify the empirical analysis, we divide the lifetimes of individuals into 5 periods.

The first period covers ages 19 through 28, the second goes from 29 through 38, the third

from 39 to 48, the fourth from 49 to 58, and the fifth from 59 to 65. For each schooling

level s, s ∈ {c, h}, and for each period t, we calculate the present value of earnings as of age

19, Ys,t.
23 To simplify notation drop the ‘i’ subscript. If Ys,t is generated by a three factor

model, we would write:

Ys,t = Xβs,t + θ1αs,t,1 + θ2αs,t,2 + θ3αs,t,3 + εs,t for t = 0, 1, 2, 3, 4, s ∈ {c, h} . (13)

It turns out that a three factor model is all that is required to fit the data. Since the scales

22A better test would be based on variables that more plausibly affect returns but not schooling, except
through returns. Labor market prices for different schooling levels are one plausible candidate.

23In our empirical work we use a 3% interest rate. We assume it is constant. It would be useful to explore
alternative time series of interest rates based on the data actually facing our cohorts. Alternative choices of
constant interest rates do no affect the main qualitative findings about the relative importance of forecastable
heterogeneity.
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of the factors are unknown, it is necessary to normalize some loadings (the α). In this paper,

we set αh,0,2 = αh,2,3 = 1. The normalization for ability (associated with the measurements

M based on test scores) is presented in the next paragraph. Using the identification scheme

of Carneiro et al. (2003) for the factor loadings, we also normalize αs,t,3 = 0, for t = 0 and

t = 1 and for s = c and s = h. This normalization has the substantive interpretation that

θ3 affects earnings only in the third and subsequent periods. Thus, θ3 is associated with

mid-career wage developments.

For the measurement system for cognitive ability (M in the notation of section 3.2.2)

we use five components of the ASVAB test battery: arithmetic reasoning, word knowledge,

paragraph comprehension, math knowledge and coding speed. We dedicate the first factor

(θ1) to this test system, and exclude the others from it. This justifies our interpretation of θ1

as ability. We include family background variables among the covariates XM in the ASVAB

test equations. In Table 2.2 we list the elements of XM . Formally, let Mj denote the test

score j,

Mj = XMωj + θ1αtestj ,1 + εtestj . (14)

To set the scale of θ1, we normalize αtest1,1 = 1.

The cost function C is given by

C = Zγ + θ1αC,1 + θ2αC,2 + εC , (15)

where the Z are variables that affect the costs of going to college and include variables that
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do not affect outcomes Ys,t such as local tuition. Table 2.2 shows the full set of covariates

used, and the exclusions (the variables in Z not in X.) We include tuition among the

elements of Z but allow for a more general notion of costs in our empirical work, including

psychic costs.

The valuation or net utility function for schooling choice is

I = E0

(
4∑
t=0

Yc,t − Yh,t
(1 + r)t

)
− E0 (C) , (16)

where E0 denotes the information set under I0 and r is the interest rate. Individuals go to

college if I > 0. The individual decision maker is assumed to be the child although parental

resources can affect C. Cost variable C also includes the effect of ability on reducing tuition

costs. We test and do not reject the hypothesis that individuals, at the time they make college

going decisions, know their cost functions, the Z and theX, factors θ1, θ2, and unobservables

in cost εC . However, they do not know factor θ3, or εs,t, s ∈ {c, h}, t ∈ {0, 1, 2, 3, 4} , at

the time they make their educational choices. Addition of these components to the choice

equation does not improve the fit of the model to the data.24

We assume that each factor k, is generated by a mixture of Jk normal distributions,

θk v
Jk∑
j=1

pk,jφ
(
θk | µk,j, τ k,j

)

here φ
(
η | µj, τ j

)
is a normal density for η with mean µj and variance τ j and

Jk∑
j=1

pk,j = 1,

and pk,j > 0. As shown in Ferguson (1983), mixtures of normals with a large number of

24We use ‘t’ statistics in the choice equation to determine whether additional factors enter the choice
equation. We use χ2 goodness of fit measures to determine if additional factors are required.
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components approximate any distribution of θk arbitrarily well in the `1 norm. The εs,t are

also assumed to be generated by mixtures of normals. We estimate the model using Markov

Chain Monte Carlo methods as described in Carneiro et al. (2003). In Tables 2.3 − 2.5 we

present estimated coefficients and factor loadings. For all factors, a two-component model

(Jk = 2, k = 1, . . . , 3) is adequate.25

5.2 Empirical results

5.2.1 How the model fits the data

To assess the validity of our estimates and to assess the number of factors we need and the

number of components of the mixtures that are required, we perform a variety of checks of fit

of predictions against the data. We first compare the proportions of people who choose each

schooling level. In the NLSY data, 52.9% choose high school and 47.1% choose college. The

model predicts roughly 53.2% and 46.8%, respectively. The model replicates the observed

proportions remarkably well, and formal tests of equality of predicted and actual proportions

cannot be rejected at the 5% significance level. This is also true when we partition the data

on subsets of X and Z.

Figures 1.1–1.5 show the densities of the predicted and actual present values of earnings

for the overall sample of the pooled NLSY-PSID data sets.26 The fit is good. When we

perform formal tests of equality of predicted and actual overall distributions at the 5% level,

the model marginally fails to fit the data for the overall sample for the first, third and

25Additional components do not improve the goodness of fit of the model to the data.
26The earnings are pretax. It would be better to use post-tax earnings and we propose to do so in

subsequent work.
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last periods (see Table 3a). However, addition of factors and additional components of the

mixture of normals do not significantly improve the fit. Reducing the number of factors by

one substantially reduces the overall fit (see Table 3b). Figures 2.1–2.5 and 3.1–3.5, show

the same densities restricted to the sample of those who choose high school (sequence 2) and

college (sequence 3). The fit is also good. The model fits the data better when we perform

formal tests of equality of predicted and actual distributions for each schooling choice than it

does overall, suggesting the failure of fit is due to the failure to predict mean differences. As

is apparent from Table 3a, the only case in which the model does not pass the χ2 goodness

of fit test is for the high-school distribution of earnings in period 4. We conclude that a

three factor model with our normalizations fits the data. From this analysis, we conclude

that earnings innovations εs,t in a three factor model are not in the agents’ information sets

at the time they are making schooling decisions. If they were, additional factors would be

required to capture the full covariance between educational choices and future earnings.27

5.2.2 The factors: non-normality and evidence on selection

Figure 4 reveals that in order to fit the data, one must allow for non-normal factors. The

figure plots the estimated densities of the factors along normal versions with the same mean

and variance. None of the factors is normally distributed. A traditional assumption used in

factor analysis (see Jöreskog, 1977) is violated. Our approach is more general and does not

require normality.

Figure 5.1 plots the density of factor 1 conditional on educational choices. The solid line

is the density of factor 1 for agents who are high school graduates, while the dashed line is

27Cunha et al. (2004) consider application of alternative testing and model selection criteria.

43



the density of the factor for agents who are college graduates. Since factor 1 is associated

with cognitive tests, we can interpret it as an index of ‘ability’ . The agents who choose

college have, on average, higher ability. Factor 1 is estimated from a test score equation that

controls for parental background and level of education at the date the ASVAB tests are

taken. Figure 5.1 shows that selection on ability is an important factor in explaining college

attendance. A similar analysis of factor 2 that is presented in Fig. 5.2 reveals that schooling

decisions are not very much affected by it, while we see no evidence of selection by schooling

level on factor 3 (see Fig. 5.3). This evidence is consistent with the interpretation that at

the time agents make their schooling decisions, they do not know factor 3. Agents cannot

select on factors they do not know when they are making their schooling decisions.

5.2.3 Estimating joint distributions of ex ante and ex post counterfactuals:

returns, costs, and ability as determinants of schooling

A major contribution of this paper is the identification and estimation of ex ante and ex

post distributions of outcomes and returns without imposing special assumptions about the

dependence across potential outcomes. Letting E0 denote the expectation under the ex ante

information set I0, we construct the distribution of (Y0, Y1) (ex post) and of (E0 (Y0) , E0 (Y1))

ex ante conditional on X. The X are assumed to be known both ex ante and ex post. The

ex post gross return R (excluding cost) is

R =
Y1 − Y0

Y0
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while the ex ante gross return is

E0 (R) = E0

(
Y1 − Y0

Y0

)
.

Both population heterogeneity and uncertainty produce the randomness generating R. Pop-

ulation heterogeneity in I0 (information sets) produces the randomness generating E0 (R) .

A standard argument shows that the means of R and E0 (R) over the entire population, and

on any conditioning subset, are the same.

In estimating the distribution of earnings in counterfactual schooling states within a

policy regime (e.g., the distributions of college earnings for people who actually choose to be

high school graduates under a particular tuition policy), one standard approach is to assume

that both distributions are the same except for an additive constant—the coefficient of a

schooling dummy in an earnings regression possibly conditioned on the covariates. Recently

developed methods relax this assumption by assuming preservation of ranks across potential

outcome distributions, but do not freely specify the two outcome distributions (see Heckman

et al., 1997; Chernozhukov and Hansen, 2005; Shaikh and Vytlacil, 2004).

Table 4.1 presents the ex post conditional distribution of college earnings given high school

earnings decile by decile. If the dependence across outcomes were perfect and positive, the

diagonal elements would be ‘1’ and the off diagonal elements would be ‘0.’ There is negative

dependence between the relative positions of individuals in the two distributions, and the

dependence is far from perfect. For example, almost 10% of those who are at the sixth decile

of the ex post high school distribution would be in the eighth decile of the ex post college

distribution.
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Note that this comparison is not made in terms of positions in the overall distribution of

earnings. We can determine where individuals are located in the population distribution of

potential high school earnings and the population distribution of potential college earnings

although in the data we only observe individuals in either one or the other state. The

assumption of perfect dependence across factual and counterfactual distributions that is

often made in the literature is incorrect for the data we analyze.

While Table 4.1 is the conditional distribution of ex post earnings across people, Ta-

ble 4.2 presents the conditional distribution of population ex ante college earnings on high

school earnings decile by decile. These conditional distributions are produced by allowing

X, θ1, θ2, εC to vary across persons as they do in the population, but integrating out the

unknown εs,t, s = c, h, t = 0, . . . , 4, and θ2. (In Table 4.1, these components contribute to

the measured variability.) The ex ante conditional distribution shows less dispersion than

the distribution of ex post outcomes since components of future realizations are integrated

out. Ex ante, agents forecast more negative dependence across counterfactual earnings states

than the ex post dependence on realized earnings. Realized θ3 and the {εs,t}4
t=0 are forces

toward positive dependence. The distinction between ex ante and ex post counterfactual dis-

tributions is a major contribution of this paper and demonstrates that information revelation

is an important aspect of life cycle decision making.

Our ability to distinguish ex ante outcomes from ex post outcomes highlights a major

advantage of our approach over conventional instrumental variable and matching approaches

to estimating returns to education which focus on ex post returns. Decisions are made ex

ante. Outcomes are measured ex post. It is the ex ante return that agents act on but the ex
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post, or realized, return that empirical economists usually measure.28

Let I =
∑4

t=0

(Yc,t−Yh,t)
(1+r)t

−C. Using our empirical model, we present three sets of estimates:

(i) Ex ante returns based on ex ante choices E0 (R | E0 (I) ≥ 0) and E0 (R | E0 (I) < 0); (ii)

Ex post returns based on choices made with ex ante information (R | E0 (I) ≥ 0) , (R | E0 (I) < 0)

(what is usually presented in the literature on ‘program evaluation’) and (iii) Ex post re-

turns based on ex post choices (R | I ≥ 0) , (R | I < 0). The last set of returns conveys how

returns and choices would differ if agents could ‘do it over again,’ i.e., make decisions based

on hindsight. The same people are used to form measures (i) and (ii). For measure (iii),

agents are allowed to change their schooling choices with hindsight.

Figures 6.1 and 6.2 present, respectively, the fitted and counterfactual marginal distri-

butions of ex post earnings for high school and college graduates. Figure 6.1 reveals that

high school graduates are more likely to be successful in the high school sector than those

who attend college. In Fig. 6.2, we compare the densities of present value of earnings in the

college sector for persons who choose college with the counterfactual distributions of college

earnings for high school graduates. The density of the present value of earnings for college

graduates is to the right of the counterfactual density of the present value of earnings of

high school graduates if they were college graduates. The surprising feature of both figures

is that the overlap of the distributions is substantial. Ex post, many high school graduates

would have large earnings as college graduates. This suggests the importance of costs and

expectational elements in explaining schooling decisions. The densities of ex ante earnings

is more compressed than the densities of ex post earnings (see Figs 6.3 and 6.4) but the

28As Hicks (1946, p.179) puts it, ‘Ex post calculations of capital accumulation have their place in economic
and statistical history; they are a useful measuring for economic progress; but they are of no use to theoretical
economists who are trying to find out how the system works, because they have no significance for conduct.’
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patterns are similar reflecting the fact that most of the measured variability in earnings

is due to heterogeneity. The densities under perfect certainty (Figs 6.5 and 6.6) for high

school and college, respectively, show a much sharper separation between the earnings in

the choice taken and the counterfactual earnings. Using hindsight, people would make wiser

choices, and separate out more sharply, but there is still considerable overlap between the

two distributions for both schooling choices.

Tables 5.1–5.4 provide further evidence on the importance of distinguishing between ex

ante and ex post returns. In Table 5.1, we report the estimated and counterfactual ex post

present value of earnings for agents who choose high school. The typical high school student

would earn $605.92 thousand dollars over the life cycle. She would earn $969.34 thousand if

she had chosen to be a college graduate.29 This implies a lifetime return of 117% to a college

education over the whole life cycle (i.e., a monetary gain of $363.42 thousand dollars for

four years of college). In Table 5.2, we note that the typical college graduate earns $1,007.64

thousand dollars (above the counterfactual earnings of a typical high school student), and

would make only $536.43 thousand dollars over her lifetime if she chose to be a high school

graduate instead. The lifetime returns to college education for the typical college graduate

(which in the literature on program evaluation is referred to as the effect of Treatment on

the Treated) is 133%, above that of the return for a high school graduate.

Table 5.3 reports the ex post earnings in high school and college and returns to college for

people indifferent between college and high school. Not surprisingly, people on the margin

of indifference have returns that are intermediate between those who go to college and those

who go to high school.

29These numbers may appear to be large but are a consequence of using only a 3% discount rate.
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Table 5.4 presents rates of return to college under different assumptions about agent

information, for people who choose high school, for people who choose college and for those

at the margin of indifference between going to college or not. The persons at the margin

are more likely to be affected by a policy that encourages college attendance, and their

returns should be used to compute the marginal benefit of policies that induce people into

schooling.30

Ex ante and ex post mean returns must be the same for any subpopulation if agents use

the information available to them. The mean returns under perfect certainty are different

from the other returns because of resorting by persons into schooling in response to the in-

formation revealed after initial college choices are made. Some people would choose different

levels of schooling if they had hindsight. Returns to college for those choosing high school

in hindsight would be lower; returns to college would be higher. For those on the margin of

indifference, the returns are about the same under perfect certainty as they are in the other

two experiments reported in the table.

While ex ante and ex post mean returns must be identical, the ex ante and ex post

distributions are not.31 Figure 7.1 plots the density of ex post returns to education for

agents who are high school graduates (the solid curve), and the density of ex post returns

to education for agents who are college graduates (the dashed curve). College graduates

30Heckman and Vytlacil (1999, 2005) develop an alternative method for estimating the ex post return to
persons at the margin of attending school.

31Let W1 = µ (η, ν1) be the outcome in period ‘1.’ The agent in period ‘0’ knows (η, ν0). The ex ante
mean value of W1 given η and ν0 is

E0 (W1 | η, ν0) =
∫
µ (η, ν1) dF (ν1 | η, ν0)

where F (a | b) is the distribution of a given b. The ex post mean of W1 given (η, ν1) is µ (η, ν1). The ex
post mean of W1 given (η) is E (W1 | η) =

∫
µ (η, ν1) dF (ν1 | η) averaging over (η, ν0) and E (W1, η) over η

produces the same mean outcome. This is true for any central moment.
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have returns distributed ‘to the right’ of high school graduates, so the difference is not only

a difference for the mean individual but is actually present over the entire distribution.

Agents who choose a college education are the ones who tend to gain more from it.

Figure 7.2 presents the ex ante returns for college and high school students. These

densities are not much different from that of the ex post densities. Figure 7.3 shows the

densities of returns for those who would choose high school and college in an environment of

perfect certainty. Clearly, the distributions are more sharply separated. Uncertainty reduces

the force of comparative advantage emphasized by Roy (1951).

Figure 8 shows the estimated densities of the monetary value of cost, both overall and

by schooling level. College is less costly for those who attend college. ‘Psychic costs’ can

stand in for expectational errors and attitudes towards risk. We do not distinguish among

these explanations in this paper. The estimated costs are too large to be due to tuition costs

alone.

It is important to note that our cost estimates are critically dependent on the assumption

that the α, β, and γ are known by the agent. If the agent cannot accurately forecast future

prices, and the prices are random variables but statistically independent of the θ (as would

be plausible, since the prices are set in national markets and the θ are individual specific),

then what we are calling estimated costs include expectational errors (see Carneiro et al.,

2003).32 In the absence of cost data, and data on expectations, this ambiguity is intrinsic and

highlights the importance of maintained assumptions in interpreting evidence on schooling

32This is obvious from expression (2.8). If the α, β, and γ are random variables from the point of view of
the agent using information set Ĩi,0, and are independent of X, Z, and θ, then expectational errors enter
symmetrically with cost shocks. Thus, consider the first two terms in (2.8) associated with the X and β.

Analyzing the contribution of expectations about β to the total error term in the schooling choice index,
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choices.

In the human capital literature, a conventional maintained assumption used when com-

puting rates of return from measured earnings data is that direct costs are only a small

fraction of total earnings (see Heckman, Lochner, and Todd, 2004). Our evidence casts

doubt on the validity of this assumption. Psychic costs (including expectational forecast

errors) are a sizeable component of the net return, and they explain why agents who face

high gross returns do not go to college. Ignoring direct costs overstates the rates of return.

The existence of large ex post returns that could be realized by high school students who do

not attend college are attributable in our model to psychic costs and expectational errors in

some unknown proportion.

we obtain four components

T∑
t=0

E
(
Xi,t | Ĩi,0

)
(1 + r)t

E
(
β1,i,t − β0,i,t | Ĩi,0

)

+
T∑
t=0

E
(
Xi,t | Ĩi,0

)
(1 + r)t

[
β1,i,t − β0,i,t −

[
E
(
β1,i,t − β0,i,t | Ĩi,0

)]]
�∆β

+
T∑
t=0

(
Xi,t − E

(
Xi,t | Ĩi,0

))
(1 + r)t

E
(
β1,i,t − β0,j,t | Ĩi,0

)
�∆X

+
T∑
t=0

(
Xi,t − E

(
Xi,t | Ĩi,0

))
(1 + r)t

[
β1,i,t − β0,i,t −

[
E
(
β1,i,t − β0,i,t | Ĩi,0

)]]
�∆X,β

where, as before, � is a Hadamard product, and ∆β and ∆X,β are defined as coefficients analogous to
the coefficients used in (2.8). A comparable expression can be derived for the other coefficients if they are
random. The expectational errors about the coefficients are an additional source of variability in outcomes
that cannot be distinguished from variations due to the expectational errors in theX without using additional
information. See the second and fourth terms and note they they would enter εC as we have defined it in
the previous sections and would hence be conflated with costs.
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5.2.4 How well can agents predict future earnings?

In Figs 9.1 through 9.3, we separate the effect of heterogeneity (total unobserved variance)

from uncertainty in earnings. These calculations are reported for the population as a whole.

Figure 9.1 plots the densities of the present value of earnings for the agent, using different

information sets, denoted by Θ. First, consider the case in which the agent has no informa-

tion about the θ or the {ε0,t, ε1,t}Tt=0. The Z,X, εC , and the model coefficients are assumed

to be known in all of these simulations. They are set at mean values. The choice of means

affects the locations but not the shapes of the densities. The εs,t are unknown and various

assumptions about which the agent knows are tested. Note that the density has a large vari-

ance, if the agent knows only factor 1, i.e., the factors in the information set are Θ = {θ1}.33

In this case, the reduction in the forecast from knowing ability only from knowledge of her

cognitive ability adds little to the forecast of her future earnings. Now, assume that the

agent is given knowledge of factor 2 as well, so that Θ = {θ1, θ2}. Note that knowledge of

factor 2 causes a substantial reduction in the variance of the present value of earnings in

high school. Thus, while factor 2 does not greatly affect college choices, it greatly informs

the agent about her future earnings. When the agent is given knowledge of factors 1, 2,

and 3, that is, Θ = {θ1, θ2, θ3} , she can forecast earnings somewhat better. However, our

analysis suggests that agents do not know factor 3. Figure 9.2 reveals much the same story

about college earnings, except that knowledge of factor 3 now substantially increases the

predictability of college earnings.

Knowledge of the factors enables agents to make better forecasts of returns. Figure 9.3

33As opposed to the econometrician who never gets to observe the Θ.

52



presents the same type of exercise regarding information sets available to the agent for returns

to college (Y1 − Y0). Knowledge of factor 2 also helps the agents forecast their gains better.

Almost 48% of the variability in returns is forecastable at age 19. Knowledge of factor 3,

which is not known at age 19, would greatly improve predictability of future earnings.

Table 6.1 presents the variance of potential lifetime earnings in each state, and returns

under different information sets available to the agent. Tables 6.1–6.6 are calculated for the

entire population. Note that in Table 6.1 knowledge of factor 2 is quantitatively important

in reducing forecast variance of lifetime earnings for college and high school. Factor 3 is more

powerful but, according to our estimates, it is not known by the agent at age 19. Tables 6.2–

6.6 show the period by period predictability of discounted earnings from the vantage point

of age 19 when the agent knows only θ1 and θ2. Earnings in later periods are less predictable

than earnings in earlier periods using only factors one and two. Quantitatively, factors 2 and

3 are important in predicting future earnings and returns whereas ability (factor 1) is not.

This discussion sheds light on the issue of distinguishing predictable components of het-

erogeneity from uncertainty. We have demonstrated that there is a large dispersion in the

distribution of the present value of earnings. This dispersion is largely due to heterogeneity,

which is forecastable by the agents at the time they are making their schooling choices.

The remaining dispersion is due to luck (uncertainty) or unforecastable errors regarding the

coefficients as of age 19. Since any measurement errors in ex post earnings are allocated

to uncertainty, our estimates arguably underestimate the degree of predictability of future

earnings known to the agents at age 19.
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5.2.5 Ex ante choices versus choices under perfect certainty

Once the distinction between heterogeneity and uncertainty is made, we can talk meaning-

fully about the distinction between ex ante and ex post decision making. From our analysis,

we conclude that, at the time agents pick their schooling, {ε0,i,t, ε1,i,t}Tt=0 and θ3 in their

earnings equations are unknown to them. These are the components that correspond to

‘luck’ as defined by Jencks et al. (1972). It is clear that schooling choices would be different,

at least for some individuals, if they knew the realized components of earnings. If agents

knew these luck components when choosing schooling levels, decision rule (10)–(12) would

now be

I =
4∑
t=0

(Yc,t − Yh,t)
(1 + r)t

− C > 0

S = 1 if I > 0; S = 0 otherwise,

where no expectation is taken to calculate I since all components are known with certainty

by the agents.

In our empirical model, if individuals could pick their schooling level using their ex post

information (i.e., after learning their luck components in earnings), 25.19% of high school

graduates would rather be college graduates and 31.40% of college graduates would have

stopped at the high school level. Uncertainty about future outcomes greatly affects schooling

choices, and there is plenty of scope for ex post regret.34

34In a companion paper (Cunha et al., 2005), we address issues similar to the ones addressed in this paper
but use a more ad hoc approach to pooling data across samples to construct a life cycle data set. That
procedure follows Carneiro et al. (2003) rather than the more rigorous methodology derived in Appendix 2.
That paper shows even less uncertainty than we have shown here and establishes a strong correlation across
latent skill levels, which is positive. We are much more confident in the empirical results in this paper than
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6 Summary and conclusions

This paper discusses the problem of separating heterogeneity from uncertainty. We develop

and apply a method for estimating both heterogeneity and uncertainty from ex post earnings

data and from schooling choices. We estimate substantial predictable and unpredictable

components of earnings as of age 19. Agents have greater difficulty in predicting outcomes

in later periods of their life cycles than they do in earlier periods. Procedures that equate

variability with uncertainty overstate risk and, hence, understate the pricing of risk. If agents

knew their ex post earnings outcomes resulting from their schooling choices, a substantial

fraction (around 30%) would change their schooling decisions. Hicks’ distinction between ex

ante and ex post is an empirically important one.

This paper takes a first step toward resolving an empirical puzzle in the labor economics

literature. Ex post returns to college are high for those who stop at high school. Our evidence

is that, within a complete markets setting, psychic costs of schooling (and expectational er-

rors in a more general model) account for this phenomenon. This evidence has importance

implications for the conventional human capital literature that ignores these costs in comput-

ing rates of return to schooling. However, a story that relies on psychic costs to explain the

puzzle is not entirely satisfactory. One needs to account more systematically for borrowing

constraints and risk aversion, and we do so elsewhere in Carneiro et al. (2003), Cunha et al.

(2004), and Navarro (2004).

Throughout this paper we have maintained the assumption of complete markets for id-

iosyncratic components of risk. An open question which we address, but do not solve, is how

in the results reported in the previous paper.
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to simultaneously identify constraints (market structure), preferences and information con-

fronting agents. Different scholars focus on different aspects of the decision problem facing

agents. Those who postulate specific information structures and the preferences of agents

test for alternative market structures (e.g., partial insurance). In this paper, we have esti-

mated information structures, making assumptions about market structures and constraints

that neutralize the effects of risk preferences and uncertainty on schooling choices.

In Cunha et al. (2004), we build on the analysis of this paper to estimate an Aiyagari

(1994) – Laitner (1992) economy and simultaneously identify preferences (within a paramet-

ric family) and information sets allowing for market incompleteness. We extend the analysis

of Carneiro et al. (2003) by considering more flexible parameterizations of preferences against

risk aversion and allowing for restricted lending and borrowing. (They assume an environ-

ment of complete autarky). A robust finding across all environments we have studied is

that uncertainty is empirically important. Hicks’ important distinction between ex ante and

ex post income receives substantial empirical support in the data on schooling choice and

earnings, and changes the way we interpret a vast empirical literature on ex post returns to

schooling.
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Appendix 1 A motivation for the nonparametric iden-

tification of the joint distribution of out-

comes and the binary choice equation

The following intuition motivates conditions under which F (Y0, I
∗ | X,Z) is identified. A

formal proof is given in Carneiro et al. (2003). A parallel argument holds for F (Y1, I
∗ |X,Z).

First, under the conditions given in Cosslett (1983), Manski (1988), and Matzkin (1992), we

can identify µI(X,Z)
σI

from Pr(S = 1 | X,Z) = Pr(µI(X,Z) + UI ≥ 0 | X,Z). We can also

identify the distribution of UI
σI

.35 Second, from this information and F (Y0 | S = 0,X,Z) =

35An alternative to the conventional approach, which requires large support conditions, postulates that
µI(X,Z) = XγX +ZγZ and normalizes one coefficient on a continuous coordinate of Z, say Z1, to unity
(e.g., γZ1

= 1). Then, fixing the remaining values of X and Z at specified values (X = x, Ẑ = ẑ, where
Ẑ is Z removed of its first coordinate) and tracing Z1 over its support, we identify the distribution of UI
over the support of Z1, assumed to lie in an interval [CL, CU ) which may or may not be the support of UI .
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Pr(Y0 ≤ y0 | µI(X,Z) + UI ≤ 0,X,Z), we can form

F (Y0 | S = 0,X,Z) Pr(S = 0 |X,Z) = Pr(Y0 ≤ y0, I
∗ ≤ 0 |X,Z).

The left hand side of this expression is known (we observe Y0 when S = 0 and we know the

probability that S = 0 given X,Z). The right hand side can be written as

Pr

(
Y0 ≤ y0,

UI
σI
≤ −µI(X,Z)

σI
|X,Z

)
.

We know µI(X,Z)
σI

and can vary it for each fixed X. In particular if µI(X,Z) gets small

(µI(X,Z) → −∞) we can recover the marginal distribution Y0 from which we can recover

µ0(X).

Using (9a), we can express this probability as

Pr

(
U0 ≤ y0 − µ0(X),

UI
σI
≤ −µI(X,Z)

σI
|X,Z

)
.

Assuming UI is absolutely continuous, we can thus identify

FUI (uI | CL ≤ UI < CU ) =
FUI (uI)

FUI (CU )− FUI (CL)
.

Since Pr (S = 1 |X,Z) = FUI (XγX +ZγZ), if the supports of Z1 and UI match, we can invert for each
X, Z

F−1
UI

(Pr (S = 1 |X,Z)) = XγX +ZγZ

and identify the coefficients γX , γZ provided that (X,Z) is of full rank. However, if the support of UI
strictly contains that of Z1, the same operation identifies

F−1
UI

(
Pr (S = 1 |X,Z)
FUI (CU )− FUI (CL)

)
= XγX +ZγZ

where FUI (CU )− FUI (CL) is unknown.
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Note that X and Z can be varied and y0 is a number. Thus we can trace out the joint

distribution of
(
U0,

UI
σI

)
. Thus we can recover the joint distribution of

(Y0, I
∗) =

(
µ0(X) + U0,

µI(X,Z) + UI
σI

)
.

Notice the three key ingredients. (i) The independence of (U0, UI) and (X,Z). (ii) The

assumption that we can set µI(X,Z)
σI

to be very small (so we get the marginal distribution

of Y0 and hence µ0(X)). (iii) The assumption that µI(X,Z)
σI

can be varied independently of

µ0(X). This enables us to trace out the joint distribution of
(
U0,

UI
σI

)
.

Appendix 2 Combining data sets to estimate a life cy-

cle model

A serious empirical problem plagues most life cycle analyses. It is a rare data set that includes

the full life cycle earnings experiences of persons along with their test scores, measurements,

schooling choices, and background variables. Many data sets like the National Longitudinal

Survey of Youth (NLSY 79) have partial information up to some age. A few other data

sets (e.g., the Panel Survey on Income Dynamics or PSID) have full information on some

life cycle variables but lack the detail of the richer data which provide information only on

truncated life cycles. This section considers two issues: (i) What can be identified from

the truncated life cycle data and (ii) What can be learned from combining the truncated

data with a data set with fewer variables but with information on schooling and earnings on

entire life cycles? Our factor model provides a natural framework for combining samples to
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produce identification even when the model is not identified in each sample.

To fix ideas and motivate the empirical work, suppress the individual i subscripts and

write

Ys,t = Xβs,t + θ1αs,t,1 + θ2αs,t,2 + θ3αs,t,3 + εs,t, t = 0, . . . , 4, s = 0, 1, (17)

where αs,t,3 = 0 for t = 0, 1. An individual picks S = 1 if

4∑
t=0

1

(1 + r)t−1E (Y1,t − Y0,t | I0)− E (Cost | I0) > 0,

that is S = 1 if

4∑
t=0

1

(1 + r)t−1

[
E (X | I0)

(
β1,t − β0,t

)
+

3∑
j=1

E (θj | I0) (α1,t,j − α0,t,j) + E (ε1,t − ε0,t | I0)

]

−E (Z | I0)γ −
3∑
j=1

E (θj | I0) (αC,j)− E (εC | I0) ≥ 0,

where Z may include elements in common with X. It will prove convenient to write the

choice equation in reduced form letting Q combine X and Z:

I = QγI + θ1αI,1 + θ2αI,2 + θ3αI,3 + εI , (18)

where εI is the composite of the errors from the choice equation. Finally, the external
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measurements are written as

Mk = XMβM,k + θ1αM,k,1 + εM,k, k = 1, . . . , K,

where K is the number of measurements (test scores in our application). For the case in

which we have access to full life cycle data, the contribution to the likelihood of an individual

who chooses S = s, is given by

∫
Θ

4∏
t=0

1∏
s=0

{f (Ys,t|θ,X)Pr (S = s|Z,θ)}1(S=s)
K∏
k=1

f (Mk|θ,XM) dF (θ) , (19)

where it is assumed that the (X,Z) are independent of θ and the ε and Θ is the support of

θ. Identification follows from the analysis of Carneiro et al. (2003).

Now, suppose that we only have access to a sample A in which we only observe some of

the variables at early stages of the life cycle. In particular, assume that sample A does not

include observations on {Ys,t}4
t=2 as is the case with the NLSY, which contains no information

on earnings after age 43.

The contribution to the likelihood of an individual who chooses, for example, S = 1 is

∫
Θ

[
1∏
t=0

f (Y1,t|θ,X)

]
[Pr (I ≥ 0|Z,θ)]

K∏
k=1

f (Mk|θ,XM)

{
4∏
t=2

∫
f (Y1,t|θ,X) dF (Y1,t)

}
dF (θ)

=

∫
Θ

[
1∏
t=0

f (Y1,t|θ,X)

]
Pr (I ≥ 0|Z,θ)

K∏
k=1

f (Mk|θ,XM) dF (θ) .36 (20)

We integrate out earnings for the periods in which we do not observe them. Using the first

36If she had chosen S = 0 then we would write Pr (I < 0|Z, θ) instead.
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two periods of data, we can identify a model in which we have K external measurements, 2

time periods for earnings, and a reduced form schooling equation that combines parameters

of earnings with cost parameters. For K ≥ 3, from the measurements conditional on X we

can form

Cov (Mk,Mk′ |XM) = αM,kαM,k′σ
2
θ1
. 37

Taking ratios of these covariances, we can identify the factor loadings up to one normaliza-

tion.38 We can identify the distributions of the error terms for measurements. From these,

we can identify the distributions of θ1, {εk}Kk=1 nonparametrically by using Kotlarski’s the-

orem. Then, under the support assumptions in Carneiro et al. (2003), and noting that we

have identified σ2
θ1
, we can form

Cov (Mk, Ys,t |XM ,X) = αM,kαs,t,1σ
2
θ1
, s = 0, 1, t = 0, 1,

and identify the loadings on the first factor for each s for t = 0, 1.39 From the covariances of

I
σI

with either M or Ys,t, we can identify the factor loadings associated with (18) up to scale

σI .

Once we identify all of the parameters related to θ1 we can, for each schooling level s

37Or if K ≥ 2 and we use either the choice equation or one of the earnings equations. See Carneiro et al.
(2003).

38The means of the functions (and so the βk) are trivially identified from E (θ1) = E (θ2) = E (εs,t) = 0.
39As before, given the support conditions the means are identified from the mean zero assumptions on the

error term.
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(remember that αs,t,3 = 0 for t = 0, 1), form

Cov (Ys,0, Ys,1 |X)− αs,0,1αs,1,1σ2
θ1

= αs,0,2αs,1,2σ
2
θ2

Cov (Ys,t, I |X,Z)− αs,t,1αI,1σ2
θ1

= αs,t,2αI,2σ
2
θ2
, t = 0, 1,

where the left hand side is known and the loadings on factor 1 are identified up to scale

from earnings and choice. Recall that the third factor does not enter the earnings equations

for t = 0, 1. We can then solve for the loadings on θ2 in the earnings and choice equations.

Proceeding as before, we can recover the distributions of θ2, and
{
{εs,t}1

s=0

}1

t=0
provided we

have at least one exclusion (one continuous element of Z not in X). Notice that, since we

are not able to identify any of the parameters of earnings for t > 1, we cannot identify all

of the structural parameters in the choice equation so we cannot separate the effect of costs

from the effect of future earnings.

Now, suppose that we have access to a second independent sample B that is generated

by the same process that generates sample A.40 In this second sample, we do not observe

{Mk}Kk=1 but we do observe earnings and schooling choices (and X and Z) for all time

periods. For sample B, an individual with S = 1 has a contribution to the likelihood that

would be given by integrating out the test scores from the likelihood (19):

∫
Θ

[
4∏
t=0

f (Y1,t|θ,X)

]
Pr (I ≥ 0|Z,θ)

{
K∏
k=1

∫
f (Mk|θ,XM) dF (Mk)

}
dF (θ)

=

∫
Θ

[
4∏
t=0

f (Y1,t|θ,X)

]
Pr (I ≥ 0|Z,θ) dF (θ) . (21)

40By this we mean that the parameters and distributions of the implied random variables of both samples
are the same.
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From this sample alone we cannot recover the loadings or the marginal distributions of

θ1, θ2, {ε1,t}4
t=0 , and εI , without additional assumptions.41

We combine both samples so that a person’s contribution to likelihood is given by (20) if

an individual comes from sample A and is given by (21) if he comes from sample B. In this

case, we would be able to recover all of the elements of the model. To see why, notice that

from sample A alone the only unidentified parameters are the coefficients and distributions

for earnings in t > 1. In sample B we can form the left hand sides of

Cov (Ys,t, Ys,0 |X) = αs,t,1αs,0,1σ
2
θ1

+ αs,t,2αs,0,2σ
2
θ2

Cov (Ys,t, Ys,1 |X) = αs,t,1αs,1,1σ
2
θ1

+ αs,t,2αs,1,2σ
2
θ2
, t = {2, 3, 4} ,

where all parameters except αs,t,1 and αs,t,2 for t = 2, 3, 4 are identified from data on sample

A. These covariances form a system of two linear equations in two unknowns that, under

a standard rank condition, we can solve for the unknowns αs,t,1 and αs,t,2 for t > 1 and

s = 0, 1. A similar argument allows us to recover the parameters associated with θ3 using

the covariances of the outcomes Ys,t after period 1. Since we have identified all of the

parameters of the earnings equations, we can solve for the structural parameters of the

choice equation and separate costs from future earnings. More generally, we can obtain

more efficient estimates for the overidentified parameters by pooling samples.

This procedure abstracts from cohort effects for the coefficients and factor loadings, and

cohort effects for the distributions of θ. With additional structure (e.g., additivity), we can

41It is clear we will never recover any of the parameters of the measurement equations in this sample. If we
changed our normalizations on the rest of the system however, so that θ2 does not enter the earnings equation
at t = 0, 1 for example, and there was no third factor, we could recover all of the remaining parameters of
the model.
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identify such effects, but we acknowledge that general cohort effects can dramatically bias

estimates based on pooling the data.
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Figure 1.1
Densities of fitted and actual present value of earnings

from age 19 to 28 for overall sample

Thousands of Dollars

Fitted
Actual

Present value of earnings from age 19 to 28 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.2
Densities of fitted and actual present value of earnings

from age 29 to 38 for overall sample

Thousands of Dollars

Fitted
Actual

Present value of earnings from age 29 to 38 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1�- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.3
Densities of fitted and actual present value of earnings

from age 39 to 48 for overall sample

Thousands of Dollars

Fitted
Actual

Present value of earnings from age 39 to 48 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.4
Densities of fitted and actual present value of earnings

from age 49 to 58 for overall sample

Thousands of Dollars

Fitted
Actual

Present value of earnings from age 49 to 58 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.5
Densities of fitted and actual present value of earnings

from age 59 to 65 for overall sample
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1�- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.



Present value of earnings from age 19 to 28 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Figure 2.1
Densities of fitted and actual present value of earnings

from age 19 to 28 for people who choose to graduate high school
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Present value of earnings from age 29 to 38 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 39 to 48 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Figure 2.3
Densities of fitted and actual present value of earnings

from age 39 to 48 for people who choose to graduate high school
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Present value of earnings from age 49 to 58 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Densities of fitted and actual present value of earnings

from age 49 to 58 for people who choose to graduate high school
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
|S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 19 to 28 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 29 to 38 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 39 to 48 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 49 to 58 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Let f(θ
1
) denote the probability density function of factor θ

1
.  We allow f(θ

1
) to be a mixture

of normals.  Assume µ
1
=E(θ

1
) and σ

1
=Var(θ

1
).  Let φ(µ

1
,σ

1
) denote the density of a normal random variable

with mean µ
1
 and variance σ

1
.  The solid curve is the actual density of factor θ

1
, f(θ

1
), while the dashed

curve is the density of a normal random variable with mean µ
1
 and variance σ

1
.  We proceed similarly for

factors 2 and 3 using the notation in the legend.
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Let f(θ
1
) denote the probability density function of factor θ

1
.  We allow f(θ

1
) to be a mixture

of normals.  The solid line plots the density of factor 1 conditional on choosing the high school sector,
that is, f(θ

1
|choice=high school).  The dashed line plots the density of factor 1 conditional on choosing

the college sector, that is, f(θ
1
|choice=college).
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Figure 5.1
Densities of "ability" (factor 1) by schooling level
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Let f(θ
2
) denote the probability density function of factor θ

2
.  We allow f(θ

2
) to be a mixture

of normals.  The solid line plots the density of factor 2 conditional on choosing the high school sector,
that is, f(θ

2
|choice=high school).  The dashed line plots the density of factor 2 conditional on choosing

the college sector, that is, f(θ
2
|choice=college).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.2
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Let f(θ
3
) denote the probability density function of factor θ

3
.  We allow f(θ

3
) to be a mixture

of normals.  The solid line plots the density of factor 3 conditional on choosing the high school sector,
that is, f(θ

3
|choice=high school).  The dashed line plots the density of factor 3 conditional on choosing

the college sector, that is, f(θ
3
|choice=college).
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Let Y
0
 denote the present value of earnings from age 19 to 65 in the high school sector (discounted at a 3%

interest rate). Let f(Y
0
) denote its density function.  The  solid  line  plots the predicted Y

0
 density

conditional on choosing high school, that is, f(Y
0
| S=0), while the dashed line shows the counterfactual

density function of Y
0
 for those agents who are actually college graduates, that is, f(Y

0
| S=1). This

assumes that the agent chooses schooling without knowing θ
3
 and ε=(ε

0,t
, ε

1,t
, t=0,...T)
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Figure 6.1
Densities of ex post present value of counterfactual and fitted earnings

from age 19 to 65 in the high school sector
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Let Y
1
 denote the present value of earnings from age 19 to 65 in the college sector (discounted at a 3%

interest rate).  Let f(Y
1
) denote its density function.  The dashed line plots the predicted Y

1
 density

conditional on choosing college, that is, f(Y
1
|S=1), while the solid line shows the counterfactual

density function of Y
1
 for those agents who are actually high school graduates, that is, f(Y

1
|S=0). This

assumes that the agent chooses schooling without knowing θ
3
 and ε=(ε

0,t
, ε

1,t
, t=0,...T)
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Figure 6.2
Densities of ex post present value of counterfactual and fitted earnings

from age 19 to 65 in the college sector
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HS (counterfactual)
Col (fitted)
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L et ε=(ε

0,t
, ε 

1,t
, t=0,...T ).  L et E (Y

0
) denote the ex ante present value of earnings from age 19 to 65 in the

high school sector (discounted at a 3% interest rate).  L et f(E

curve plots the predicted Y
0
 density conditional on choosing high school, that is, f(E (Y

0
)|S=0), while the

dashed line shows the counterfactual density function of E (Y
0
) for those agents who are actually college

graduates, that is, f(E (Y
0
)|S=1).  T his is constructed assuming that the agent chooses schooling without 

knowing 
                         

and ε.

�

θ  ,ε3

θ  ,ε3

θ  ,ε3
θ

 3

θ  ,ε3

(Y
0θ  ,ε3

) denote its density function. The solid
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Figure 6.4
Densities of ex ante present value of counterfactual and fitted earnings

from age 19 to 65 in the college sector
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L et ε={ ε    ,ε    ,t=0,...,T } . L et E       (Y  ) denote the ex ante present value of earnings from age 19 to 65 in the
0,t 1,t θ  ,ε

3
1

college sector (discounted at a 3% interest rate). Let f(E       (Y  )) denote its density function. T he solid lineθ  ,ε
3

1

plots the counterfactual Y    density conditional on choosing high school, that is, f(E       (Y  )| S=0), while the 1 1θ  ,ε
3

dashed line shows the predicted density function of E       (Y  ) for those agents who are actually college graduates,

that is,  f(E       (Y  )| S=0). T his is constructed assuming that the agent chooses schooling without knowing θ  and ε.
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Let Y
0
 denote the present value of earnings from age 19 to 65 in the high school sector (discounted at a 3%

interest rate).  Let f(Y
0
) denote its density function.  The solid curve plots the predicted Y

0
 density

conditional on choosing high school, that is, f(Y
0
|S=0), while the dashed line shows the counterfactual

density function of Y
0
 for those agents who are actually college graduates, that is, f(Y

0
|S=1).  This

assumes that the agent chooses schooling with complete knowledge of future earnings.
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Figure 6.5
Densities of present value of counterfactual and fitted earnings from age 19 to 65

assuming perfect certainty in the high school sector
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Let Y
1
 denote the present value of earnings from age 19 to 65 in the college sector (discounted at a 3%

interest rate).  Let f(Y
1
) denote its density function.  The solid curve plots the counterfactual Y

1
 density

conditional on choosing high school, that is, f(Y
1
|S=0), while the dashed line shows the predicted

density function of Y
1
 for those agents who are actually college graduates, that is, f(Y

1
|S=1).  This

assumes that the agent chooses schooling with complete knowledge of future earnings.
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Figure 6.6
Densities of present value of counterfactual and fitted earnings from age 19 to 65

assuming perfect certainty in the college sector
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Let Y
0
,Y

1
 denote the present value of earnings in the high school and college sectors, respectively.

Define ex post returns to college as the ratio R=(Y
1
−Y

0
)/Y

0
.  Let f(r) denote the density function of

the random variable R.  The solid line is the density of ex post returns to college for high school
graduates, that is f(r|S=0).  The dashed line is the density of ex post returns to college for college
graduates, that is, f(r|S=1). This assumes that the agent chooses schooling without knowing θ

3
 and

ε=(ε
0,t

, ε
1,t

, t=0,...T)
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Let ε=(ε
0,t

, ε
1,t

, t=0,...T).  Let Y
0
,Y

1
 denote the present value of earnings in the high school and college

sectors, respectively.  Define ex ante returns to college as the ratio Eθ
3
,ε(R)=Eθ

3
,ε((Y1

−Y
0
)/Y

0
).  Let f(r)

denote the density function of the random variable Eθ
3
,ε(R).  The solid line is the density of ex post returns

to college for high school graduates, that is f(r|S=0).  The dashed line is the density of ex post returns to
college for college graduates, that is, f(r|S=1).   This assumes that the agent chooses schooling without
knowing θ

3
 and ε.
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Let Y
0
,Y

1
 denote the present value of earnings in the high school and college sectors, respectively

(discounted at a 3% interest rate).  Define returns to college as the ratio R=(Y
1
−Y

0
)/Y

0
.  Let f(r)

denote the density function of the random variable R.  The solid line is the density of returns to college
for high school graduates, that is f(r|S=0).  The dashed line is the density of returns to college for college
graduates, that is, f(r|S=1).  This assumes that the agent chooses schooling with complete knowledge of
future earnings.
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Densities of returns to college by schooling level chosen assuming perfect certainty

Fraction of the Base State

High School
College



Let C denote the monetary value of psychic costs.  Let f(c) denote the density function of psychic costs
in monetary terms.  The dashed line shows the density of psychic costs for high school graduates, that
is f(c|S=0).  The dotted line shows the density of psychic costs for college graduates, that is, f(c|S=1).
The solid line is the unconditional density of the monetary value of psychic costs, f(c).
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Let Θ denote the agent's information set.  Let Y0 denote the present value of earnings in the high school
sector (discounted at a 3% interest rate).  Let f(y0|Θ) denote the density of the present value of earnings

in high school conditioned on the information set Θ. Then:
The solid line plots f(y0|Θ) under no information, i.e. Θ=∅.
The dashed line plots f(y0|Θ) when only factor 1 is in the information set, i.e. Θ=(θ1).
The dashed-dotted line plots f(y0|Θ) when factors 1 and 2 are in the information set, i.e. Θ=(θ1,θ2).
The crossed line plots f(y0|Θ) when all factors are in the information set, i.e. Θ=(θ1,θ2,θ3).

The X are put at the mean and are assumed to be known. The θ, when known, are set at their mean of zero.
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Densities of present value of high school earnings

under different information sets for the agent calculated
for the entire population regardless of schooling choice

Thousands of Dollars
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Let Θ denote the agent's information set.  Let Y1 denote the present value of earnings in the college
sector (discounted at a 3% interest rate).  Let f(y1|Θ) denote the density of the present value of earnings

in high school conditioned on the information set Θ. Then:
The solid line plots f(y1|Θ) under no information, i.e. Θ=∅.
The dashed line plots f(y1|Θ) when only factor 1 is in the information set, i.e. Θ=(θ1).
The dashed-dotted line plots f(y1|Θ) when factors 1 and 2 are in the information set, i.e. Θ=(θ1,θ2).
The crossed line plots f(y1|Θ) when all factors are in the information set, i.e. Θ=(θ1,θ2,θ3).

The X are put at the mean and are assumed to be known. The θ, when known, are set at their mean of zero.
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Figure 9.2
Densities of present value of college earnings

under different information sets for the agent calculated
for the entire population regardless of schooling choice

Thousands of Dollars
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Let Θ denote the agent's information set.  Let Y0,Y1 denote the present value of earnings in the high school
and college sectors, respectively (discounted at a 3% interest rate).  Let D=Y0-Y1 be the difference of the present

value of earnings in the college and high school sector.  f(d|Θ) denote the density of the difference of present
value of earnings conditioned on the information set Θ. Then:
The solid line plots f(d|Θ) under no information, i.e. Θ=∅.
The dashed line plots f(d|Θ) when only factor 1 is in the information set, i.e. Θ=(θ1).
The dashed-dotted line plots f(d|Θ) when factors 1 and 2 are in the information set, i.e. Θ=(θ1,θ2).
The crossed line plots f(d|Θ) when all factors are in the information set, i.e. Θ=(θ1,θ2,θ3).

The X are put at the mean and are assumed to be known The θ when known are set at their mean of zero
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Figure 9.3
Densities of returns college vs high school

under different information sets for the agent calculated
for the entire population regardless of schooling choice

Thousands of Dollars

Θ = ∅
Θ = (θ1)
Θ = (θ1,θ2)
Θ = (θ1,θ2,θ3)



Variable Coefficient Std. Error
School (High School vs. College) 0.2735 0.0344
School*ASVAB 0.0279 0.0063

School 0.2573 0.0451
School*ASVAB 0.0153 0.0083

Variable Coefficient Std. Error
bSchool + bSchool*ASVAB*ASVAB 12.6244 0.7284
Marginal Effect 4.8333 0.2654

bSchool + bSchool*ASVAB*ASVAB 22.9150 1.3221
Marginal Effect 8.7731 0.4817
*Includes controls for Mincer experience (age - years of schooling - 6), experience squared, cohort dummies, and 
ASVAB scores.
†We use parental education, family income, broken home, number of siblings, distance to college, local tuition, 
cohort dummies, South at age 14 and urban at age 14 to instrument for schooling and schooling interacted with 
ASVAB scores.

‡We use the predicted return to school to test whether future earnings affect current schooling choices. We include 
controls for family background, cohort dummies, distance to college, and local tuition.

Instrumental Variables†

Schooling Choice Probit Equation‡
Using OLS Results

Using IV Coefficients

Table 1
Estimated Effects of Ex Post  Returns to Schooling on Schooling 
Choice using OLS and IV To Estimate The Ex Post  Returns To 

Schooling
Log Earnings Regression*

OLS



Variable Name Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max
Asvab AR* 1362 0.72 0.95 -1.78 1.96 747 0.26 0.89 -1.78 1.96 615 1.27 0.70 -1.36 1.96
Asvab PC* 1362 0.42 0.80 -2.68 1.36 747 0.07 0.86 -2.68 1.36 615 0.84 0.44 -1.06 1.36
Asvab WK* 1362 0.52 0.72 -2.29 1.34 747 0.20 0.76 -2.29 1.34 615 0.92 0.41 -1.36 1.34
Asvab MK* 1362 0.62 1.03 -1.62 2.11 747 0.00 0.81 -1.62 2.11 615 1.38 0.73 -1.46 2.11
Asvab CS* 1362 0.21 0.85 -2.52 2.49 747 -0.08 0.79 -2.52 2.08 615 0.56 0.77 -2.52 2.49
Urban at age 14 3695 0.79 0.40 0.00 1.00 1953 0.75 0.44 0.00 1.00 1742 0.85 0.36 0.00 1.00
Parents Divorced 3695 0.15 0.36 0.00 1.00 1953 0.18 0.38 0.00 1.00 1742 0.13 0.34 0.00 1.00
Number of Siblings 3695 2.86 1.96 0.00 17.00 1953 3.19 2.08 0.00 14.00 1742 2.49 1.74 0.00 17.00
Father's Education 3695 4.31 1.94 1.00 8.00 1953 3.56 1.51 1.00 8.00 1742 5.15 2.03 1.00 8.00
Mother's Education 3695 4.21 1.55 1.00 8.00 1953 3.68 1.26 1.00 8.00 1742 4.79 1.63 1.00 8.00
Born between 1906 and 1915 3695 0.01 0.10 0.00 1.00 1953 0.01 0.12 0.00 1.00 1742 0.00 0.06 0.00 1.00
Born between 1916 and 1925 3695 0.04 0.19 0.00 1.00 1953 0.04 0.21 0.00 1.00 1742 0.03 0.18 0.00 1.00
Born between 1926 and 1935 3695 0.07 0.25 0.00 1.00 1953 0.07 0.26 0.00 1.00 1742 0.06 0.24 0.00 1.00
Born between 1936 and 1945 3695 0.09 0.29 0.00 1.00 1953 0.07 0.26 0.00 1.00 1742 0.11 0.31 0.00 1.00
Born between 1946 and 1955 3695 0.20 0.40 0.00 1.00 1953 0.17 0.37 0.00 1.00 1742 0.24 0.43 0.00 1.00
Born between 1956 and 1965 3695 0.55 0.50 0.00 1.00 1953 0.56 0.50 0.00 1.00 1742 0.53 0.50 0.00 1.00
Born between 1966 and 1975 3695 0.04 0.21 0.00 1.00 1953 0.07 0.25 0.00 1.00 1742 0.02 0.14 0.00 1.00
Education 3695 1.47 0.50 1.00 2.00 1953 1.00 0.00 1.00 1.00 1742 2.00 0.00 2.00 2.00
Age in 1980 3695 26.87 12.32 5.00 68.00 1953 26.53 13.10 5.00 68.00 1742 27.25 11.39 9.00 68.00
Grade Completed 1980 1362 12.06 1.66 8.00 18.00 747 11.44 0.92 8.00 12.00 615 12.80 2.03 9.00 18.00
Enrolled in 1980 1362 0.57 0.50 0.00 1.00 747 0.33 0.47 0.00 1.00 615 0.86 0.35 0.00 1.00
PV of Earnings† 7152 2.38 1.64 0.00 18.59 3708 1.95 1.14 0.00 11.52 3444 2.83 1.95 0.00 18.59
Tuition at age 17 3695 1.80 0.72 0.00 5.55 1953 1.82 0.74 0.00 5.55 1742 1.76 0.70 0.00 5.55
*Note:
  AR=Arithmetic Reasoning
  PC=Paragraph Composition
  WK= Word Knowledge
  MK=Math Knowledge
  CS=Coding Speed
†In thousands of Dollars

Table 2.1
Descriptive Statistics from the Pooled NLSY/1979 and PSID (white males)

Full Sample High School Sample College Sample



Variable Name Cost Function (Z ) Test System (X M ) Earnings (X )
Urban at age 14 Yes Yes No
Parents Divorced Yes Yes No
Number of Siblings Yes Yes No
Father's Education Yes Yes No
Mother's Education Yes Yes No
Born between 1906 and 1915 Yes No Yes
Born between 1916 and 1925 Yes No Yes
Born between 1926 and 1935 Yes No Yes
Born between 1936 and 1945 Yes No Yes
Born between 1946 and 1955 Yes No Yes
Born between 1956 and 1965 Yes No Yes
Born between 1966 and 1975 Yes No Yes
Age in 1980 No Yes No
Grade Completed 1980 No Yes No
Enrolled in 1980 No Yes No
Tuition at age 17 Yes No No

List of Variables Included and Excluded in Each System
Table 2.2



Coefficients Mean Standard Deviation
Constant -2.2504 0.3587
Mother's Education 0.2250 0.0274
Father's Education 0.3386 0.0246
Parents Divorced -0.1976 0.0845
Number of Siblings -0.1012 0.0163
Urban Residence at age 14 0.1998 0.0755
Dummy birth 1916-1925 0.6076 0.3582
Dummy birth 1926-1935 0.5553 0.3471
Dummy birth 1936-1945 0.7050 0.3417
Dummy birth 1946-1955 0.4160 0.3355
Dummy birth 1956-1965 -0.2064 0.3346
Dummy birth 1966-1975 -1.4159 0.3703
Tuition at 4-year college -0.0953 0.0447
Loading Factor 1 1.3523 0.1315
Loading Factor 2 0.4785 0.1335
Loading Factor 3 -0.0624 0.1274

Estimated Coefficients in Schooling Choice Equation
Table 2.3



Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Dummy birth 1916-1925 - - - - - - - - -0.1054 0.0829
Dummy birth 1926-1935 - - - - - - -0.0225 0.0974 -0.1443 0.0809
Dummy birth 1936-1945 - - - - -0.1105 0.1034 -0.0201 0.0989 0.0616 0.1276
Dummy birth 1946-1955 - - -0.1779 0.0987 -0.2636 0.0917 0.1657 0.1973 - -
Dummy birth 1956-1965 -0.7107 0.0637 -0.2936 0.0883 -0.0757 0.1385 - - - -
Dummy birth 1966-1975 -0.6730 0.0960 -0.2360 0.2267 - - - - - -
Constant 2.6276 0.0658 2.4021 0.0935 1.8880 0.0870 1.2819 0.0870 0.6147 0.0746
Loading Factor 1 0.1636 0.0433 0.1059 0.0485 0.0164 0.0949 0.0466 0.1122 -0.0077 0.0775
Loading Factor 2 -1.2138 0.0903 -1.6282 0.1142 -1.4415 0.1172 -1.1225 0.1056 -0.3924 0.0763
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 0.2428 0.1684 0.2791 0.1510 0.1327 0.1013

Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Dummy birth 1916-1925 - - - - - - - - -0.2976 0.3218
Dummy birth 1926-1935 - - - - - - -0.0881 0.1846 -0.3743 0.3147
Dummy birth 1936-1945 - - - - -0.0059 0.1710 0.0384 0.1696 -0.2256 0.3457
Dummy birth 1946-1955 - - -0.1944 0.1262 -0.0512 0.1568 0.2122 0.2238 - -
Dummy birth 1956-1965 -0.7375 0.0686 -0.2340 0.1182 -0.1081 0.2910 - - - -
Dummy birth 1966-1975 -0.3459 0.1736 1.3144 0.7365 - - - - - -
Constant 2.2802 0.0670 3.5270 0.1191 3.1859 0.1720 2.4843 0.1914 1.3632 0.3367
Loading Factor 1 0.2225 0.0853 0.3137 0.1296 -0.2870 0.2415 -0.2676 0.2656 -0.0144 0.2300
Loading Factor 2 1.0000 0.0000 2.3887 0.1573 2.3194 0.1715 1.7102 0.1806 0.7481 0.1231
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.5354 0.1627 0.8876 0.1665

Period Three Period 4

Table 2.4
Estimated Coefficients for High School Earnings Equation

Period Zero Period One Period Two

Estimated Coefficients for College Earnings Equation
Period Zero Period One Period Two Period Three Period 4



Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Constant -1.1198 0.2256 -1.0262 0.1719 -0.5180 0.2032 -1.4751 0.2265 -1.2706 0.2281
Mother's Education 0.0735 0.0177 0.0529 0.0136 0.0614 0.0158 0.0469 0.0178 0.0561 0.0175
Father's Education 0.0494 0.0136 0.0593 0.0105 0.0461 0.0121 0.0168 0.0139 0.0870 0.0135
Family Income in 1979 0.0008 0.0015 0.0009 0.0012 0.0000 0.0014 0.0038 0.0016 0.0021 0.0015
Parents Divorced -0.0584 0.0564 -0.0514 0.0440 -0.0947 0.0508 0.0458 0.0569 -0.0138 0.0560
Number of Siblings -0.0193 0.0111 -0.0397 0.0086 -0.0143 0.0099 -0.0273 0.0115 -0.0313 0.0110
South Residence at age 14 -0.1278 0.0463 -0.0906 0.0358 -0.0064 0.0423 -0.1418 0.0475 -0.1365 0.0464
Urban Residence at age 14 0.0640 0.0461 -0.0243 0.0361 0.0117 0.0422 0.0258 0.0468 0.0529 0.0466
Enrolled at School at Test Date 0.0646 0.0528 -0.0036 0.0403 -0.0515 0.0471 0.0074 0.0527 0.3122 0.0529
Age at Test Date 0.0096 0.0164 0.0237 0.0128 -0.0170 0.0148 0.0048 0.0165 -0.0510 0.0166
Highest Grade Completed at Test Date 0.0911 0.0198 0.0604 0.0155 0.0721 0.0179 0.1082 0.0201 0.1732 0.0198
Loading Factor 1 1.0000 0.0000 0.6801 0.0321 0.8069 0.0377 0.5648 0.0319 0.9562 0.0293
Loading Factor 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Coding Speed

Table 2.5
Estimated Coefficients of Test Equations

Math KnowledgeWord Knowledge
Paragraph 

CompositionArithmetic Reasoning



High School College Overall
 χ2 Statistic 91.9681 74.2503 204.3823

Critical Value* 107.5217 82.5287 178.4854
 χ2 Statistic 86.6649 107.6417 207.6152

Critical Value* 116.5110 116.5110 218.8205
 χ2 Statistic 26.2658 45.5301 106.5721

Critical Value* 43.7730 55.7585 91.6702
 χ2 Statistic 35.3846 29.7218 55.5758

Critical Value* 31.4104 30.1435 55.7585
 χ2 Statistic 23.2193 14.9131 41.8657

Critical Value* 23.6848 16.9190 35.1725
* 95% Confidence, equiprobable bins with approx. 15 people per bin

Period 5

Table 3a

The Three-Factor Model

Period 1

Period 2

Period 3

Period 4

Goodness of Fit Tests: Predicted Earnings Densities vs. Actual Densities



High School College Overall
 χ2 Statistic 109.5702 132.3027 267.4894

Critical Value* 107.5217 82.5287 178.4854
 χ2 Statistic 104.1649 150.5556 247.6732

Critical Value* 116.5110 116.5110 218.8205
 χ2 Statistic 40.7028 61.7322 114.1692

Critical Value* 43.7730 55.7585 91.6702
 χ2 Statistic 39.7253 47.5559 64.2503

Critical Value* 31.4104 30.1435 55.7585
 χ2 Statistic 18.3217 26.5855 40.4078

Critical Value* 23.6848 16.9190 35.1725
* 95% Confidence, equiprobable bins with approx. 15 people per bin

Period 5

Table 3b
Goodness of Fit Tests: Predicted Earnings Densities vs Actual Earnings Densities

Period 1

Period 2

Period 3

Period 4

The Two-Factor Model



Table 4.1

High School 1 2 3 4 5 6 7 8 9 10
1 0.0035 0.0109 0.0240 0.0326 0.0524 0.7538 0.1137 0.1557 0.2511 0.2808
2 0.0098 0.0244 0.0419 0.0631 0.0894 0.1122 0.1391 0.1747 0.2048 0.1407
3 0.0160 0.0466 0.0741 0.0877 0.1041 0.1213 0.1441 0.1549 0.1581 0.0931
4 0.0236 0.0603 0.0911 0.1062 0.1220 0.1298 0.1348 0.1372 0.1266 0.0683
5 0.0439 0.0848 0.1108 0.1227 0.1303 0.1309 0.1211 0.1139 0.0928 0.0489
6 0.0627 0.1074 0.1214 0.1304 0.1330 0.1218 0.1168 0.0954 0.0695 0.0415
7 0.0963 0.1256 0.1340 0.1334 0.1200 0.1200 0.0937 0.0784 0.0554 0.0433
8 0.1378 0.1659 0.1529 0.1396 0.1114 0.0925 0.0740 0.0561 0.0296 0.0402
9 0.1939 0.1970 0.1498 0.1180 0.1002 0.0771 0.0534 0.0362 0.0200 0.0543
10 0.3354 0.1983 0.1167 0.0812 0.0515 0.0351 0.0266 0.0152 0.0130 0.1271

Ex-Post Conditional Distributions (College Earnings Conditional on High School Earnings)
Pr(di<Yc≤di+1 |dj<Yh≤dj+1) where di is the ith decile of the College Lifetime Ex-Post Earnings Distribution and d j is the jth 

decile of the High School Ex-Post Lifetime Earnings Distribution
Corrrelation(YC,YH) = -0.3899

College



Table 4.2

High School 1 2 3 4 5 6 7 8 9 10
1 0.0002 0.0079 0.0108 0.0226 0.0421 0.0594 0.0909 0.1447 0.2236 0.3978
2 0.0044 0.0180 0.0286 0.0530 0.0720 0.1010 0.1362 0.1686 0.2114 0.2068
3 0.0106 0.0362 0.0578 0.0786 0.1062 0.1152 0.1498 0.1618 0.1692 0.1146
4 0.0200 0.0546 0.0786 0.1024 0.1204 0.1266 0.1376 0.1406 0.1290 0.0902
5 0.0390 0.0740 0.1004 0.1130 0.1291 0.1387 0.1295 0.1206 0.1010 0.0546
6 0.0454 0.1017 0.1253 0.1353 0.1333 0.1323 0.1189 0.1011 0.0754 0.0314
7 0.0873 0.1299 0.1437 0.1451 0.1299 0.1199 0.0965 0.0777 0.0519 0.0180
8 0.1336 0.1603 0.1613 0.1431 0.1160 0.0974 0.0793 0.0589 0.0389 0.0112
9 0.2063 0.2016 0.1651 0.1293 0.1056 0.0840 0.0540 0.0317 0.0155 0.0068

10 0.4123 0.2318 0.1393 0.0868 0.0556 0.0365 0.0210 0.0110 0.0049 0.0006

College

Ex-Ante Conditional Distribution (College Earnings Conditional on High School Earnings)
Pr(di<Yc≤di+1 |dj<Yh≤dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Individual expects out θ3 and εs,t for t=0, … , 4, which are unknown by the agent at the time of the schooling choice.

Corrrelation(YC,YH) =  -0.6993



High School (Fitted) College 
(counterfactual)

Average Present Value of Earnings 605.92 969.34
Std. Err. 13.719 67.164

Average returns 
Std. Err.

Average returns§ to college for high school graduates

*Thousands of dollars. Discounted using a 3% interest rate.
†The counterfactual is constructed using the estimated college outcome equation applied to the population 
of persons selecting high school
§As a fraction of the base state, i.e. (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).

1.17
0.1350

Table 5.1
Average present value of earnings* for high school graduates

Fitted and Counterfactual†

White males from NLSY79



High School 
(Counterfactual) College (fitted)

Average Present Value of Earnings 536.43 1007.64
Std. Err. 26.187 35.113

Average returns
Std. Err.

Average returns§  to college for college graduates

* Thousands of dollars. Discounted using a 3% interest rate.
†The counterfactual is constructed using the estimated high school outcome equation applied to the 
population of persons selecting college
§As a fraction of the base state, i.e. (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).

1.33
0.0958

Table 5.2
Average present value of earnings* for college graduates

Fitted and Counterfactual†

White males from NLSY79



High School College
Average  Present Value of Earnings 571.33 975.16
Std. Err. 37.066 70.557

Average returns 
Std. Err.

† As a fraction of the base state, i.e. (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).

Average returns† to college for people indifferent between high school and college

§ Thousands of dollars. Discounted using a 3% interest rate.

High School vs Some College
1.26

0.3691

Table 5.3
Average present value of earnings* for population of persons 

indifferent between high school and college
Conditional on education level

White males from NLSY79



Table 5.4
Average ex-post, ex-ante and perfect certainty returns∗

White males from NLSY79
For people who choose high school
ex-post† ex-ante‡ perfect certainty§

Average 1.1594 1.1594 0.9337
Std. Err. 0.1362 0.1362 0.1154

For people who choose college
ex-post† ex-ante‡ perfect certainty§

Average 1.3398 1.3398 1.6121
Std. Err. 0.1083 0.1083 0.1082
For people indifferent between high school and college

ex-post† ex-ante‡ perfect certainty§

Average 1.2585 1.2585 1.2418
Std. Err. 0.3868 0.3868 0.1067

∗ Let Y0, Y1 denote the present value of earnings in high school and

college, respectively. The return to college R is defined as

R =
(

Y1 − Y0

Y0

)
† Let I denote the schooling choice index. Let Θ0 denote the informa-

tion set of the agent at the time of the schooling choice. Let R denote

the return to college. The ex-post mean return to college for a high-

school graduate is E (R | E0 (I) < 0) , where E0 (I) = E (I | Θ0) .
Similarly, the ex-post mean return to college for a college graduate is

E (R | E0 (I) ≥ 0) . The ex-post mean return to an agent just indiffer-

ent between college and high-school is E (R | E0 (I) = 0) .
‡ Let I denote the schooling index. Let Θ0 denote the information

set of the agent at the time of the schooling choice. Let R denote the

return to college. The ex-ante mean return to college for a high-school

graduate is E (E0 (R) | E0 (I) < 0) . Similarly, the ex-ante mean return

to college for a college graduate is E (E0 (R) | E0 (I) ≥ 0) . The ex-ante

mean return to an agent just indifferent between college and high-school

is E (E0 (R) | E0 (I) = 0) . By a property of means, the mean ex-ante

and the mean ex-post returns must be equal for the same conditioning

set, i.e. E (E0 (R) | E0 (I) ≥ 0) = E (R | E0 (I) ≥ 0) .
§ Let I denote the schooling index. Let R denote the return to col-

lege. The return to college under perfect certainty for a high-school

graduate is E (R | I < 0) . Note that now the agent makes his schooling

choice under perfect certainty (that is why we condition on I). Simi-

larly, the return to college under perfect certainty for a college graduate

is E (R | I ≥ 0) . The return to college under perfect certainty for an

agent just indifferent between college and high-school is E (R | I = 0) .



Table 6.1
Agent’s Forecast Variance of Present Value of Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 156402.14 73827.89 267796.38
Θ = {θ1} 0.95% 0.27% 0.44%

Θ = {θ1, θ2} 29.10% 29.43% 47.42%
Θ = {θ1, θ2, θ3} 68.03% 32.27% 62.65%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0095)*156402.14
‡Variance of the unpredictable component of earnings between age 19 and 65

as predicted at age 19.

1



Table 6.2
Agent’s Forecast Variance of Period Zero Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 13086.24 14303.35 33910.17
Θ = {θ1} 1.90% 0.91% 0.05%

Θ = {θ1, θ2} 23.58% 30.08% 41.02%
∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0190)*13086.24
‡Variance of the unpredictable component of earnings between age 19 and 28

as predicted at age 19.

2



Table 6.3
Agent’s Forecast Variance of Period One Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 26618.64 17545.90 65804.89
Θ = {θ1} 1.90% 0.31% 0.34%

Θ = {θ1, θ2} 62.43% 43.00% 69.60%
∗We use an interest rate of 3% to calculate the present value of earnings.
†So we would say that the variance of the unpredictable component of period 1

college earnings × = {θ1} is (1-0.0190)*26618.64
‡Variance of the unpredictable component of earnings between age 29 and 38

as predicted at age 19.

3



Table 6.4
Agent’s Forecast Variance of Period Two Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 40406.20 16716.50 68918.36
Θ = {θ1} 0.95% 0.00% 0.63%

Θ = {θ1, θ2} 38.66% 35.02% 58.63%
Θ = {θ1, θ2, θ3} 75.25% 40.17% 70.98%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0095)*40406.20
‡Variance of the unpredictable component of earnings between age 39 and 48

as predicted at age 19.
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Table 6.5
Agent’s Forecast Variance of Period Three Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 53194.23 14605.29 66926.12
Θ = {θ1} 0.65% 0.08% 0.73%

Θ = {θ1, θ2} 16.18% 24.55% 34.65%
Θ = {θ1, θ2, θ3} 81.20% 31.53% 70.11%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0065)*53194.23
‡Variance of the unpredictable component of earnings between age 49 and 58

as predicted at age 19.
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Table 6.6
Agent’s Forecast Variance of Period Four of Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 23096.81 10656.83 32236.82
Θ = {θ1} 0.00% 0.00% 0.00%

Θ = {θ1, θ2} 6.84% 4.10% 11.41%
Θ = {θ1, θ2, θ3} 56.70% 6.16% 37.95%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.00)*23096.81
‡Variance of the unpredictable component of earnings between age 59 and 65

as predicted at age 19.
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