IZA DP No. 14506

Male Fertility: Facts, Distribution and Drivers of Inequality

Bernt Bratsberg
Andreas Kotsadam
Selma Walther

JUNE 2021
IZA Discussion Paper Series

IZA DP No. 14506

Male Fertility: Facts, Distribution and Drivers of Inequality

Bernt Bratsberg
Frisch Centre and
Norwegian Institute of Public Health

Andreas Kotsadam
Frisch Centre

Selma Walther
University of Sussex, IZA and CERGE-EI

JUNE 2021

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

Male Fertility: Facts, Distribution and Drivers of Inequality*

We document new facts on the distribution of male fertility and its relationship with men’s labor market outcomes. Using Norwegian registry data on all births since 1967, we show that rates of male childlessness in recent cohorts are 72% among the lowest five percent of earners but only 11% among the highest earners, and that this gap widened by almost 20 percentage points over the last thirty cohort years. There has been a compression in the fertility distribution, with a substantial share of men being “left behind” and fewer men experiencing a larger share of the population’s new births. We use firm bankruptcies as a source of variation in job loss and earnings to provide robust evidence that men experiencing negative labor market shocks are less likely to experience the birth of a child, transition out of childlessness, and be partnered, and that these effects are persistent up to 15 years after the event. We conclude by documenting that men’s fertility penalty to job loss has increased markedly over the last three decades.

JEL Classification: J12, J13
Keywords: male fertility, unemployment, inequality

Corresponding author:
Selma Walther
Department of Economics
University of Sussex
Brighton BN1 9RH
United Kingdom
E-mail: s.walther@sussex.ac.uk

* The authors thank Jesper Bagger, Amalavoyal Chari, Monica Costa Dias, Elisabetta De Cao, Paola Giuliano, Chris Hansman, Hamish Low, Vegard Skirbekk, and seminar participants at Oxford, Sussex, Norwegian Institute of Public Health, the SEHO 2021 Meeting in Boston, and the Gender and Family Webinar for useful discussion. This work was supported by the Research Council of Norway through its funding of “Intergenerational mobility and labor market inclusion” (project # 300917), “Sustaining the welfare and working life model in a diversified society” (project # 270772) and DIMJOB (project # 296297). Data on loan from Statistics Norway have been essential for the research.
1 Introduction

There have been a number of societal developments in recent decades in high income countries that have affected labor market opportunities and family outcomes, with potentially unequal impacts in the population. Marriage rates have declined, and divorce rates have increased. There has also been a growth in out-of-wedlock births and single mothers, and more generally a changing lifecycle pattern of women, with a reduction in the gender wage gap and increasing economic independence (Lundberg, Pollak, and Stearns 2016, Goldin 2004). The traditional role of the male breadwinner has been eroded, and women are less reliant on men to support and raise their families, partly due to improvements in women’s labor force participation and pay.

Another key change is that workers have experienced a widening gap in the returns to skilled and unskilled labor, which has been particularly evident among men (Hornstein, Krusell, and Violante 2005, Binder and Bound 2019). There have also been prominent trends by gender: while the returns to women’s work have steadily grown over time, the returns to men’s time, and particularly unskilled men’s time, have stagnated and even declined in recent years.

These changes are likely to have affected family formation and fertility. While much is already known about female fertility, and particularly on the trade-off between career and family in various contexts (see, e.g., Kleven, Landais, and Soegaard 2019, Adda, Dustmann, and Stevens 2017, Bhalotra, Venkataramani, and Walther 2021), relatively little is known about male fertility. In this paper, we bring our focus to male fertility. We use Norwegian registry data, which provides data on all births to the entire population of Norwegian men and women since 1967. The data is comprehensive, with only 0.7% of births to native women missing a father’s name. This allows us to directly analyze male fertility using data on men, rather than indirectly using data on women’s births, as the extant literature has done. As part of this dataset we also have access to a rich set of labor market outcomes and other family outcomes.

We begin by documenting two new stylized facts. First, we show that childlessness is highest among the poorest men, as captured by their within-cohort earnings rank. In particular, while childlessness rates are 72% among the bottom 5% of the earnings distribution in the most recent cohorts, they are only 11% among the top 5% richest men. Second, we document that this inequality in fertility has widened over time. Overall rates of childlessness have increased for all men over time, but they have increased more for the lowest earning men. In this sense, there has been a compression of the fertility distribution, with fewer men experiencing a larger share of the population’s new births.

There are several possible mechanisms that may explain these patterns. We show descriptively that there is evidence for the importance of economic reasons, with patterns of men’s
relative earnings mimicking those of male childlessness. These men are also more likely to be single, indicating a role for the marriage market. There is less evidence to support the importance of health reasons: we do not see similar patterns in disability, height or BMI. There is also little evidence for data quality issues, with only 0.7% of birth records having “missing dads”.

Next, we use a robust empirical strategy to document this relationship between male earnings and fertility in a more causal way. We use firm bankruptcies as a shock to male employment and earnings (Bratsberg, Raaum, and Roed 2018) in an event study approach that conditions on individual and cohort*year fixed effects, follows individuals for five years before and after the bankruptcy event and includes same-sex siblings as a comparison group.\footnote{In a similar approach, Rege, Telle, and Votruba (2007) use plant closures in Norway between 1995 and 2000 and find that marriages decreased as a result.} We find that experiencing a firm bankruptcy is associated with a higher probability of unemployment and lower earnings, which do not recover in the five years after the event. Turning to family outcomes, we show that the bankruptcy event leads to lower male fertility, less partnering, and a lower likelihood of transitioning out of childlessness (i.e., experiencing a first birth). This points to declining relative earnings among men at the bottom of the earnings distribution as being a key contributing factor to their exclusion from family life. Fertility is intrinsically linked to partnering, and partnering has economic benefits, including risk sharing, specialisation and the sharing of public goods. These benefits are likely to fall if men’s economic positions deteriorate, thus reducing partnering rates and fertility.

To check whether these effects are persistent, we extend our analysis window to 15 years post the bankruptcy event. Although this shrinks our sample, it is a valuable exercise to investigate the impacts of male job loss on lifecycle outcomes. Strikingly, we see remarkable persistence in the negative impacts of job loss on family life. As well as a heightened unemployment risk and reduced long-run earnings, men who experience job loss have fewer children overall, and are less likely to be partnered, 15 years after experiencing a firm bankruptcy. Interestingly, the probability of experiencing the birth of a child is reduced in the initial five years but does eventually recover, indicating that the negative long run impacts on total fertility stem from “missed births” during the first five years after the bankruptcy that are never compensated for in later life. A back-of-the-envelope calculation indicates that between 46%-60% of the factual patterns of childlessness and total fertility are likely to be driven by a causal earnings-fertility relationship.

Our results on firm bankruptcies show that men experiencing earnings losses are less likely to become fathers, but do not speak to how the relationship between male labor market prospects and fertility has changed over time. To dig deeper into the changing nature of family prospects among low earners, we estimate the descriptive correlation between job loss in the previous year, as proxied by the individual claiming unemployment benefits, and having
a child the following year, conditioning on a wide set of covariates, for each calendar year between 1990-2019. We show a clear negative trend in this relationship: while men losing their job are less likely to experience the birth of a child in the following year than other men, the crucial finding is that the magnitude of this effect has become larger over time. This provides further evidence for the notion of “left behind” men: in recent years, men with poor labor market outcomes are facing stronger penalties as measured by family outcomes.

We confirm our findings on the impact of bankruptcies are robust to a number of different checks: for example, we estimate a specification with family*year fixed effects, which allows for differential trends over time in outcomes across sets of siblings, with unchanged results. We also show that our estimates are not biased by the recent concern over heterogeneous treatment effects in combination with including already treated observations (see, e.g., Goodman-Bacon 2018, Callaway and SantAnna 2020, and Sun and Abraham 2020), with a stacked regression design producing similar coefficients. We also discuss alternative samples, investigate pre-event trends in outcomes in different samples, alternative definitions of firm closures and the removal of bankruptcies that may have occurred outside our sampling window. Our findings are robust to all these checks.

We contribute most closely to the budding literature on the economic and family outcomes of men. Kearney and Wilson (2018) explore the impact of male earnings growth on fertility and marriage, using fracking booms in the U.S. They find that income growth promotes both marital and non-marital childbearing, but are only able to identify this through data on the fertility outcomes of women. This does not speak to which men are having families, and how this is distributed across the population, a key question that we wish to address. Related to this, Autor, Dorn, and Hanson (2019) use a shift-share instrument in the U.S. deriving from Chinese import shocks to study the impact of reductions in males’ relative earnings on a selection of male outcomes, and find that young adult men are particularly negatively affected by trade shocks. They also find increases in single motherhood and male premature mortality, and a reduction in male marriage and fertility. Similar to Kearney and Wilson (2018), data limitations mean that they are unable to document and explain changes in inequality over time. In a similar study, Giuntella, Rotunno, and Stella (2021) investigate the effects of trade shocks on marital status and fertility using a household survey in Germany. They find that low educated men working in sectors most affected by increased imports had lower fertility but that marriage rates were unaffected. Anelli, Giuntella, and Stella (2019) also use a shift-share approach based on robots to provide evidence that in areas more intensely exposed to robots in the US, new marriages declined, marital fertility declined and out-of-wedlock births increased. Overall, this recent literature has made the first attempts to document the prospects and outcomes of men, and we take this literature forward by using administrative data on male fertility to shed light on inequality, long run trends, and a more precise analysis of drivers and outcomes.
We also contribute to the established literature on the determinants of fertility, and in particular how fertility responds to changes in income. Much of this literature focuses on job loss but it usually analyzes fertility outcomes of individuals already in couples. Almås, Kotsadam, Moen, and Røed (2020) and Hart (2015) show that male earnings in Norway correlate with the probability of finding a partner. Hence, it is likely that job loss affects partnering and by focusing on couples the identified effects are limited to only a selected subset. Del Bono, Weber, and Winter-Ebmer (2012) show that the probability of a woman giving birth declines in response to her job loss due to a firm closure in the private sector in Austria, while they find no effect of men’s job loss. Huttunen and Kellokumpu (2016) confirm this result in a sample of Finnish couples, where female job loss due to plant closures reduces fertility but male job loss has no impact. Both share our concerns of possible selection into firms that eventually close and choose appropriate comparison groups to address this possible bias. Focusing on the U.S. and specifically the response of women’s fertility to her husband’s job loss, Lindo (2010) estimates a decline in total fertility but an acceleration of births, using an individual fixed effects model to account for possible unobservable characteristics that may relate to job loss and outcomes. Black, Kolesnikova, Sanders, and Taylor (2013) take a slightly different approach, focusing on county level birth rates and census data on women’s childbearing to estimate that an increase in men’s earnings due to an exogenous shock in the demand for coal in the Appalachian coal-mining region in the 1970s led to more births. While our focus here is distinct from this literature, zooming in on male fertility, how it is distributed across the population and how this inequality has changed over time, we see clear parallels in our empirical approach that uses bankruptcies as an exogenous shock to male earnings. Similar to Lindo (2010), we also include individual fixed effects in our estimation models, and as in Huttunen and Kellokumpu (2016), we take care to use an appropriate comparison group to minimize any bias arising from selection into firms.

The paper proceeds as follows. Section 2 discusses the data, Section 3 presents the key stylized facts on male fertility and earnings, Section 4 discusses our empirical strategy of bankruptcies and Section 5 presents the empirical results. In Section 6 we link the descriptive and causal evidence of the paper, by providing a back of the envelope calculation of the share of the descriptive relationship between labor market outcomes and fertility that is likely to be causal showing that the relationship between labor market outcomes and fertility has changed over time. Section 7 concludes.
2 Norwegian Context and Data

2.1 Norwegian Context

Fertility in Norway, and in the other Nordic countries, has been falling since the 1980s (Comolli et al. 2020). Demographers have a long tradition of investigating the relationship between education and fertility using rich administrative data: for instance, Kravdal and Rindfuss (2008) and Jalovaara et al. (2019) document that the education-fertility gradient has become less negative for women, has remained positive for men, and that the least educated men are most likely to be childless. There has also been demographic research on the correlation between employment outcomes and fertility in Norway. Kravdal (2002) finds a negative correlation between unemployment and fertility for men, but not women, and Hart (2015) shows that the correlation between earnings and fertility has become more positive over time for both men and women.

The Norwegian welfare state is characterized by a dual earner norm while at the same time having strong financial incentives for parents to stay at home (Ellingsæter 2006). There are no particular policy developments that would suggest a decline in fertility. To the contrary, based on evidence from quasi experimental studies from various settings, Bergsvik, Fauske, and Hart (2020) argue that the policy developments in Norway would have lead to increased fertility all else equal. They point to increased access to and reduced price of childcare as well as a generous cash for care policy. There are, however, other changes in society over time. Kitterød and Rønsen (2013) show that women have started working more and that men have increased the time spent on household work and childcare. Hart (2015) further emphasizes that costs of living has increased and that the Norwegian universal childcare allowance, which is universally given to all parents, has fallen in real terms. These factors may affect fertility negatively.

In terms of labor market policies, there have not been any dramatic changes and unemployment insurance in Norway is fairly generous, paying 62.4 percent of lost wages (with lower and upper bounds). During our study period, to be eligible for UI benefits the individual had to document involuntary loss of employment and earnings exceeding 1.5 G during the prior calendar year or 3 G over the past three years (where G refers to the base amount of the Norwegian social insurance system, NOK 100 853 in 2020, slightly less than EUR 10 000). The time limit of UI spells is 24 months.

2.2 Data

Our analysis is made possible by the use of high-quality Norwegian register data. The data cover the entire Norwegian population, including all births to Norwegian men and women since 1967, with data on all cohorts since 1951. The data also include family linkages,
educational attainment, and annual labor earnings. We also use data from the matched employer-employee register in combination with data on firms and bankruptcies.

We operate with four different data extracts. In the Population sample, used for descriptive analyses, we include the entire population and focus on cumulative fertility outcomes, studying variation in fertility both across the earnings distribution and over time. The data allow us to track fertility and earnings in the age interval 16 through 50 for individuals born between 1951 and 1969, and through age 40 for those born 1951-1979. For these cohorts, we can also link individuals to their parents, allowing for studies of later-life fertility across the distribution of economic status during childhood. In the event-study analyses of bankruptcies we restrict the sample to individuals working in a private-sector firm two years ahead of the firm filing for bankruptcy between 1995-2015, and who were aged 25-35 at the time of the event. We call this sample the Event study sample. For each individual in the event study sample, in the short run analysis we stacked their annual outcomes covering the 11-year period spanning five years before to five years after the bankruptcy event. To form the basis for counterfactual analysis, we next extracted from the underlying register data siblings of individuals in the event study sample, using similar sampling criteria for the job but with the important exception that the sibling did not work for a firm with a bankruptcy filing during the observation period. We label this the Event study control sample. For the purpose of balanced analysis, we restrict the event study and event study control samples to families represented with same-sex siblings in both samples. The long run analysis uses a similar sample but covering 15 years post the bankruptcy event.

Finally, in the Stacked cross-sectional samples used in Section 6.2, we pool cross-sectional population data for the period 1990-2019 and study changes across time in the correlation between individual unemployment status and fertility, focusing on the age range 25-35 parallel to the event study sample.

In Table 1 we show mean values for the different samples. Cumulative fertility is naturally lower in the stacked cross-sectional and event study samples than in the population sample, reflecting differences in age of the samples. A key variable used in later sections is that of registered unemployment. We collect this measure from the register of the welfare administration, implying that the individual has applied for UI benefits at some point during the year. Because a requirement for UI eligibility is involuntary loss of employment, the measure is a fair proxy for individual job loss even though it fails to capture workers who find a new job without seeking UI benefits between jobs. In our samples of young adult men, about 14 percent were registered as unemployed in a given year.

\[2\] Bratsberg, Raaum, and Reed (2018) estimate that, among native workers, fully 56.5 percent of those who lose their job find new employment without an interim period of enrollment in the UI system.
Table 1: Descriptive statistics, male samples

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Population (1)</th>
<th>Stacked cross-sectional (2)</th>
<th>Event study (treated siblings) (3)</th>
<th>Event study (control siblings) (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childless</td>
<td>0.213 [0.410]</td>
<td>0.551 [0.497]</td>
<td>0.516 [0.500]</td>
<td>0.508 [0.500]</td>
</tr>
<tr>
<td>Birth</td>
<td>0.098 [0.297]</td>
<td>0.094 [0.292]</td>
<td>0.043 [0.203]</td>
<td>0.096 [0.295]</td>
</tr>
<tr>
<td>First birth</td>
<td>0.046 [0.208]</td>
<td>0.043 [0.203]</td>
<td></td>
<td>0.043 [0.203]</td>
</tr>
<tr>
<td>Children</td>
<td>1.747 [1.209]</td>
<td>0.762 [0.986]</td>
<td>0.847 [1.038]</td>
<td>0.880 [1.061]</td>
</tr>
<tr>
<td>Single</td>
<td>0.327 [0.469]</td>
<td>0.611 [0.487]</td>
<td>0.595 [0.491]</td>
<td>0.566 [0.496]</td>
</tr>
<tr>
<td>Unemployed (during year)</td>
<td>0.143 [0.350]</td>
<td>0.212 [0.409]</td>
<td>0.139 [0.346]</td>
<td></td>
</tr>
<tr>
<td>Lifetime earnings rank</td>
<td>50.7 [28.8]</td>
<td>50.1 [26.0]</td>
<td>45.6 [22.5]</td>
<td>50.7 [24.4]</td>
</tr>
<tr>
<td>Other characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>40.0 [.]</td>
<td>30.0 [3.2]</td>
<td>29.9 [4.4]</td>
<td>30.3 [4.5]</td>
</tr>
<tr>
<td>Education (years)</td>
<td>13.3 [2.6]</td>
<td>13.3 [2.5]</td>
<td>12.6 [1.9]</td>
<td>12.9 [2.2]</td>
</tr>
<tr>
<td>Father’s lifetime earnings rank</td>
<td>50.5 [28.8]</td>
<td>51.7 [23.1]</td>
<td>48.0 [22.1]</td>
<td>48.0 [22.1]</td>
</tr>
<tr>
<td>Age range</td>
<td>40</td>
<td>25-35</td>
<td>20-40</td>
<td>20-40</td>
</tr>
<tr>
<td>Observations</td>
<td>816 535</td>
<td>8 881 215</td>
<td>142 641</td>
<td>174 474</td>
</tr>
</tbody>
</table>

Notes: Samples are restricted to men born in Norway to two Norwegian-born parents and present in the country at the end of the observation year. In column 2, unemployment refers to the prior calendar year. Data in columns 3 and 4 limited to individuals 25-35 in the year of event (i.e., year of bankruptcy for treated siblings, year of sampling for non-treated siblings), with a job record in the November file of the employer-employee register two years prior to the event, and matched so that the family is represented in both treated and non-treated subsamples. Standard deviations are shown in brackets.

3 Stylized Facts

We begin by documenting patterns of fertility and marriage across time, and heterogeneity in the population, using data on all Norwegian cohorts since 1951 who remained present in the country at age 40. We make use of data on their outcomes from 1967 onwards. In particular, we are interested in how the probability of being childless, total fertility, and the probability of being partnered varies with the man’s relative within-cohort earnings rank, and
how these patterns have changed over recent decades. We then explore potential mechanisms by studying how relative earnings have changed over time, and how other outcomes such as health and incarceration vary with relative earnings.

Our measure of lifetime earnings rank draws on annual earnings from work covering the period 1967 to 2018. To bypass the need for deflation, for each individual we first computed the within gender and birth cohort earnings percentile at each adult age. Next, we took the average of these percentiles over the age span 30 to 60, and recomputed the individual’s lifetime earnings rank from the distribution of average percentiles. We use this measure of within-gender lifetime earnings rank to characterize both our study population of men and women as well as their fathers.3

3.1 Two Key Facts on Male Childlessness and Total Fertility

Fact 1: Male childlessness is highest among men with lowest relative earnings rank Panels A and B of Figure 1 depict the average percentage of individuals who are childless at age 40, by relative earnings rank within cohort (panel A) and relative earnings rank of their father (panel B), for three representative cohorts. The pattern is striking: while only around 10% of men in the top 5% of the own earnings distribution are childless, this number jumps to around 60% in the bottom 5%. In the most recent cohort, these numbers are 11% and 72% respectively. This shows marked inequality in men’s access to family life.

Another interesting feature is that the relationship is not linear: rates of childlessness increase exponentially below the 30th percentile of the earnings distribution. In the empirical analysis of bankruptcies, we focus on lower earning men precisely because the fertility gradient in earnings is particularly steep at the lower end of the earnings distribution.

When examining the relationship by father’s earning rank, the overall rates of childlessness vary less, but still increase with declining earnings. Comparing these two figures, it is clear that men’s own earnings rank is more predictive of childlessness than father’s rank.

Panels C and D depict the relationship between total fertility and own and relative earnings rank. The relationships are very similar to those for childlessness: total fertility increases with both own and father’s relative earnings rank, with the relationship particularly strong for the bottom 30% of the own earnings distribution.

Fact 2: Inequality in male childlessness across the earnings distribution has increased over time Figure 2 presents the same data but in a different way, in order to

3The algorithm allows us to use the full 31 years of age-specific percentiles for those born between 1937 and 1958. For the youngest cohort of our study population (born 1979), the rank measure is based on ten observations covering the age span 30 to 39. Conversely, for the oldest fathers, rank is based on earnings during their fifties (95 percent of fathers are born 1916 or later yielding at least ten age-specific earnings percentiles in the data).
analyze how the relationship between earnings and fertility has changed over time. Instead of taking three representative cohorts, we now take three representative points in the earnings distribution: the bottom, middle and top 10%. We then plot rates of childlessness by cohort, for these three points in the distribution. This shows a striking fact: the difference between childlessness rates at the bottom and top of the earnings distribution has widened over time. While the 1951 cohort had a range of 35 percentage points, this widened to 51 percentage points for the 1979 cohort. We still see that childlessness rates are highest for those in the lowest ranks, and that childlessness rates overall have increased over time. These relationships are less pronounced for father’s earnings rank, but men whose fathers were in the bottom 10% of the earnings distribution have substantially higher rates of childlessness than those whose fathers were in the middle or top of the distribution, both of whom have similar, lower rates of childlessness. Panels C and D shows these relationships for total fertility. The gap between the total fertility of the lowest and highest earning men has widened over time, from 0.88 children for men born in 1951 to 1.34 children for men born in 1979.

We conduct an additional exercise to check that these trends are not driven by increasing delay in having a child. In the Appendix, we show comparable figures with fertility at age 50,
rather than age 40 (Figure A.1). The patterns are very similar to those observed here, with widening inequality in childlessness and number of children across the earnings distribution, over time. The increase in rates of childlessness among the lowest earners is particularly striking and robust.

Figure 2: Inequality in fertility over time.

![Graph showing inequality in fertility over time]

Notes: Scatter points represent ten percent of each cohort of Norwegian men born between 1951 and 1979.

3.2 Marital Status and Number of Partners

As a complement to the stylized facts on fertility, it is natural to consider whether these patterns are also reflected in marital status and number of partners. In particular, it may be that these relationships are driven by the marriage market, with the lowest earning men being unable to find partners and therefore to have children. On the other hand, the effect may be driven by what would have been out-of-wedlock births, and therefore the relationship between earnings rank and marital status may be more muted. Figure 3 sheds light on this question. In Panel A, we plot the average proportion of men who are single (neither married nor cohabiting) by their position in the lifetime earnings distribution, for the three birth cohorts in the beginning, middle and end of our observation period. There are some similarities between the patterns seen here and for fertility: single status has increased over
time, rates of single status are by far the highest for those in the bottom of the earnings distribution, and the gap between the top and bottom has widened over time. However, this gap has not widened to the same extent as the gap for childlessness (it has grown by 13 percentage points, from 57 to 70 percentage points). These patterns are also evident, though the magnitudes are lower, by father’s earnings rank in Panel B.

This naturally leads to the question whether male fertility has been concentrated among those with better labor market prospects via partnership. In particular, are the best men being “recycled” and having children with multiple women? Panel C shows that this is indeed the case, with the highest number of partners by age 40 seen for men at the top of the earnings distribution. This gap in the average number of partners by age 40 between the lowest and highest earning men has also widened over time, suggesting that there may be an economic channel via the marriage market at play here. To this end, we explore the impact of job loss via bankruptcies on partnering in Section 5.

Figure 3: Marital status and number of partners.

Notes: Each scatter point represents five percent of Norwegian men born between 1951-1953, 1964-1966, and 1977-1979, respectively. Panels C and D count the number of unique partners with whom the male has fathered a child, including zero for those childless at 40. Observation count is 245,113.
3.3 Potential Mechanisms: Relative Earnings, Health, Incarceration, and Data Quality

There are two crucial stylized facts that emerge from an analysis of the relationship between fertility and earnings rank: childlessness rates are highest for the least well-off men, and this inequality has increased over time, with the gap in childlessness rates between men at the top and bottom of the earnings distribution widening over time. We have also documented that the relationship between single status and earnings rank is similar, suggesting that a key mechanism for these relationships may be economic returns of men on the marriage market. To explore this further, it is instructive to analyze data on how relative earnings have changed over time, as well as other potential outcomes that can correlate with both earnings and fertility: health, incarceration and missing data.

Relative Earnings Thus far we have considered the relationship between fertility and relative earnings rank, but this does not shed light on how the earnings of those at the bottom of the distribution have changed over time. Figure 4 depicts real absolute earnings at age 40 in 100,000 NOK by cohort, for the three points of the earnings distribution. It is clear that while the earnings of men in the top 10% have grown over time, the earnings of men in the bottom 10% have stagnated over time, thus creating widening inequality in income. For the most recent cohort, average earnings for men in the top 10% are 12 times the earnings of men in the bottom 10%, as compared to a multiple of 6 for the earliest cohort in the figure.

A similar though less pronounced pattern is seen by father’s earnings rank. Insofar as labor market earnings are a determinant of returns on the marriage market, this suggests that the marriage market value of men at the lower end of the earnings distribution has declined over time, in relative terms, and is consistent with the patterns of childlessness and partnering we have seen above.

Health Outcomes A potential alternative mechanism linking relative earnings and fertility is health: those with lower earnings may also have poorer health, which may affect their ability to either attract a partner or physically to have a child. To explore this possibility, we consider two measures of health: long-term disability, and health status at conscription for mandatory military service at age 18. Figure 5 depicts the relationship between relative earnings rank and the average proportion of individuals registered as having a long-term disability at age 30.4 Although there is a negative correlation between relative earnings rank and permanent disability, the overall rates of disability are substantially lower than the rates of childlessness seen in Figure 1. Equally important, there is no indication that young-age

4These data are first available from 1992, and we are not able to study disability at young ages for the oldest cohorts included in earlier figures.
disability rates have increased over time among low earners and that such developments could explain their rising rates of childlessness.

Figure 6 shows height and BMI at conscription, by earnings rank, for two representative cohorts. While height is correlated with relative earnings rank (an average gap of around 2cm between the lowest and highest earning men), BMI is not. However, the differences in height are so small as to make it unlikely that they can drive a health-driven relationship between earnings rank and fertility.

Incarceration Men at the lower end of the earnings distribution may be unable to have a family because they are incarcerated. Figure 7 explores this possibility by plotting, for two representative cohorts, the fraction of men with a prison sentence by relative earnings rank, with incarceration observed at age 30.\(^5\) Predictably, the rates are highest for the lowest earners, but on average extremely low and below one percent of the population. More importantly, there is no indication that the relationship has tilted over time with rising incarceration rates for low earners. Incarceration is unlikely to be a key mechanism behind the stylized facts on male fertility.

\(^5\)These data are not available for the oldest cohort included in earlier figures.
Figure 5: Disability and earnings.

Notes: Each scatter point represents five percent of Norwegian men born between 1964-1966 and 1977-1979, respectively. Disability status is measured by receipt of a permanent disability pension at age 30. Observation count is 162,412. The average disability rate is 0.020.

Data Quality We consider whether data quality, and in particular the notion of “missing dads”, can plausibly explain higher rates of childlessness among low income men. Specifically, it may be that these men are not present long enough in the lives of the female partners to be registered as fathers at the time the child is born. Figure 8 shows the relationship between the fraction of birth records missing a father’s name, and the woman’s earnings rank - given that the fathers are missing, it is not possible to depict this relationship by the man’s earnings rank. However, the rates of birth records with missing fathers are low overall, at 0.7% for the whole sample. They are highest for the lowest earning women, being close to 3% in the bottom 5% and less than 1% in the top 5%. The rates have not changed substantially across the three representative birth cohorts depicted. Although this could explain some part of the male fertility patterns we see, it is unlikely to explain the very high rates of childlessness (over 70% in the most recent cohorts) that are present among the lowest earning men and cannot explain the time pattern of rising rates of childlessness.

3.4 Evolution of inequality in fertility for women

Although not the main focus of the paper, it is also instructive to analyze these same patterns for women and we show these results in Appendix A.2. We document several interesting

6Some of these “missing dads” are in fact not missing, but are missing from the birth register because they do not have a Norwegian social security number.
patterns. The relationship between women’s childlessness rates and relative earnings rank is U-shaped: rates are highest at the extreme ends of the earnings distribution. This is consistent with the findings of Baudin, de la Croix, and Gobbi (2015) for the U.S., who show that childlessness rates are highest for women with lowest education and highest education levels, arguing a social poverty mechanism for the lowest and an opportunity cost mechanism for the highest. Still, rates of childlessness do not vary across the earnings distribution for women nearly as much as they do for men. Turning to the relationship with father’s rank, the pattern is almost flat: father’s earnings rank seems to have little bearing on a woman’s childlessness status. With respect to total fertility, the relationship with own earnings is U-shaped for women. The highest fertility rates are observed for women in the 15th percentile of own earnings.

Interestingly, regarding the evolution of inequality over time, the relationship between own earnings rank and fertility exhibits a crossing pattern, with the childlessness rates of women in the bottom of the earnings distribution increasing steadily with each cohort, while the childlessness rates of women in the top earnings rank decreasing over time. In this sense,
Figure 7: Incarceration and earnings.

Notes: Each scatter point represents five percent of Norwegian men born between 1964-1966 and 1977-1979, respectively. Scatter points give the fraction of men charged with a crime and sentenced to unconditional imprisonment the year they turned 30. Observation count is 162,412. The average imprisonment rate is 0.0096.

the family penalty to “career women” has declined over time. Childlessness rates for women in the middle of the earnings distribution have remained stable and low over time. The relationship with father’s earnings rank is weak, but suggestive of a similar pattern for men: over time, childlessness rates for women whose fathers had a higher earnings rank have fallen, and for women whose fathers had a lower earnings rank have risen. With respect to total fertility for women we see a crossing between the bottom 10% and top 10% earnings groups at around the 1975 birth cohort.

Earnings inequality has also widened for women, but the gap between the top and bottom percentiles of women’s earnings is much smaller than for men.
Figure 8: Missing birth records and mothers’ earnings.

Notes: Each scatter point represents five percent of Norwegian women born between 1951-1953, 1964-1966 and 1977-1979, respectively. Scatter points give the fraction of birth records with missing information on the child’s father. Observation count is 472,794 children born to 206,935 women by age 40. Average rate is 0.0066 per birth record.

4 Empirical Strategy to Identify Effects of Earnings on Male Fertility

We have documented a striking inequality in male fertility across the earnings distribution. These correlations may, however, be confounded by omitted variables that affect both earnings and fertility. In this Section we outline an empirical approach to causally identify the relationship between men’s labor market prospects and their fertility. We use bankruptcies to identify the impact of earnings losses on labor market and, most importantly, family outcomes. Using our descriptive analysis as a jumping-off point, we estimate the impact of bankruptcies on the probability of having a child in a given year, cumulative fertility, having a partner, and a comprehensive set of labor market outcomes to verify our first stage. We also check the impact on disability status as an alternative mechanism, and present an extensive set of robustness checks at the end of the Section that check for issues such as sampling, selection, heterogeneous treatment effects and underlying trends.

Firm bankruptcies are known to cause increases in unemployment probability and have been used commonly in the literature as a shock to employment prospects, including in Norway (Bratsberg, Raaum, and Rød 2018). They are relatively common, with 1% of the Norwegian working population experiencing a bankruptcy in any two years. In contrast to the
previous literature estimating the relationship between job loss and fertility that uses firm or plant closures (Del Bono, Weber, and Winter-Ebmer 2012, Huttunen and Kellokumpu 2016), we use a measure that in our context is more closely linked to unemployment than firm closures in general. We also do not use becoming unemployed as the event, but rather being exposed to a bankruptcy. Thus, our estimates can be interpreted as an intention to treat design.

Although bankruptcy filings are associated with a large increase in unemployment risk and reduction in earnings, they may not be purely exogenous because individuals with certain unobservable characteristics may select into financially distressed firms that eventually go bankrupt. If these characteristics also affect their family outcomes, then the estimates will be biased. Our approach makes use of within-individual time variation in exposure to the shock. Following Lindo (2010), we include individual fixed effects to account for any time-invariant characteristics that may affect both exposure to bankruptcy and family outcomes. This means that our estimates will be unbiased even in the presence of time-invariant unobservable characteristics that correlate with both exposure to bankruptcy and the set of outcomes. To assuage concerns over bias arising from time-varying unobservable characteristics, we include a control group of matched same-sex siblings working in a firm that does not go bankrupt. They are chosen to match the bankruptcy sample as closely as possible, with the same age range and year range, and we draw a random sequence of years from the sample year range.7

A second concern is that bankruptcies may be anticipated, and individuals with better outside options, and differential family outcomes, may leave before losing their job and be missing from our sample. Alternatively, firms in distress may lay off lower skilled individuals first. These selection and compositional concerns are discussed in Dustmann and Meghir (2005), who consider sampling individuals either one year or two years prior to the firm closure. We choose to sample individuals employed at the eventually-bankrupt firm two years prior to the bankruptcy. Choosing an earlier year improves the exogeneity of workers being attached to a particular firm, but reduces the exposure of the individual to the bankruptcy because individuals are more likely to have left the firm by the time the bankruptcy occurs. Therefore, the choice of two years prior provides a balance between these two trade-offs. We also conduct further robustness checks on this assumption in Section 5.4, by changing the timing of when we sample individuals.

Taking together the bankruptcy event study and the control group of same sex siblings yields the following estimating equation:

7Key to the sampling design is that, in the base year, the treated sibling holds a job in a firm that will go bankrupt while the workplace of the non-treated sibling does not face bankruptcy. Both siblings may, however, work for employers that file for bankruptcy in other years of the 11-year sequence when we follow the individual. In a robustness check in Section 5, we address the concern that bankruptcies in the control group may contaminate the design.
\[z_{i,g,t} = \sum_{\tau=-5}^{\tau=+5} \alpha_{\tau} Time_{i,\tau} + \sum_{\tau=-5}^{\tau=+5} \beta_{\tau} Treat_{i,g} * Time_{i,\tau} + \theta_{i} + \gamma \text{Age} * \text{Year}_{i,t} * \text{Year}_{i,t} + \eta_{i,g,t}, \] (1)

where \(z_{i,g,t} \) is the outcome for individual \(i \), and where \(g \) denotes firm and \(t \) observation year. \(Time_{i,\tau} \) is a dummy variable representing time around the event year, and \(Treat_{i,g} \) indicates whether the firm \(g \) of employment at time -2 goes bankrupt two years later. The coefficient \(\beta_{\tau} \) gives the differential impact as compared to the sibling trajectories captured in \(\alpha_{\tau} Time_{i,t} \). As well as including individual fixed effects, we also include a full set of age * year fixed effects. The data is centered so that bankruptcies occur at time zero, and we analyze outcomes five years before and five years following the event. Finally, standard errors are clustered at the firm level (i.e., the workforce of the individual’s employer at time -2).

We consider impacts on the following time-varying outcomes: unemployment status, log earnings, whether an individual experienced the birth of a child, whether the birth was the first child, total (cumulative) fertility, and whether an individual is single (unmarried or unpartnered).

We also extend the analysis window to examine long-run impacts of firm bankruptcies on individual outcomes. In that part of the analysis, we follow individuals 15 years after the event, and consider additional outcomes, such as registration for disability benefits and alternative measures of employment status.

Identification from the above estimating equation relies on siblings providing a valid counterfactual trajectory for the outcomes of treated individuals, had they not experienced the bankruptcy, and after allowing for individual time-invariant differences through individual fixed effects, and time-varying age effects through age * year fixed effects. In a robustness check, we also allow for sibling-specific time trends by including family * year fixed effects.

Threat to identification could arise if there are pre-existing individual-specific trends in family outcomes that correlate with selection into a bankrupt firm. For example, given that year-by-year fertility is increasing over time for both groups on average, bias in the estimated impact of bankruptcies on total fertility could arise if individuals whose total fertility is increasing slower over time for individual-specific reasons select into distressed firms. Given that we show persistent impacts for up to 15 years after the event, this type of underlying differential would also need to persist 15 years after the event. We dig into such possible differential trends in Section 5.4. We show that pre-event trends in outcomes across various sampling groups are reassuringly similar, with our chosen control group performing much better than alternative samples in tracking the pre-bankruptcy outcomes of treated individuals. We also consider alternative definitions of firm closures, remove bankruptcies that may have occurred outside our sampling window, and conduct a stacked regression
design to allow for heterogeneous treatment effects over time. We find that our estimates are robust to all these checks.

5 Effects of Firm Bankruptcies

5.1 Descriptive Statistics

We saw in Table 1 when comparing the sample we use for the event study design (which draws on a younger segment of the population that that used in our main figures), that these individuals are somewhat less educated and have fathers of a lower earnings rank compared to the population average. We see this as an advantage because our focus is on the family and labor market outcomes of lower earners in the population, consistent with the fact that the earnings-fertility gradient documented in Section 3 is steepest among the lowest earners. We also saw that the treated and control samples of siblings are relatively similar on aspects that are measured pre-treatment such as father earnings rank, birth year, education and age.

In Table 2 we investigate the differences in the characteristics of the firms in the treated and control samples. We see that the males in the treated sample work in much smaller and younger firms than their brothers in the control sample. Digging deeper into the firms that these individuals work for, we see that, reassuringly, the three most common industries in the bankruptcy sample (construction, manufacturing and retail/wholesale trade) coincide with the three most common industries in the non-bankruptcy sample. However, a larger share of the bankruptcy sample works in hotels and restaurants, while public administration and health services are more common in the non-bankruptcy sample.
Table 2: Descriptive statistics, comparing treated and control firms

<table>
<thead>
<tr>
<th></th>
<th>Treated (bankrupt) firms</th>
<th>Control (non-bankrupt) firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Observations</td>
<td>142 641</td>
<td>174 474</td>
</tr>
<tr>
<td>Individuals</td>
<td>13 082</td>
<td>16 116</td>
</tr>
<tr>
<td>Firms</td>
<td>6 870</td>
<td>8 578</td>
</tr>
<tr>
<td>Mean firm size</td>
<td>49.2 [118.8]</td>
<td>889.5 [2576.0]</td>
</tr>
<tr>
<td>Mean firm age</td>
<td>9.7 [8.1]</td>
<td>17.5 [13.4]</td>
</tr>
<tr>
<td>Median firm size</td>
<td>15</td>
<td>76</td>
</tr>
<tr>
<td>Median firm age</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Median log wage paid</td>
<td>5.554</td>
<td>5.693</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.220 [0.415]</td>
<td>0.189 [0.392]</td>
</tr>
<tr>
<td>Construction</td>
<td>0.239 [0.426]</td>
<td>0.169 [0.374]</td>
</tr>
<tr>
<td>Retail/wholesale</td>
<td>0.165 [0.397]</td>
<td>0.172 [0.378]</td>
</tr>
<tr>
<td>Transportation</td>
<td>0.060 [0.237]</td>
<td>0.085 [0.279]</td>
</tr>
<tr>
<td>Hotels/restaurants</td>
<td>0.074 [0.262]</td>
<td>0.024 [0.153]</td>
</tr>
<tr>
<td>Info/communications</td>
<td>0.048 [0.215]</td>
<td>0.047 [0.212]</td>
</tr>
<tr>
<td>Prof/tech services</td>
<td>0.040 [0.197]</td>
<td>0.040 [0.196]</td>
</tr>
<tr>
<td>Admin/support services</td>
<td>0.050 [0.218]</td>
<td>0.049 [0.217]</td>
</tr>
<tr>
<td>Public admin</td>
<td>0.000 [.]</td>
<td>0.051 [0.220]</td>
</tr>
<tr>
<td>Health services</td>
<td>0.009 [0.096]</td>
<td>0.052 [0.222]</td>
</tr>
<tr>
<td>Other</td>
<td>0.062 [0.242]</td>
<td>0.121 [0.327]</td>
</tr>
</tbody>
</table>

Notes: Firm characteristics are measured at the end of year t-2—two years ahead of the bankruptcy filing for treated firms. Hourly wages are inflated to 2019 NOK. Numbers in brackets are standard deviations.

5.2 Results

As an initial analysis into how outcomes evolve before and after bankruptcy, Figure 9 compares the means over time for the men exposed to bankruptcies and their matched brothers. These are sample means that do not account for any control variables. There is a clear divergence in outcomes after the bankruptcy event. Men experiencing a bankruptcy are substantially more likely to be unemployed, experience an earnings loss, and are less likely to experience the birth of a child and to be partnered.

Next, Figure 10 depicts the estimated coefficients from Equation (1) for each outcome. Recall that this estimates the impact of the bankruptcy conditioning on a full set of individual and year * cohort fixed effects. Bankruptcy is associated with a large increase in unemployment in the year of the bankruptcy, where individuals working in bankrupt firms
Figure 9: Sibling mean comparisons before and after firm bankruptcies.

Notes: Vertical lines indicate year of observed November job (year -2) and year of event (year 0). Sample of treated siblings consists of Norwegian-born men who in year -2 were employed in a firm filing for bankruptcy two years later and age 25-35 in the year of the event, while non-treated siblings in year -2 held a job with an employer that did not file for bankruptcy during the observation period. Samples are restricted to families with both treated and non-treated siblings.
Figure 10: Effects of firm bankruptcies.

Notes: Vertical dashed lines indicate year of observed November job (year -2) and year of event (year 0). Scatter points show the estimates of β_t from the estimating equation. See text and notes to 9 for a description of samples.
are twice as likely to be unemployed as two years prior, and, although waning, the effect persists for around three years (Panel A). We also note, however, that unemployment risk already increases in the year before the bankruptcy, consistent with Dustmann and Meghir (2005) who show that the impacts of a firm closure may already be evident two years before the event. Earnings decline substantially following the bankruptcy (Panel B); we note some decline already four years beforehand, suggestive of selection into distressed firms or a declining trend in wages or hours at the distressed firm. This warrants further examination and we discuss alternative choices of sampling year and a deeper analysis of trends in outcomes in Section 5.4.

In Section 3, we showed that men with a lower earnings rank are more likely to be childless and less likely to be partnered. The estimates in Panel C show a similar pattern: the probability of being unpartnered increases significantly following exposure to a firm bankruptcy, by 2.0 percentage points or 3.7% of the observed mean in year 1, with no relationship seen before the event. Panels D-F document impacts on male fertility: men exposed to a bankruptcy event are less likely to experience the birth of a child by 1.3 percentage points or 13.0% of the observed mean in year 1, and this effect persists and is negative and stable in the five years following the event. The effect of experiencing a first birth - transitioning out of childlessness - is also lower, and makes up more than half of the effect of Panel D. Finally, the effect on cumulative fertility is negative and grows over time (Panel F). By five years following the bankruptcy event, these men have not caught up the fertility loss experienced immediately following the event. Importantly, prior to bankruptcy, there is no discernible difference in fertility trends between the bankrupt and non-bankrupt groups of men.

The results confirm that bankruptcies are associated with employment and earnings losses. We provide new evidence that this negative shock also leads to less partnering, lower fertility, and higher rates of childlessness for men, consistent with the descriptive evidence in Section 3 that documented higher rates of male childlessness among lower earners.

For completeness, in the Appendix, Figures A.7 and A.8 show estimated effects for women.

5.3 Long-run results

To understand better whether individuals’ outcomes recover in the long-run after a bankruptcy event, we extend the event study window to 15 years post-event. This shrinks our sample because we need to be able to observe individuals for 21 years, rather than the 11 years in the main estimates. Nevertheless, we see this as a valuable exercise in exploring how long-run outcomes are shaped by negative labor market shocks. In the Appendix, we show the same exercise for women in Figures A.9 and A.10.

We first present an analysis of how outcomes evolve before and after bankruptcy in Figure 11, comparable to Figure 9, but extending the sample window to 15 years post bankruptcy.
We also include additional outcome variables that are particularly relevant for long run outcomes: whether an individual is registered for temporary or permanent disability (Panel C) and employment and income outcomes based on alternative definitions. One alternative definition looks for any registered unemployment during the year (Panel B), as opposed to holding a job in November, our main definition (Panel A). Moreover, in addition to earnings from work (Panel D), we consider after-tax income from all sources, including public transfers (Panel E). We see a clear divergence in mean outcomes between the two sample groups after the event, particularly for the employment and income measures.

As these sample means do not account for any control variables, we next estimate the main event study specification that accounts for a full set of individual and year * cohort fixed effects, but extending the window to 15 years post bankruptcy. Figure 12 shows the impact of experiencing a bankruptcy on our set of long-run outcomes. The findings are striking: men experience a decline in employment, earnings and fertility, and an increase in single status, none of which recover fully in the 15-year window after the event. There is remarkable persistence in total fertility (Panel H), single status (Panel F), and total earnings (Panel E).

Interestingly, while the probability of experiencing a birth is statistically significant and negative 15 years after experiencing a bankruptcy event, the size of the effect is biggest in the years immediately after the shock (Panel G). In comparison, total fertility never recovers (Panel H), and there is also a persistent, positive effect on childlessness status (Panel I). This indicates that the effect on total fertility stems from “missed births” in the initial few years after job loss, that are not compensated for in later life. This is likely to stem from both the reduced rate of partnering in the initial years after the bankruptcy shock (Panel F), as well as reduced fecundity with age for those men with partners who choose to postpone having a child due to the labor market shock.

These results amplify the implications of our main findings. Men who face a negative labor market shock between the ages of 25 and 35 are less likely to have a child and to be partnered, and these effects remain 15 years after the shock, with very little recovery. Taken together with our descriptive results on the inequality in family life across the earnings distribution, this suggests an important connection between labor market prospects and men’s access to family life, with a particular vulnerability among the lowest male earners in the population. In Section 6, we provide a back-of-the-envelope calculation using our causal estimates to quantify the descriptive evidence, and take a wider lens to look at how the relationship between job loss and fertility has changed over the last three decades.
Figure 11: Sibling mean comparisons before and after firm bankruptcies, long run.

Notes: Vertical lines indicate year of observed November job (year -2) and year of event (year 0). Sample of treated siblings consists of Norwegian-born men who in year -2 were employed in a firm filing for bankruptcy two years later and age 25-35 in the year of the event, while non-treated siblings in year -2 held a job with an employer that did not file for bankruptcy during the observation period. Samples are restricted to families with both treated and non-treated siblings.
Figure 12: Effects of firm bankruptcies in the long run.

Notes: Vertical dashed lines indicate year of observed November job (year -2) and year of event (year 0). Scatter points show the estimates of β_i from the estimating equation. See text and notes to 11 for a description of samples.

5.4 Robustness Checks

We conduct important checks on sampling, heterogeneous treatment effects, pre-existing trends and employment definitions in this section.

Time paths of outcomes in different samples In our main specification, we sample individuals employed at a to-be-bankrupt firm two years prior to bankruptcy, similar to one of the specifications in Dustmann and Meghir (2005). Another way of thinking about this choice is that it is a sample of individuals who have not yet left the firm. This may lead to some selection on outcome variables, which we explore by conducting an event study-type analysis of outcomes over time for our main treatment sample, our control sample, as well as a few alternative samples: individuals employed at the to-be-bankrupt firm five years prior to bankruptcy, four years prior, and three years prior, as well as individuals employed two years prior but not satisfying the additional condition of having a same-sex sibling in the control sample. The time paths of our main outcomes for these different samples are shown in Figure 13.

28
The time paths are surprisingly similar across all samples. There are notable deviations from trend for unemployment in the year following when we restrict individuals to be employed: for example, there is a spike in unemployment at t-4 in the sample whose last year of employment at the firm is t-5. This is a direct result of this definition and to be expected. More remarkably, the time paths of family outcomes - partnering status, births and total children - are surprisingly similar across all groups. This indicates that our choices of treatment and control samples do not induce a large amount of selection on trends in outcomes.

Figure 13: Evolution of outcomes over time for different samples.

Notes: Samples consist of men age 25-35 at time 0, separated by the last year of employment at the firm filing for bankruptcy (at time 0). For completeness, the figure adds the time paths for the treatment and control groups depicted in Figure 9.

Choice of sampling year To complement our analysis of alternative samples, in this section we report estimates where we sample individuals a year earlier, at t-3. This is expected to change the sample composition: while the sample may be more exogenous in the sense that there is less selection into (or out of) a firm that will eventually be bankrupt, there will also be more measurement error in treatment because fewer of these individuals will actually experience the bankruptcy event that arises in three years’ time.

Figures 14 and 15 show the results. Our main findings on labor market outcomes, marital status and total fertility are robust to this alternative sample definition. The impact on births and first births is less marked here, with negative coefficients that are not statistically significant. This is to be expected given that we are introducing more measurement error by having a less precise treatment sample.
Figure 14: Sibling mean comparisons before and after firm bankruptcies, sampling at t-3.

Notes: Vertical lines indicate year of observed November job (year -3) and year of event (year 0). Sample of treated siblings consists of Norwegian-born men who in year -3 were employed in a firm filing for bankruptcy two years later and age 25-35 in the year of the event, while non-treated siblings in year -3 held a job with an employer that did not file for bankruptcy during the observation period. Samples are restricted to families with both treated and non-treated siblings.

Figure 15: Effects of firm bankruptcies, sampling at t-3.

Notes: Vertical dashed lines indicate year of observed November job (year -3) and year of event (year 0). Scatter points show the estimates of β_1 from the estimating equation. See text and notes to 14 for a description of samples.
Alternative definition of workplace closure We also examine whether our results are robust to an alternative definition of workplace closure, turning to establishments and using any event where the number of employees at the establishment drops to zero and does not recover. To minimise false shutdowns due to mergers or acquisitions, we override the shutdown event if two thirds or more of last year’s workforce work at the same establishment at the end of the shutdown year. The approach is in line with that used in prior studies, such as Rege, Telle, and Votruba (2007) and Huttunen, Møen, and Salvanes (2011), but yields a more broad definition of workplace closure and although we minimise false shutdowns, we may not be able to rule them out entirely, which can introduce measurement error. Moreover, the closure of an establishment likely represents a less abrupt change compared to a firm bankruptcy. Indeed, Figures 16 and 17 show that, although our main effects on unemployment and earnings persist here, they are about one half the magnitude of those in Figure 10. Consistent with the smaller effects on economic outcomes, the estimated effects on single status and fertility are also attenuated when compared to those from bankruptcies. This may not be surprising as our sample now includes all workplace closures; these may be more easily anticipated than those following a bankruptcy.

Figure 16: Sibling mean comparisons before and after establishment shutdowns.

Notes: Vertical lines indicate year of observed November job (year -2) and year of event (year 0). Sample of treated siblings consists of Norwegian-born men who in year -2 worked at an establishment that shut down two years later and were age 25-35 in the year of the event, while non-treated siblings in year -2 held a job in an establishment that did not shut down during the observation period. Samples are restricted to families with both treated and non-treated siblings. Observation counts are 424 772 in the treatment group and 510 554 in the control group.
Figure 17: Effects of establishment shutdowns.

Notes: Vertical dashed lines indicate year of observed November job (year -2) and year of event (year 0). Scatter points show the estimates of β_i from the estimating equation. See text and notes to Figure 16 for a description of samples.

Allowing for Family FEs As an alternative check, we re-estimate our model adding family * year fixed effects. These account for any family-specific characteristics that may vary over time, such as common trends in family outcomes specific to siblings. One example is that brothers from a large family may have a steeper positive trend in total fertility than brothers from small families. This is a valuable additional check to account for possible pre-trends. Reassuringly, Figure 18 shows that the estimates are essentially unchanged.
Figure 18: Effects of firm bankruptcies, accounting for family-by-year fixed effects.

Notes: Regression model is augmented with family-by-year fixed effects. See also note to Figure 10.

Removing bankruptcies in other years Our estimation sample relies on selecting individuals working at the treated firm two years prior to its bankruptcy. This is matched by a sibling sample working in a stable firm. However, this does not preclude that a bankruptcy was experienced by the treated sample in any year before or after -2 (a separate bankruptcy at another firm), or that the sibling experienced a bankruptcy in another year. As a robustness check we apply a more stringent criterion to our sample by restricting our treated sample to individuals who only experienced the bankruptcy of interest, and siblings who never experienced a bankruptcy. Figure 19 shows the estimates, which are not sensitive to this stricter sample restriction.
Figure 19: Removing any alternative bankruptcy events.

Notes: Regression samples exclude individuals who experience bankruptcy in other years than yr 0, so that the treatment sample is restricted to individuals who experience only one bankruptcy and the control sample to individuals who do not experience a bankruptcy during the observation window. Observation counts are 127 1991 in the treatment group and 164 687 in the control group.

Stacked event-by-event analysis A related issue in staggered regression designs with two-way fixed effects is that estimates draw on already treated units as controls for units that are treated late in the sample period, rendering bias in estimates of counterfactual outcomes when there are heterogeneous treatment effects (see, e.g., Goodman-Bacon 2018, Callaway and SantAnna 2020, and Sun and Abraham 2020). In our setting we have individuals that are never treated, i.e., the siblings, and the mean comparisons of trajectories of treated and non-treated siblings (as in, e.g., Figure 9) do not suffer from this problem. Our estimates may nonetheless be subject to this type of bias if sample inclusion of already treated individuals influence estimation of calendar year effects, which we condition on when estimating counterfactual trajectories.

To address this concern, we follow Cengiz, Dube, Lindner, and Zipperer (2019) and conduct a stacked event-by-event analysis. In this analysis we take each of the 21 bankruptcy years in our data and generate ”clean” samples, i.e., excluding any other observations that have already been treated, for each of the six post-event trajectory years (years 0 through 5 in Figure 10). We then run separate regressions for each combination of bankruptcy and trajectory year and aggregate the estimates. We present the results in Figure 20, where we see that the point estimates are similar to those from the baseline approach but that we lose precision in using the smaller stacked samples (where underlying point estimates on average
draw on only 1/21 of available observations). Although there are some detectable differences in estimates of effects on log earnings, the important take-away from this exercise is that there is no indication that sample inclusion of already treated observations renders bias in estimates of effects of bankruptcy on family outcomes.

Figure 20: Comparing our main estimates to estimates from a stacked regression approach.

Notes: Baseline estimates replicate those in Figure 10. The Cengiz et al approach draws on a stacked event-by-event analysis, where each point estimate is based on 21 separate regressions omitting any observations where already treated individuals may influence estimation of calendar year effects.

6 Labor outcomes and male fertility: What do we learn?

The correlations described in Section 3 show important inequalities in male fertility that have increased over time. Examining the impact of bankruptcies on male fertility in Section 5, we document similar patterns in a more causal way. In this section, we bring the two exercises together to draw wider conclusions about the relationship between labor outcomes and male fertility. First, we conduct a back-of-the-envelope calculation that yields a measure of the share of the descriptive relationship between labor market outcomes and fertility that is likely to be causal. Second, we show that this relationship between labor market outcomes and fertility has changed over time, in line with the widening inequality in fertility outcomes shown in Section 3. Together, these exercises add to the evidence that poor labor market outcomes have a negative impact on men’s fertility outcomes, and that this impact has worsened over time.
6.1 Linking the descriptive and causal estimates

We conduct a back-of-the-envelope exercise to estimate the share of the descriptive relationship between fertility and earnings that is likely to be causal. First, we harmonise the samples across the two exercises. In particular, as the event study estimates focus on men who experience a bankruptcy between ages 25 and 35, we show the descriptive patterns of fertility as a function of real earnings between ages 21 to 40 (rather than the rank of lifetime earnings). Figure 21, Panels A and D, displays binned scatter plots of total fertility and childlessness against real earnings, showing similar non-linear patterns as those for the most recent cohorts in Figure 1. These patterns remain highly non-linear when plotted against log earnings (Panels B and E), but when we trim the data for the bottom and top 5 percentiles of log earnings, Panels C and F show that the relationships between childlessness and children by age 40 and log earnings are well approximated by linear regressions. Estimating these regressions for these birth cohorts, we find that a one log point increase in earnings is correlated with a reduction in the probability of childlessness of 23.1 percentage points, and with having 0.61 more children at age 40.

We next turn to the estimated long run effect of a bankruptcy on labor market and fertility outcomes. Referring to Figure 12 we note that at time 10 when the median age of the sample is 40, a bankruptcy reduces earnings by 0.113 log points and the number of children by 0.042, while raising the likelihood of childlessness by 1.2 percentage points. Scaling this up to 1 unit of log earnings yields magnitudes of 0.37 children and 10.62 percentage points of childlessness.

While we do not put forth that a formal analysis using bankruptcies as an instrumental variable for earnings would satisfy the exclusion restriction, as bankruptcies are likely to affect multiple outcomes including time use, we think it is nevertheless useful to bring together these two sets of estimates for an informal calculation of the share of the descriptive evidence that is likely to be causal. Scaling these two sets of effects indicates that around 60\% (0.37 / 0.61 * 100) of the descriptive relationship between earnings and total fertility is likely to be causal and 46\% (10.62 / 23.1 * 100) of the comparable relationship between earnings and childlessness is likely to be causal. This brings an added layer of evidence to the dramatic patterns between male fertility and labor market prospects that we have documented.
6.2 The Changing Relationship between Unemployment and Fertility over Time

Next, we provide additional evidence on the changing relationship between unemployment and male fertility over time. In Section 3, we documented the widening inequality in men’s access to family life between low and high earners. Our findings using firm bankruptcies show that earnings losses and unemployment are associated with lower fertility and higher childlessness, but do not speak to the change in this relationship over time.

In order to investigate whether the relationship between job loss and fertility has changed over time, and whether this can plausibly explain the important facts uncovered in Section 3, we conduct the following exercise. We are interested in whether the penalty to job loss, in terms of fertility, has increased over time. Specifically, our bankruptcy analysis showed that job loss is associated with lower male fertility. Increasing inequality in male fertility can result from this if that impact has become more negative over time. This is what we explore in this Section.

Using cross-sectional population data for the period 1990-2019 for individuals aged 25-35 as in the event study sample, we regress the probability of experiencing the birth of a child on individual, lagged unemployment status while controlling for years of education,
potential labor market experience and its squared term, and municipality fixed effects, akin to a Mincer regression. We estimate this regression with flexible interactions to allow for the coefficient of lagged unemployment status to vary with the year of observation. In Figure 22, the top panels show mean birth rates and the bottom panels depict the coefficients on lagged unemployment from this regression, along with similar estimates from regressions for first births and higher parity births.

The top panels show that fertility has been declining over time, with birth rates falling over the sample period. They also show a widening gap over time between those unemployed and those not. Focusing on the regression coefficients, Panel A shows that the relationship between unemployment and birth has become more negative over time: being unemployed is associated with a higher probability of not experiencing the birth of a child in recent years, as compared to earlier years. Panel B shows that this effect is mostly driven by first births: unemployed men are less likely to transition out of childlessness the following year, and this probability has increased over time. Panel C shows that the relationship for higher parity births is also negative, but with a less clear downward trend over time.

These striking findings show that job loss carries a higher penalty in terms of lower fertility in recent years, consistent with the population patterns depicted in Section 3. Men experiencing poor labor market outcomes in recent years are more likely to be “left behind” in terms of family outcomes, and specifically having children. This provides additional evidence on the changing nature of men’s family outcomes over time, and how they are affected by their labor market prospects. Taken together with our findings from the bankruptcy analysis, a clear picture emerges that men’s family outcomes are shaped by their labor market prospects. Job loss and its associated negative labor market outcomes lead to lower fertility, higher childlessness, and less partnering, with a penalty that has been growing over the last three decades.
Notes: Scatter points in the top panels show fertility rates of men by unemployment status during the prior calendar year, while the bottom panels show the estimated coefficient of individual unemployment status from a regression of birth on registered unemployment the prior year. Regression controls for educational attainment, experience and its square, year of observation, and municipality fixed effects, and allows for the coefficient of lagged unemployment to vary by observation year. Standard errors are clustered by municipality. Sample consists of men age 25-35, sample period is 1990-2019. Observation count is 8,881,215. Mean birth rate is 0.098 and mean registered unemployment is 0.143.
7 Conclusion

Using detailed administrative data from Norway, we document a remarkable increase in the inequality of male childlessness across the income distribution. We further show that the poorest men are more likely to be single and that the income gradient in partnership formation has become steeper. To investigate whether labor market shocks may causally explain these descriptive facts, we use bankruptcies to identify the effect of job loss on fertility. We note significant and persistent negative impacts of bankruptcies on employment, earnings, births, total fertility and partnering rates. These do not recover for up to 15 years following the event. A simple calculation indicates that up to 60% of the descriptive earnings-fertility gradient is likely to be driven by a causal relationship. We further show that the relationship between unemployment and fertility has become more negative over time, indicating stronger penalties in recent years for job loss in fertility.

Previous studies frequently do not have data on male fertility and those that do often investigate effects of job loss on fertility within existing couples, finding limited effects of male job loss. We argue that our estimates capture a wider set of effects of job loss on fertility as we include all men, even those single at the time of the shock. We find that bankruptcies affect partnering. As such, the total ramifications of job losses are not captured when conditioning on having a partner. Further, our data encompasses an entire population and we combine a rich descriptive analysis with a robust empirical strategy to show striking new findings on inequality in family life among men.

More generally, we provide new evidence for the existence of “left behind” men, who face wider consequences of stagnating earnings that reach beyond their labor market prospects. Job and earnings losses are associated with higher rates of childlessness and less partnering, and this relationship has increased substantially in magnitude in the recent three decades.
References

A.1 Robustness figures and tables

Figure A.1: Inequality in fertility over time, measured at age 50.

Notes: Scatter points represent ten percent of each cohort of Norwegian men born between 1951 and 1969.
A.2 Results for women

Table A.1: Descriptive statistics, female samples

<table>
<thead>
<tr>
<th></th>
<th>Population</th>
<th>Stacked cross-sectional</th>
<th>Event study (treated siblings)</th>
<th>Event study (control siblings)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Observations</td>
<td>786 779</td>
<td>8 475 174</td>
<td>63 996</td>
<td>76 399</td>
</tr>
<tr>
<td>Childless</td>
<td>0.118 [0.323]</td>
<td>0.380 [0.485]</td>
<td>0.405 [0.491]</td>
<td>0.392 [0.488]</td>
</tr>
<tr>
<td>Birth</td>
<td>0.113 [0.317]</td>
<td>0.095 [0.293]</td>
<td>0.101 [0.302]</td>
<td>0.041 [0.199]</td>
</tr>
<tr>
<td>First birth</td>
<td>0.044 [0.206]</td>
<td>0.040 [0.196]</td>
<td>0.041 [0.206]</td>
<td>0.041 [0.199]</td>
</tr>
<tr>
<td>Single</td>
<td>0.286 [0.452]</td>
<td>0.480 [0.500]</td>
<td>0.511 [0.500]</td>
<td>0.519 [0.500]</td>
</tr>
<tr>
<td>Unemployed (during year)</td>
<td>0.139 [0.346]</td>
<td>0.222 [0.416]</td>
<td>0.144 [0.351]</td>
<td>0.222 [0.416]</td>
</tr>
<tr>
<td>Age</td>
<td>40.0 [.]</td>
<td>30.0 [3.2]</td>
<td>29.6 [4.5]</td>
<td>30.1 [4.6]</td>
</tr>
<tr>
<td>Lifetime earnings rank</td>
<td>50.6 [28.8]</td>
<td>50.0 [25.4]</td>
<td>47.2 [22.7]</td>
<td>51.1 [23.8]</td>
</tr>
<tr>
<td>Father’s lifetime earnings rank</td>
<td>50.5 [28.8]</td>
<td>51.8 [23.1]</td>
<td>50.3 [22.6]</td>
<td>50.2 [22.6]</td>
</tr>
<tr>
<td>Firm size</td>
<td>44.9 [115.6]</td>
<td>1300.1 [3138.9]</td>
<td>1300.1 [3138.9]</td>
<td>1300.1 [3138.9]</td>
</tr>
<tr>
<td>Age range</td>
<td>40</td>
<td>25-35</td>
<td>20-40</td>
<td>20-40</td>
</tr>
</tbody>
</table>

Notes: Samples are restricted to women born in Norway to two Norwegian-born parents and present in the country at the end of the observation year. In column 2, registered unemployment refers to the prior calendar year. Data in columns 3 and 4 limited to individuals 25-35 in the year of event (i.e., year of bankruptcy for treated siblings, year of sampling for non-treated siblings), employed in the private sector in the month of November two years prior to the event, and matched so that the family is represented in both treated and non-treated subsamples.
Figure A.2: Fertility across the earnings distribution.

Notes: Each scatter point represents five percent of Norwegian women born between 1951-1953, 1964-1966, and 1977-1979, respectively. Observation count is 234 454.
Figure A.3: Inequality in fertility over time.

A. Childless age 40, by own rank

B. Childless age 40, by father's rank

C. Children age 40, by own rank

D. Children age 40, by father's rank

Notes: Scatter points represent ten percent of each cohort of Norwegian women born between 1951 and 1979.
Figure A.4: Marital status and number of partners.

Notes: Each scatter point represents five percent of Norwegian women born between 1951-1953, 1964-1966, and 1977-1979, respectively. Panels C and D count the number of unique partners with whom the female has had a child, including zero for those childless at 40. Observation count is 234,454.
Figure A.5: Absolute earnings over time.

Notes: Scatter points represent ten percent of each cohort of Norwegian women born between 1951 and 1978. Earnings are observed at age 40, are inflated to 2018 NOK, and are depicted in units of 100 000. Observation count is 377 233.

Figure A.6: Disability and earnings.

Notes: Each scatter point represents five percent of Norwegian women born between 1964-1966 and 1977-1979, respectively. Disability status is measured by receipt of a permanent disability pension at age 30. Observation count is 154 218. The average disability rate is 0.019.
Notes: Vertical lines indicate year of observed November job (year -2) and year of event (year 0). Sample of treated siblings consists of Norwegian-born women who in year -2 were employed in a firm filing for bankruptcy two years later and age 25-35 in the year of the event, while non-treated siblings in year -2 held a job with an employer that did not file for bankruptcy during the observation period. Samples are restricted to families with both treated and non-treated siblings.

Notes: Vertical dashed lines indicate year of observed November job (year -2) and year of event (year 0). Scatter points show the estimates of β_1 from the estimating equation. See notes to A.7 for a description of samples.
Figure A.9: Sibling comparisons before and after firm bankruptcies, long run.

Notes: Vertical lines indicate year of observed November job (year -2) and year of event (year 0). Sample of treated siblings consists of Norwegian-born women who in year -2 were employed in a firm filing for bankruptcy two years later and age 25-35 in the year of the event, while non-treated siblings in year -2 held a job with an employer that did not file for bankruptcy during the observation period. Samples are restricted to families with both treated and non-treated siblings.
Figure A.10: Effects of firm bankruptcies, long run.

Notes: Vertical dashed lines indicate year of observed November job (year -2) and year of event (year 0). Scatter points show the estimates of β_i from the estimating equation. See notes to A.7 for a description of samples.
Notes: Scatter points show the estimated coefficient of lagged unemployment from a regression of birth on registered unemployment during the previous calendar year. Regression controls for educational attainment, experience and its square, and year of observation. Sample consists of women age 25-35, sample period is 1990-2019. Observation count is 8 475 174. Mean birth rate is 0.113 and mean registered unemployment is 0.139.