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ABSTRACT
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We analyze the optimal nonlinear income tax schedule when taxpayers earn multiple 

incomes and differ along many unobserved dimensions. We derive the necessary conditions 

for the government’s optimum using both a tax perturbation and a mechanism design 

approach, and show that both methods produce the same results. Our main contribution 

is to propose a numerical method to find the optimal tax schedule. Applied to the optimal 

taxation of couples, we find that optimal isotax curves are very close to linear and parallel. 

The slope of isotax curves is strongly affected by the relative tax-elasticity of male and 

female income. We make several additional contributions, including a test for Pareto 

efficiency and a condition on primitives that ensures the government’s necessary conditions 

are sufficient and the solution to the problem is unique.
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Although the one-dimensional population is an extremely useful model for computations

and examination of particular issues, it is not, in that respect, an accurate representation of

reality.

– Mirrlees (1986)

The bi-variate composition of income more generally introduces the question as to how the

optimal design of taxation depends on the degree of correlation of different income sources.

– Atkinson and Stiglitz (2015)

I Introduction

Households typically earn incomes from multiple sources, such as salaries, business in-

comes, dividends, interests or capital gains. Moreover, households often consist of multiple

individuals, each of whom have their own earning abilities. The tax treatment of these different

sources of income differs widely between countries. Optimal tax theory generally neglects the

fact that households earn multiple incomes and that households differ in multiple dimensions

of unobserved heterogeneity. While Mirrlees (1976, Section 4) derives an optimal tax formula

in such a context, it offers virtually no guidance for policymakers. Very few results have been

derived since. Most papers that allow for a multidimensional tax base, either assume that tax-

payers differ in one dimension only, or they impose restrictions on the tax schedule to simplify

the problem.1 The aim of this paper is to investigate the properties of the optimal tax schedule

when both the tax base and the unobserved heterogeneity are multidimensional.

In this paper, we show that the multidimensional optimal tax problem can be decomposed

into two steps. For this purpose, we introduce the concept of an isotax curve, i.e. a set of

income bundles that are associated with the same tax liability. The first step in solving the

multidimensional optimal tax problem is then to determine the shape of these isotax curves.

The second step concerns the assignment of a tax liability to each isotax curve. We show that

the assignment of tax liabilities to the isotax curves satisfies an ABC-formula (see Equation

(19a)) that is a generalization of the ABC-formulas derived by Diamond (1998) and Saez (2001).

This ABC-formula shows how the distributional benefit of a marginal tax increase along an

isotax curve, is to be balanced against the efficiency costs of doing so. The key challenge to

multi-dimensional taxation is then to understand the optimal shape of the isotax curves.

Finding the optimal shape of the isotax curves requires solving a Partial Differential Equa-

tion, which is much more challenging than solving the Ordinary Differential Equation implied

1The one-dimensional model has been pioneered by Mirrlees (1971) and further developed by Diamond (1998).
Saez (2001), Scheuer and Werning (2016) and Jacquet and Lehmann (2021b) discuss to what extent the one-
dimensional model extends to the case with one income but many dimensions of unobserved heterogeneity. Atkin-
son and Stiglitz (1976) study a multidimensional tax base with one dimension of unobserved heterogeneity.
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Figure 1: A perturbation in two dimensions. x1 and x2 are incomes. Perturbing the tax liabilities
within the shaded area, affects the marginal tax rates along the boundary of the shaded area. It
is not possible to change the marginal tax rates at one combination of incomes without affecting
the marginal tax rates at other combinations of incomes.

by the optimal tax formula for a single tax base. In the one-dimensional case, the optimal

marginal tax rate at one income level is expressed as the ratio of mechanical and income effects

at all incomes above, to compensated effects at the income level under consideration. In the

multidimensional case, one can only relate mechanical and income effects within a subset of

income bundles (for example, the shaded area in Figure 1) to compensated responses all around

this subset (the border of the shaded area in Figure 1). Hence, one cannot study the effects of a

change in the tax gradient at one combination of incomes, without causing additional changes

in the tax gradients at other combinations of incomes.

To the best of our knowledge, we are the first to develop a numerical algorithm that ad-

dresses this geometric difficulty and that can solve the optimal multidimensional tax problem

in its general form. We apply our algorithm to the taxation of couples. In our application we

make some simplifying assumptions, similar to Kleven et al. (2006, 2007). We assume quasi-

linear and additively separable household preferences. Moreover, in line with the empirical

literature, we assume that the labor supply of wives is more elastic (0.43) than that of husbands

(0.11) (Bargain and Peichl, 2016). Finally, we non-parametrically calibrate the joint distribution

of skills starting from the joint distribution of incomes in the Current Population Survey (CPS)

of the US census.

We find that the optimal isotax curves are almost linear and parallel, with positive marginal

tax rates for both spouses. We show that a joint income tax that discounts female income by ap-

proximately 53 % closely approximates the fully optimized schedule in terms of social welfare.

Furthermore, we investigate the desirability of negative jointness, i.e. the requirement that the

optimal marginal tax rates of males decrease with female income (and vice versa). Kleven et

al. (2006, 2007) show analytically that negative jointness is desirable when the productivities of

both spouses are assumed uncorrelated. We numerically find that this result is not robust to a
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more realistic joint distribution of productivities.

We perform additional sensitivity analyses to investigate the determinants of the optimal

isotax curves. In each case, we first conjecture the effect that changing some primitive has on

the solution and then numerically check our prediction. Varying the government’s aversion to

inequality, or jointly varying the labor supply elasticity of both males and females has virtually

no effect on the shape of optimal isotax curves. This only narrows or widens the gap between

isotax curves depending on whether optimal marginal tax rates increase (when aversion to in-

equality increases) or decrease (when both elasticities increase). Conversely, only changing the

labor supply elasticity of one spouse changes the slope of the isotax curves. For instance, when

the female labor supply elasticity increases, the optimal marginal tax rate on female income

decreases, whereas the optimal marginal tax rate on male income increases. These changes in

marginal taxes shift the burden of taxation to the less elastic tax base.

Besides our numerical algorithm, we make several theoretical contributions. First, we use a

tax perturbation approach similar to Golosov et al. (2014) to derive a test for Pareto efficiency.

If welfare weights revealed by the optimal tax formula are negative for some income bun-

dles, then decreasing tax liabilities at these income bundles is a Pareto improving tax reform.

We hence extend the revealed social preference approach of Bourguignon and Spadaro (2012),

Bargain et al. (2014a,b), Jacobs et al. (2017), Bierbrauer et al. (2020) and Hendren (2020) to the

multidimensional context.

Second, we use the mechanism design approach pioneered by Mirrlees (1976) to derive

conditions under which the first-order conditions are unique and sufficient to characterize the

optimal allocation. This is the case when the government’s Lagrangian is concave with respect

to the taxpayers’ utilities and to the gradient of the mapping between the taxpayers’ type and

utility. We analytically verify that the specification we use in our numerical exercise satisfies

these sufficiency conditions. Hence, once we have obtained a numerical solution that verifies

the government’s necessary conditions, we can be sure that this solution is unique. Therefore,

it is not necessary to conduct sensitivity analyses with respect to the initial conditions of our

algorithm.

Third, we show that the tax perturbation approach and the mechanism design approach

lead to the same "hybrid" optimal tax formula expressed in terms of welfare weights, behav-

ioral elasticities and type densities, thereby ensuring that the two approaches are mutually

consistent. Moreover, this hybrid formula turns out to be the most suitable to implement nu-

merically.

Fourth, some scholars may doubt the tax perturbation approach rigorously derives the op-

timal tax formulas. We address their concerns. The tax perturbation approach pioneered by

Saez (2001) in the one-dimensional case states that the optimal tax schedule should be such

that some incremental tax reforms do not lead to first-order improvements. Golosov et al.

(2014) extend the approach of Saez (2001) to the case with multiple incomes. Furthermore, they

address the concern that Saez (2001) only considers reforms that consist in a uniform change

3



in the marginal tax rate in a small interval of the income distribution and a uniform change

in tax liability at all incomes above. While these tax reforms are very convenient to convey

the economic intuitions behind the optimal tax formula, these reforms generate kinks whose

effects are neglected. Golosov et al. (2014) consider the responses to all types of smooth tax

reforms. We address a remaining concern, namely that both Saez (2001) and Golosov et al.

(2014) assume that incomes respond smoothly to the size of tax perturbations. We instead apply

the implicit function theorem to demonstrate how incomes respond smoothly to the size of tax

perturbations. For that purpose, we make explicit the assumptions on the tax schedule that

ensure smooth responses of taxpayers to tax reforms. Our assumptions rule out kinks in the

tax schedule, and the existence of multiple global maxima, preventing incremental tax per-

turbations from causing jumps in the taxpayers’ choices. Furthermore, we make explicit the

underlying single-crossing assumptions that enable the derivation of the optimality conditions

in the tax perturbation approach.

Fifth, we develop a new approach to derive the optimal mechanism. Mirrlees (1976, 1986)

and Kleven et al. (2006, 2007) derive necessary conditions for the optimal allocation of utili-

ties and incomes. With these incomes, it is possible to use the first-order incentive constraints

to deduce the partial derivatives of the attained utilities with respect to the types. However,

many different income allocations fulfill the necessary conditions for the optimum, and noth-

ing at this stage ensures that the obtained partial derivatives of the attained utilities are mu-

tually consistent, i.e. that they imply symmetric second-order partial derivatives. Mirrlees

(1976, p. 342) and Kleven et al. (2007, p. 18) acknowledge this difficulty by stating that among

the different solutions of the partial differential equation, only the one that implies symmetric

second-order cross derivatives should be considered. We prevent these difficulties by directly

choosing the utility profile and deriving the incomes as functions of the utility profile and its

partial derivatives.

Lastly, we derive optimal tax schedules when the numbers of types and incomes differ.

When there are more types than incomes, the tax perturbation approach is the most natural. In

that case, the same optimal tax formulas are obtained as before by averaging sufficient statics

among the different taxpayers with the same income bundles. We thus extend the results ob-

tained by Saez (2001) and Jacquet and Lehmann (2021b) to the case where taxpayers earn more

than one income. When there are more incomes than types, we show that the government’s

problem consists of two steps. It starts with a subprogram that finds the most efficient way

of distributing income choices to generate a given mapping from types to utility levels. This

mapping does not depend on the preferences of the government, but only on the resource costs

of providing these utility levels. In a second step, the government selects the optimal map-

ping of types to utilities from the set of possible mappings. Similar subprograms are implicitly

found in the settings of, for example, Atkinson and Stiglitz (1976), Golosov et al. (2003, 2007)

and Gerritsen et al. (2020).

Our paper is related to the multidimensional screening problem that was studied in the
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context of monopoly pricing by Armstrong (1996), Rochet and Choné (1998) and Basov (2005).

Rochet and Choné (1998) show that bunching is a problem in this setting because of the in-

terplay between the participation and the incentive constraints. Kleven et al. (2007) show that

bunching is not an issue in the optimal tax problem if taxpayers do not face a participation

constraint, provided that aversion to inequality is not too high. Our paper is also related to

Jacquet and Lehmann (2021a), who also consider the optimal taxation of multiple incomes,

additionally allowing for general equilibrium effects. However, they derive their optimal tax

expressions by restricting the overall tax schedule to be the sum of separate schedules of single

tax bases, a restriction that we do not impose.

The paper is organized as follows. We describe the problem of multidimensional optimal

taxation in Section II. Section III is devoted to the tax perturbation approach, and Section IV is

devoted to the mechanism design approach. We present our numerical algorithm and results

in Section V.

II The model

In this section we introduce the set-up of our model. First, we introduce the preferences

and the budget constraints of the households, and we derive the first-order conditions for their

optimization problem. Next, we turn to the preferences and the budget constraint of the gov-

ernment.

II.1 Taxpayers

The economy consists of a unit mass of taxpayers who differ in a p-dimensional vector of

characteristics denoted w
def
≡ (w1, ..., wp). We refer to the complete vector of characteristics of

a taxpayer as her type. Types are drawn from the type space, which is denoted W ⊂ R
p and

is assumed to be closed and convex. Types are distributed over the type space according to a

twice continuously differentiable density denoted by f (·), which is positive over W .

Taxpayers make n ≥ 2 different choices. This implies the existence of n different observable

tax bases, x
def
≡ (x1, ..., xn) ∈ R

n
+. We call these tax bases incomes for brevity.2 Taxpayers pay

a tax T(x) that can depend on all incomes in a nonlinear way. Taxpayers who earn incomes x

consume after-tax income c = ∑
n
i=1 xi − T(x1, ..., xn).

The preferences of taxpayers of type w over consumption c and income choices x are de-

scribed by a thrice continuously differentiable utility function U (c, x; w) defined over R
n+1
+ ×

W . Taxpayers enjoy utility from consumption but endure disutility to obtain income, so Uc > 0

and Uxi
< 0. Let C(·, x; w) be the inverse of U (·, x; w). That is, a taxpayer of type w earning in-

comes x should consume C(u, x; w) to enjoy utility level u. It follows from the implicit function

theorem that Cu = 1/Uc and Cxi
= −Uxi

/Uc. We assume the utility function U (·, ·; w) is weakly

2Our model could be extended to include observable actions like private expenditures in education, which cor-
respond to negative cash-flows for the households. This extension would not affect the validity of our results.
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concave in (c, x) and indifference sets defined by c = C(u, x; w) are strictly convex in (c, x) for

all utility levels u and all types w.

We assume taxpayers maximize utility subject to their budget constraints. Therefore, a

taxpayer of type w solves:

U(w)
def
≡ max

x1,...,xn

U

(
n

∑
i=1

xi − T(x1, ..., xn), x1, ..., xn; w

)
. (1)

Let X(w)
def
≡ (X1(w), ..., Xn(w)) denote the solution to this program and let C(w)

def
≡ ∑

n
i=1 Xi(w)−

T(X(w)) denote the corresponding consumption of taxpayers of type w. In addition, we de-

note the marginal rate of substitution between the ith income and consumption at any bundle

(c, x) as:3

S i(c, x; w)
def
≡ −

Uxi
(c, x; w)

Uc(c, x; w)
= Cxi

(U(c, x; w), x; w) > 0. (2)

We can then write the first-order conditions for taxpayers of type w as:

∀j ∈ {1, ..., n} : S j (C(w), X(w); w) = 1 − Txj
(X(w)) . (3)

II.2 Government

The government’s budget constraint is given by:4

B
def
≡
∫∫

W
T(X(w)) f (w)dw ≥ E, (4)

where E ≥ 0 is an exogenous amount of public expenditure. The government’s objective is a

social welfare function O which aggregates the utility of the households in the economy:

O
def
≡
∫∫

W
Φ (U(w); w) f (w)dw, (5)

where the transformation (u; w) 7→ Φ(u; w) is twice continuously differentiable in (u, w), in-

creasing and weakly concave in u and potentially type-dependent. The government’s problem

consists of finding the tax function T(·) that maximizes the social welfare function (5) subject

to revenue constraint (4), taking into account the households’ optimization in (1).

The Lagrangian for the government’s optimization problem is defined in monetary terms

as:

L
def
≡ B +

O

λ
=
∫∫

W

(
T(X(w)) +

Φ (U(w); w)

λ

)
f (w)dw − E, (6)

where λ is the Lagrange multiplier of the government’s budget constraint. The Lagrange mul-

tiplier λ is interpreted as the social value of public funds (expressed in social utility units). Fol-

lowing Saez (2001), we define the welfare weights of taxpayers of type w as the social marginal

utility of consumption expressed in monetary terms:

g(w)
def
≡

Φu (U(w); w) Uc (C(w), X(w); w)

λ
≥ 0. (7)

3While the functions S i and Cxi both correspond to the marginal rate of substitution, they admit different ar-
guments. For given pre-tax incomes x and types w, the marginal rate of substitution S i admits consumption c as
an argument, while function C admits utility level u as an argument. Hence, when differentiating with respect to
incomes or types, the derivatives of S i hold for a given consumption income c, while the derivatives of C hold along
the indifference surface c = C(u, x; w).

4We use
∫∫

as shorthand notation to denote an integral over several dimensions.
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III The Tax Perturbation Approach

We first study the government’s optimization problem using the tax perturbation method.

The intuition behind the tax perturbation method is well known in the one-dimensional case

since Saez (2001). Golosov et al. (2014) extend the method to the case with many incomes

and types. We make a number of contributions to this literature. We start by providing suffi-

cient conditions on the tax schedule under which we can show that taxpayers’ choices respond

smoothly to tax reforms. Up to now, the tax perturbation literature assumed that taxpayers re-

spond smoothly to small changes in the tax reform. We show how this imposes an implicit

requirement on the smoothness of the tax function.

With the given assumptions about the smoothness of the tax schedule, we provide a condi-

tion under which a given tax reform is socially desirable (Section III.1). This condition allows

us to study the optimal tax schedule: if no tax reform exists that is socially desirable, then we

are in the optimum.

We provide new intuitions by splitting the search for the optimal tax schedule into two

consecutive steps. In the first step, the shapes of the isotax curves are determined.5 In the

second step, the tax liabilities for each of the isotax curves are determined. We show that once

the shapes of the isotax curves are known, the tax liability belonging to each isotax curve can

be determined through an ABC-style (Diamond, 1998) optimal tax formula (III.2).

Next, we derive conditions for the fully optimal tax schedule, and interpret them in eco-

nomic terms. We use this formula for the optimal tax schedule to provide an equation that

allows performing an inverse optimum exercise, extracting the revealed welfare weights from

a given tax schedule. Using these revealed welfare weights, we explain how to test whether a

given tax schedule is Pareto dominated. Finally, we show how to construct Pareto-improving

tax reforms when the tax schedule is indeed Pareto dominated (III.3).

III.1 Effects of tax perturbations

A necessary condition for a tax schedule to be optimal is that small perturbations of the

schedule do not change social welfare. Golosov et al. (2014) argue that the effects of a tax

perturbation on social welfare consist of mechanical effects on the government budget, effects

on household utilities through the altered tax liabilities, and effects on the government budget

through behavioral responses of the taxpayers. In the optimum, the sum of these effects should

be zero.

We first formally introduce the perturbations to the tax schedule. Perturbing the tax sched-

ule x 7→ T(x) in the direction R(·) by magnitude t S 0 leads to the perturbed tax schedule

x 7→ T(x)− t R(x). If R(x) > 0 and t > 0 or if R(x) < 0 and t < 0, the perturbation decreases

the tax liabilities at incomes x. The reverse occurs if R(x) < 0 and t > 0 or if R(x) > 0 and

5An isotax “curve” is defined as the loci of incomes x that are associated with the same tax liability T(x). Formally
these loci are “curves” only if n = 2. If n = 3, they are isotax surfaces. If n ≥ 4 they are isotax hypersurfaces, etc. We
maintain the term “isotax curves” for simplicity.
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t < 0. Given a tax perturbation in the direction R(·), the utility of taxpayers of type w becomes

a function of magnitude t through:

ŨR(w, t)
def
≡ max

x1,...,xn

U

(
n

∑
i=1

xi − T(x1, ..., xn) + t R(x1, ..., xn), x1, ..., xn; w

)
. (8)

By definition, we know that: ŨR(w, 0) = U(w). The first-order conditions associated to (8) are:

∀j ∈ {1, ..., n} : S j

(
n

∑
i=1

xi − T (x) + t R (x) , x; w

)
= 1 − Txj

(x) + t Rxj
(x) . (9)

If we perturb the tax schedule or any of the characteristics of the households, then the

households will update their choices such that first-order conditions (9) remain satisfied. We

now introduce assumptions on the unperturbed tax schedule that allow applying the implicit

function theorem to (9) in order to study these behavioral responses. If we can apply the im-

plicit function theorem, then it necessarily follows that the function X̃R(w, t) that solves (8) is

continuously differentiable for t close to 0.

Assumption 1. Tax schedule T(·) verifies the following assumptions:

i) The tax schedule x 7→ T(x) is twice continuously differentiable.

ii) For each type w ∈ W , the second-order conditions associated to (1) are strictly verified, i.e. the

matrix [S i
xj
+ S jS i

c + Txixj
]i,j is positive definite at c = C(w) and x = X(w).6

iii) For each type w ∈ W , the function x 7→ U (∑n
i=1 xi − T(x), x; w) admits a single global maxi-

mum.

Assumption 1.i) rules out kinks like those in piecewise linear tax schedules.7 It ensures

that the first-order conditions (9) are continuously differentiable in t, w and x, provided that

the direction R(·) is twice continuously differentiable. Assumption 1.ii) ensures that the first-

order conditions (9) are associated with a local maximum of the taxpayers’ program (8). Parts

i) and ii) of Assumption 1 together enable one to apply the implicit function theorem to deter-

mine how a local maximum of (8) is affected by a small tax perturbation or a small change in

types. Assumption 1 iii) rules out the existence of multiple global maxima. This prevents an

incremental tax perturbation from causing a “jump” in the taxpayers’ choices from one max-

imum to another. At such jumps, the derivative of X̃R(w, t) with respect to the size t of the

perturbation tends to infinity, so the perturbation approach cannot be used.

Given that we assume that the indifference sets defined by c = C(u, x; w) are strictly con-

vex, Assumption 1 is automatically verified if the tax schedule is linear (see Appendix A.1).

6We let [a(k)]k denote a column vector whose kth row is a(k), [A(k, ℓ)]k,ℓ denotes a square matrix of size n whose

kth row and ℓth column is A(k, ℓ), and · stands for the matrix product. The transpose operator is denoted with
superscript T, and the inverse operator is denoted with superscript −1.

7In reality, most convex kinks in the tax schedule do not cause significant bunching. It is thus reasonable to
assume that taxpayers base their decisions on a smooth approximation of the actual tax schedule. Smoothed ap-
proximations of piecewise linear schedules are twice-differentiable as assumed in 1 i).
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Moreover, Assumption 1 amounts to assuming that the budget mapping x 7→ ∑
n
i=1 xi − T(x)

induced by the tax function is everywhere either concave, linear or less convex than the cor-

responding indifference sets. Geometrically, it implies that for each type w, the indifference

set defined by c = C(U(w), x; w) admits a single tangency point with the budget set defined

by c = ∑
n
i=1 xi − T(x) and lies strictly above the budget set elsewhere. In the simulations, we

characterize the optimal tax schedule under the presumption that Assumption 1 holds, and we

verify ex post that this is the case. This is similar to the standard first-order mechanism design

approach which presumes the second-order incentive constraints do not bind in the optimum,

and verifies ex post that this is actually the case (Mirrlees, 1971, p. 188).

The effects of any tax perturbation can be decomposed into the effects of two types of proto-

typical tax reforms (see Appendix A.2 for a proof). The first is the lump sum perturbation which

decreases the tax liability by a uniform amount:

x 7→ T(x)− ρ such that : R(x) = 1, (10a)

where we use ρ to denote the magnitude of this specific perturbation. Second, there are com-

pensated perturbations of the jth marginal tax rate for taxpayers of type w which are defined as:

x 7→ T(x)− τj

(
xj − Xj(w)

)
such that : R(x) = xj − Xj(w), (10b)

where we use τj to denote the magnitude of these specific perturbations. These perturbations

are said to be “compensated for taxpayers of type w” because they change the marginal tax

rate of type w but leave the tax liability at incomes x = X(w) unchanged.

Let us denote by ∂Xi(w)/∂ρ and ∂Xi(w)/∂τj the responses for taxpayers of type w of their

ith income to, respectively, the lump sum perturbation (10a) and to the compensated pertur-

bation (10b) of the jth marginal tax rate.8 A variation in t affects the first-order conditions (9)

through the changes in the marginal tax rates on the right-hand side of (9). In addition, a

variation in t affects the first-order conditions (9) through the changes in the tax liabilities that

determine the marginal rates of substitution on the left-hand side of (9). Consequently, for each

type w, a variation dt induces the same responses as a lump-sum perturbation (10a) of size

R (X(w)) dt, combined with compensated perturbations of each of the n marginal tax rates

(10b) of respective sizes Rxj
(X(w)) dt. We thus get (see Appendix A.2):

∂X̃R
i (w, t)

∂t

∣∣∣∣∣
t=0

=
∂Xi(w)

∂ρ
R(X(w))

︸ ︷︷ ︸
Income responses

+
n

∑
j=1

∂Xi(w)

∂τj
Rxj

(X(w))

︸ ︷︷ ︸
Compensated responses

. (11)

8Strictly speaking, these responses do not just depend on the type w, but also on the consumption c = C(w)
and the incomes x = X(w) of the evaluated types, as well as on the Hessian of the tax function. When the tax
function is nonlinear, the responses to a tax reform generate changes in the marginal tax rates, which further induce
compensated responses to these changes in marginal tax rates, etc. (Saez, 2001). By applying the implicit function
theorem, the income responses ∂Xi(w)/∂ρ and compensated responses ∂Xi(w)/∂τj encapsulate this “circular pro-
cess” through the endogeneity of the marginal tax rates. We therefore refer to these responses as total responses.
Conversely, the empirical literature typically estimates direct responses by assuming the tax schedule is linear, thus
ignoring the circularity of the process. We discuss the relation between direct and total responses in Appendix A.3.
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Note that our approach differs from that of Golosov et al. (2014). While they assume that

the function t 7→ X̃R(w, t) is Lipschitz continuous, we show that t 7→ X̃R(w, t) is continuously

differentiable at t = 0, such that Equation (11) holds whenever the unperturbed tax schedule

verifies Assumption 1.

We now investigate whether, starting from a tax schedule T(·) that is not necessarily opti-

mal, a perturbation in a direction R(·) is socially desirable. We evaluate the social desirability

of the tax reform by investigating its effects on the following perturbed “Lagrangian”:

L̃R(t, λ)
def
≡
∫∫

W



T(X̃R(w, t))− t R(X̃R(w, t)) +

Φ
(

ŨR(w, t); w
)

λ



 f (w)dw − E, (12)

where λ > 0 denotes the social value of public funds indicating how the government trades off

social welfare (5) for tax revenue (4). We evaluate the effects of a tax reform on the perturbed

Lagrangian by computing its effects, first, on the governments’ revenue (4), and second, on the

social objective (5).

To analyze the effect of a tax perturbation on the government’s budget constraint (4), we

compute the response of the tax liabilities T(X̃R(w, t))− t R(X̃R(w, t)) to a change in the mag-

nitude t of the tax perturbation and evaluate at t = 0. For each taxpayer, the tax liabili-

ties are modified in two ways. First, independently of any behavioral change, the tax rev-

enue is directly affected by the mechanical effect: −R(X(w)). Second, taxpayers of type w re-

spond to the tax perturbation by changing their incomes through the behavioral responses

(∂X̃R
i (w, t)/∂t)|t=0, for i = 1, ..., n. The total change in the tax liability due to the perturbation

thus equals:

∂T(X̃R(w, t))− t R(X̃R(w, t))

∂t

∣∣∣∣∣
t=0

= −R(X(w))︸ ︷︷ ︸
Mechanical effects

+
n

∑
i=1

Txi
(X(w))

∂X̃R
i (w, t)

∂t

∣∣∣∣∣
t=0︸ ︷︷ ︸

Behavioral effects

. (13)

Combining Equations (11) and (13) leads to:

∂T(X̃R(w, t))− t R(X̃R(w, t))

∂t

∣∣∣∣∣
t=0

=

[
−1 +

n

∑
i=1

Txi
(X(w))

∂Xi(w)

∂ρ

]
R(X(w)) (14)

+ ∑
1≤i,j≤n

Txi
(X(w))

∂Xi(w)

∂τj
Rxj

(X(w)) .

Next, we evaluate the effect of the tax perturbation on the social objective. Under Assump-

tion 1, behavioral responses only induce second-order effects on the taxpayers’ utilities. There-

fore, the tax perturbation only affects the social objective through mechanical effects. Applying

the envelope theorem to social welfare Φ(U) after inserting (8) and using (7) leads to:

1

λ

∂Φ
(

ŨR(w, t); w
)

∂t

∣∣∣∣∣∣
t=0

= g(w) R (X(w)) . (15)
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For any perturbation in direction R(·) and with magnitude t, there exists a lump-sum trans-

fer denoted ℓR(t) such that the combination of the two perturbations is budget-balanced, i.e.

x 7→ T(x)− t R(x) + ℓR(t) is a budget-balanced perturbation. Given a direction R(·), it is not

easy to compute the magnitude ℓR(·) of the lump sum transfer that makes the overall combi-

nation budget-balanced. However, if the social value of public funds λ is normalized such that

a lump-perturbation (10a) has no impact on the Lagrangian (6), i.e. if:

0 =
∫∫

W

[
1 − g(w)−

n

∑
i=1

Txi
(X(w))

∂Xi(w)

∂ρ

]
f (w)dw, (16)

then one only needs to evaluate the effect of the perturbation in the direction R(·) on the La-

grangian (6) to get the sign of the effect of the combined perturbation on social welfare O. This

finding is expressed in the following proposition (proven in Appendix A.4):

Proposition 1. Under Assumption 1, and when λ is such that (16) holds, a tax perturbation in the

direction R(·) with t > 0
(

respectively t < 0
)

combined with a lump-sum rebate of the net budget

surplus generated by the perturbation is welfare improving if and only if (∂L̃R(t, λ)/∂t)|t=0 > 0(
resp. (∂L̃R(t, λ)/∂t)|t=0 < 0

)
, where:

∂L̃R(t, λ)

∂t

∣∣∣∣∣
t=0

=
∫∫

W

{[
g(w)− 1 +

n

∑
i=1

Txi
(X(w))

∂Xi(w)

∂ρ

]
R (X(w)) (17)

+ ∑
1≤i,j≤n

Txi
(X(w))

∂Xi(w)

∂τj
Rxj

(X(w))

}
f (w)dw.

In subsections III.2 and III.3, we apply this proposition to derive the optimal-tax function

under fixed isotax curves and for the general case, respectively. However, Proposition 1 also

holds outside of the social optimum.

III.2 Optimal taxation for given isotax curves

It is possible to decompose the design of the optimal tax schedule x 7→ T(x) into two steps.

The first step concerns the design of the isotax curves, which are the loci of incomes x that are

associated with the same tax liability. The second step concerns the assignment of a specific

tax liability to each isotax curve. In this subsection, we apply Proposition 1 to show that the

solution to the second step is characterized by a tax formula reminiscent of the ABC-formula

of Saez (2001) that characterizes the optimal schedule with a one-dimensional base.

We thus decompose the tax schedule x 7→ T(x) into two consecutive mappings. The first

mapping defines a taxable income y = Γ(x) ∈ R for each combination of incomes x. Values

of x with the same tax liability T(x) map to equal values of Γ(x). Assuming that Γ(·) is twice

continuously differentiable and that it admits a non-zero gradient everywhere, it follows that

combinations of incomes with equal values of taxable income y are on the same isotax curve.

The second mapping, denoted T , assigns a tax liability to each taxable income y so that we

11



have T(x) = T (Γ(x)).9 We then consider perturbations of the form x 7→ T (Γ(x))− t R (Γ(x)),

where the direction R(·) admits taxable income Γ(x) as its single argument. We thus only con-

sider perturbations of the function T , while isotax curves y = Γ(x) are preserved. We denote

as Y(w) = Γ(X(w)) the realized taxable income for taxpayers of type w under the unperturbed

tax schedule, and as ỸR(w, t) = Γ(X̃R(w, t)) the realized taxable income of taxpayers of type w

under the perturbed tax schedule x 7→ T (Γ(x))− t R (Γ(x)).

The lump sum perturbation (10a) defines the income response of taxable income as:

∂Y(w)

∂ρ
=

n

∑
i=1

Γxi
(X(w))

∂Xi(w)

∂ρ
. (18a)

We show in Appendix A.5 that the compensated tax perturbation at taxable income Y(w) in

the direction R(y) = y −Y(w) of size τ causes the following compensated responses of taxable

income for taxpayers of type w:

∂Y(w)

∂τ

def
≡ ∑

1≤i,j≤n

Γxi
(X(w))

∂Xi(w)

∂τj
Γxj

(X(w)). (18b)

Let m(·) denote the density of taxable income Y and let M(·) denote the corresponding cumu-

lative density function. In addition, let ∂Y(y)/∂τ, ∂Y(y)/∂ρ and g(y) denote the mean values

among taxpayers earning Y(w) = y of the compensated responses ∂Y(w)/∂τ, the income re-

sponses ∂Y(w)/∂ρ and the welfare weights g(w) respectively. We show in Appendix A.5 that

the optimal assignment of tax liabilities to the isotax curves verifies the following Proposition.

Proposition 2. The optimal assignment of tax liabilities to each isotax curve verifies the optimal income

tax formula:

T ′(y)

1 − T ′(y)
=

1

ε(y)

1 − M(y)

y m(y)

∫ ∞

z=y

[
1 − g(z)− T ′(z)

∂Y(z)

∂ρ

]
m(z)

1 − M(y)
dz, (19a)

together with transversality condition:

0 =
∫ ∞

z=0

[
1 − g(z)− T ′(z)

∂Y(z)

∂ρ

]
m(z)dz, (19b)

where we define the compensated elasticity at income y:

ε(y)
def
≡

1 − T ′(y)

y

∂Y(y)

∂τ
. (19c)

Formula (19a) is similar to Equation (19) in Saez (2001) with the exception that it is defined

over taxable income rather than labor income. The distortions arising from a change in the

marginal tax rate in the neighborhood of isotax curve y are proportional to the compensated

elasticity ε(y) and to y m(y). In the optimum, these distortions should be offset by the sum

of the mechanical effects, 1 − g(z), and the income response effects, T ′(z) (∂Y(z)/∂ρ), for all

taxable incomes z above y.

9We call y taxable income because this is the most natural interpretation of such a summary statistic. Mathemat-
ically, however, it is just some statistic determined by the combination of income choices x.
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Since we can replicate known results from the one-dimensional problem so readily in as-

signing tax liabilities to given isotax curves, the difficulty of solving the multidimensional tax

problem does not lie in this step. The problem of assigning tax liabilities to given isotax curves

is reminiscent of solving an optimal tax problem with one observable income and n dimensions

of heterogeneity. The solution to this problem has already been described in Saez (2001), Hen-

dren (2020) and Jacquet and Lehmann (2021b) through equations equivalent to (19a) and (19b).

However, the complementing step of designing the optimal shape of isotax curves is novel and

causes new difficulties.

Two observations are worth emphasizing at this point. First, Equations (19a) and (19b) are

also valid if the design of the isotax curves is suboptimal. Appendix A.5 derives both equations

without assuming that the isotax curves are set optimally. Second, the decomposition of the tax

schedule into a definition of taxable income, Γ(·), and an assignment of a tax liability to each

level of taxable income, T (·), is not unique. If α is a differentiable and increasing function,

the same tax schedule can also be decomposed by defining taxable income as Γ̂(x)
def
≡ α (Γ(x))

and assigning tax liability by T̂ (ŷ)
def
≡ T

(
α−1(ŷ)

)
. We verify in Appendix A.5 that Equations

(19a) and (19b) remain valid provided that taxable income densities, compensated responses

and income responses are adequately redefined. Hence, this decomposition is without loss of

generality.

III.3 Optimal tax formula

We now apply Proposition 1 to the more general problem of designing the optimal in-

come tax schedule in the income space. We introduce the following notations. Let X
def
≡

{x|∃w ∈ W : x = X(w)} denote the range of the type set W under the allocation w 7→ X(w).

Let h(x) denote the joint density of incomes x, which is defined over X . Finally, for each com-

bination of incomes x ∈ X , let ∂Xi(x)/∂τj, ∂Xi(x)/∂ρ and g(x) respectively denote the means

of ∂Xi(w)/∂τj, ∂Xi(w)/∂ρ and g(w) among taxpayers whose type w is such that they earn the

combination of incomes X(w) = x.

At the optimum, there should not exist an infinitesimal perturbation of the tax schedule

that would induce a first-order effect on the government’s objective. According to Proposition

1, this is equivalent to demanding that the right-hand side of Equation (17) equals zero for

any direction R(·). To derive an optimal tax formula from this requirement, we rewrite (17) in

the income space, which requires the following assumption about the regularity of the optimal

allocation:

Assumption 2. The sufficient statistics h(x), ∂Xi(x)/∂τj, ∂Xi(x)/∂ρ and g(x) are continuously dif-

ferentiable functions of x.

At the end of this subsection, we provide sufficient microfoundations to illustrate the plau-

sibility of Assumption 2. The following proposition then characterizes the optimal tax schedule

(see the proof in Appendix A.6).
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Proposition 3. Under Assumptions 1 and 2, the optimum has to verify the Euler-Lagrange equation:

∀x ∈ X :

[
1 − g(x)−

n

∑
i=1

Txi
(x)

∂Xi(x)

∂ρ

]
h(x) = −

n

∑
j=1

∂

[
n

∑
i=1

Txi
(x)

∂Xi(x)

∂τj
h(x)

]

∂xj
, (20a)

and the boundary conditions:

∀x ∈ ∂X : ∑
1≤i,j≤n

Txi
(x)

∂Xi(x)

∂τj
h(x) ej(x) = 0, (20b)

where ∂X denotes the boundary of X , and e(x) = (e1(x), ..., en(x)) denotes the outward unit vector

normal to the boundary at x.

Proposition 3 provides a divergence equation that should hold for any income x ∈ X . A

more intuitive formulation can be obtained by integrating the Euler-Lagrange Partial Differen-

tial Equation (20a) on any subset Ω ⊆ X of the income set. Applying the divergence theorem

yields the following corollary:

Corollary 1. Under Assumptions 1 and 2, the optimum has to verify the following integrated Euler-

Lagrange equations for any subset of incomes Ω ⊆ X with smooth boundary ∂Ω and outward unit

normal vectors e(x) = (e1(x), ..., en(x)):10

−
∮

∂Ω

∑
1≤i,j≤n

Txi
(x)

∂Xi(x)

∂τj
ej(x) h(x)dΣ(x) =

∫∫

Ω

[
1 − g(x)−

n

∑
i=1

Txi
(x)

∂Xi(x)

∂ρ

]
h(x)dx. (20c)

x1

x2

R(x) = 1

Ω

∂Ω

δe(x)

Figure 2: Intuition for Proposition 3

To clarify the economic intuition of Corollary 1, we now provide an heuristic derivation of

Equation (20c) for the case with two incomes (n = 2). In doing so, we extend the heuristic

derivation of the optimal tax formula provided by Saez (2001) for the one-dimensional case to

10The symbol
∮

denotes a (hyper)-surface integral and dΣ(x) is the corresponding measure.
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the multidimensional case.11 We consider a tax reform, illustrated in Figure 2, that consists of

two parts:

i. Inside the subset of incomes Ω (shaded area in Figure 2): A lump sum perturbation (10a)

that uniformly decreases tax liability by t for all households with incomes x ∈ Ω before

the reform. Using R(X(w)) = 1 and Rxi
(X(w)) = 0 inside Ω, only mechanical and income

effects matter for types with incomes X(w) ∈ Ω. From (14) and (15), the contributions of

the mass h(x) of taxpayers with initial income x inside Ω to the change in the government’s

objective L̃(t) is therefore given by:

−

[
1 − g(x)−

n

∑
i=1

Txi

∂Xi(x)

∂ρ

]
h(x).

Integrating these effects over all incomes x inside the shaded area Ω leads to minus the

right-hand side of (20c).

ii. Inside a ring of width δ around Ω (area between the shaded area and the dashed curve

in Figure 2): The tax gradient (Tx1
, ..., Txn) must change to ensure tax liabilities uniformly

decrease by t inside Ω and are unchanged outside a ring of width δ around Ω. For this

purpose, along any radius normal to the boundary ∂Ω, the tax gradient (Tx1
, ..., Txn) has

to be perturbed in a direction such that Rxj
(X(w)) = −ej(x)/δ for all j ∈ {1, ..., n}, where

(e1(x), ..., en(x)) is the outward unit vector normal to ∂Ω at income x. If the width δ of the

ring around Ω is sufficiently small, then the effects of changes in tax liabilities within the

ring are of second-order importance compared to those inside Ω. We therefore approxi-

mate the tax perturbation in the ring by the n compensated tax perturbations (10b) of sizes

−ej(x)/δ. This allows us to use (14) and R(X(w)) ≃ 0 to approximate the contribution by

taxpayers with initial income x inside the ring to the change in the government’s objective

L̃(t) as:

−
1

δ ∑
1≤i,j≤n

Txi

∂Xi(x)

∂τj
ej(x) h(x).

Integrating this expression, first along a radius of width δ normal to ∂Ω, and second along

the boundary ∂Ω of Ω leads to the left-hand side of (20c).

If the initial tax schedule is optimal, the substitution effects inside the ring of width δ around

Ω must be exactly offset by the mechanical and income effects inside Ω, which leads to (20c).

Following Bourguignon and Spadaro (2012), Bargain et al. (2014a,b) and Jacobs et al. (2017),

one can use Proposition 3 to reveal the social preferences that are consistent with the existing

tax schedule. According to Equation (20a), the revealed marginal welfare weights are given by:

ĝ(x)
def
≡

[
1 −

n

∑
i=1

Txi
(x)

∂Xi(x)

∂ρ

]
+

1

h(x)

n

∑
j=1

∂

[
n

∑
i=1

Txi
(x)

∂Xi(X(w))

∂τj
h(x)

]

∂xj
. (22)

11The derivation follows the graphical proof of Kleven et al. (2006) and Golosov et al. (2014). We extend their
proof as we do not restrict our derivations to specifically chosen rectangular income subsets Ω. Note that the area
Ω does not need to be convex, unlike what might be suggested by Figure 2.
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If for some income x these revealed marginal welfare weights are negative, then there exists a

Pareto-improvement to the current tax schedule. We thus get a necessary condition for a given

tax schedule to be Pareto efficient (see the proof in Appendix A.7).

Proposition 4. Under Assumptions 1 and 2:

i) If for some incomes x⋆ inside X one has ĝ(x⋆) < 0 then an incremental tax perturbation that

decreases tax liabilities in an interior neighborhood of x⋆ is Pareto improving.

ii) A Pareto efficient tax schedule must lead to ĝ(x) ≥ 0 for all x ∈ X .

Part ii) of Proposition 4 provides a necessary condition in terms of observable statistics to

test whether the current tax system is Pareto efficient. If the test fails, Part i) of Proposition 4

provides a Pareto improving tax reform. This result extends the findings of Werning (2007),

Lorenz and Sachs (2016), Hendren (2020) and Bierbrauer et al. (2020) to the case where taxpay-

ers earn many incomes.

In the remainder of this section, we discuss a microfoundation under which Assumption

2 holds. We will show that Assumption 2 holds under the following extension of the single

crossing condition to the multidimensional context.

Assumption 2’. The utility function U and the tax schedule T(x) satisfy the following conditions.

i) The number n of different incomes is equal to the number p of unobserved characteristic, i.e. n = p.

ii) The matrix
[
S i

wj

]
i,j

is invertible.

iii) The mapping w 7→
(
S1(c, x; w), ...,Sn(c, x; w)

)
defined on W is injective.

iv) The tax schedule x 7→ T(x) is thrice differentiable.

Part ii) of Assumption 2’ is standard (see Mirrlees, 1976, Section 4 and Renes and Zoutman,

2017). Note that if Part i) and Part iii) of Assumption 2’ hold, then Part ii) also holds. Part iii) is

thus more demanding than Part ii). We state Part ii) because it will be useful in the next section,

when we compare Assumption 2’ with the assumptions required in the mechanism design

approach. Part iv) of Assumption 2’ is more demanding than Assumption 1. It is necessary to

ensure that behavioral responses ∂Xi(w)/∂τj, ∂Xi(w)/∂ρ and ∂Xi(w)/∂wj, which are defined

along nonlinear income tax schedules, vary in a smooth way in the type space at the optimum

(see Appendix A.8). For n = p = 1, Parts i) ii) and iii) of Assumption 2’ are equivalent to

the standard single crossing condition. For n = p ≥ 2, when the utility function is additively

separable:

U (c, x; w) = γ(c)−
n

∑
i=1

υi(xi, wi) where : γ′, υi
xi

, υi
xi ,xi

> 0 6= υi
xi ,wi

(23)
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then both Part ii) and Part iii) become equivalent to υi
xi ,wi

6= 0.12 Combining Assumptions 1 and

2’, we obtain the following Lemma, which we prove in Appendix A.8.

Lemma 1. Under Assumptions 1 and 2’, the mapping w 7→ X(w) is a continuously differentiable

bijection from W into X , and Assumption 2 holds.

In the case where the dimension p of the type set is larger than the dimension n of the

income set, Propositions 3 and 4 remain valid under Assumptions 1 and 2. To ensure that

Assumption 2 holds, one can follow Jacquet and Lehmann (2021b) by assuming that Assump-

tion 2’ holds with respect to an n-dimensional subset of types. Assumption 2 then holds by

“pooling” the p − n types of taxpayers who get the same combinations of incomes.

IV The Mechanism Design approach

While the tax perturbation approach used in Section III rigorously leads to the optimal tax

formula in Proposition 3, one might doubt that this approach is consistent with the mecha-

nism design approach pioneered by Mirrlees (1971, 1976). In the one-dimensional case, Saez

(2001) demonstrates the validity of his approach by re-deriving his formula using the mecha-

nism design approach. In this section, we do the same for the multidimensional case. We first

explain how the traditional mechanism design approach leads to implementation problems in

a multidimensional context. For this reason, we take a different route to derive the optimality

conditions that were originally derived by Mirrlees (1976), in Proposition 5, thereby avoiding

the implementation problems. Next, we derive a formulation of the optimal tax conditions

in terms of welfare weights, behavioral elasticities and type densities, in the type space rather

than the income space. This hybrid formulation allows us to derive conditions under which the

tax perturbation and the mechanism design approaches are equivalent, and it will allow us to

provide simulations for a fully optimized tax schedule in a multidimensional context. Finally,

we provide conditions under which the optimal tax formula is not only necessary but also suf-

ficient to characterize the solution of the government’s problem and to ensure this solution is

unique, in Proposition 6.

The mechanism design approach relies on the Taxation Principle (Hammond, 1979, Gues-

nerie, 1995) according to which it is equivalent for the government to select a tax function

x 7→ T(x) taking into account the taxpayers’ decisions through (1), or to directly select an allo-

cation w 7→ (C(w), X(w)) that verifies the self-selection (or incentive) constraints:

∀w, ŵ ∈ W : U(w)
def
≡ U (C(w), X(w); w) ≥ U (C(ŵ), X(ŵ); w) . (24)

To satisfy (24), the government must select an allocation that assigns a bundle (c, x) to each

type such that each taxpayer is (weakly) better off with the bundle assigned to her type than

12When the utility function takes the form (23), we get S i(c, x; w) = υi
xi
(xi, wi)/γ′(c). Assumption 2’ then

amounts to demanding that the n one-dimensional mappings wi 7→ υi
xi
(xi, wi)/γ′(c) are injective, which is guaran-

teed by υi
xi ,wi

being either everywhere positive or everywhere negative.
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with any bundle assigned to any other type. Hammond (1979) shows that for each allocation

w 7→ (C(w), X(w)) that verifies (24), there exists a tax schedule x 7→ T(x) such that for each

type w, the solution of the taxpayer’s program (1) corresponds to the bundle (C(w), X(w))

designed for her.

Instead of dealing with the double continuum of inequalities in (24), Mirrlees (1971, 1976)

adopts a First Order Mechanism Design approach (henceforth the FOMD). This approach con-

sists of first considering only “smooth” allocations w 7→ (C(w), X(w)) and second to consider

only the first-order incentive constraints:

∀w ∈ W , ∀i ∈ {1, ..., p} :
∂U(w)

∂wi
= Uwi

(C(w), X(w); w) . (25)

The first-order incentive constraints (25) are obtained by applying the envelope theorem to

the maximization of U (C(ŵ), X(ŵ); w) with respect to ŵ and demanding that the maximand

equals w.

In this section, we only consider “smooth” allocations that verify the following assumption.

Assumption 3. The allocation w 7→ (C(w), X(w)) is continuously differentiable and verifies (24).

Under Assumption 3, the FOMD consists of finding a continuously differentiable allocation

that maximizes the government’s Lagrangian:13

∫∫

W

{
n

∑
i=1

Xi(w)− C(w) +
Φ(U(w); w)

λ

}
f (w)dw − E, (26)

among continuously differentiable allocations that verify the first-order incentive constraints

(25). We formulate the government’s problem as choosing the mapping w 7→ U(w) that max-

imizes the government’s Lagrangian (26). For a given mapping U(w), the allocation w 7→

(C(w), X(w)) follows from the gradient of w 7→ U(w) using we can use the first-order incen-

tive constraints (25).

Our approach differs from that of Mirrlees (1976) and Kleven et al. (2007), who choose the

mapping w 7→ (U(w), X(w)) and treat w 7→ C(w) as a residual. The reason we choose a

different approach, is that the traditional approach hides a conceptual problem in the multidi-

mensional context. To see this, let us consider an example. Assume that the utility function is

additively separable, as in (23). We can then rewrite the first-order incentive constraints (25)

as a system of Partial Differential Equations in w 7→ U(w), for a given candidate allocation

w 7→ X(w):

∀w ∈ W , ∀i ∈ {1, ..., p} : Uwi
(w) = −υi

wi
(Xi(w), wi). (27)

If there is only one type, p = 1, integrating the Ordinary Differential Equation (27) for a given

candidate mapping w 7→ X(w) provides the corresponding mapping w 7→ U(w) (up to a con-

stant). Conversely, when p ≥ 2, solving the system of Partial Differential Equations (27) for

13This Lagrangian corresponds to Equation (6) in the perturbation approach, since by construction we have
T(x) = ∑

n
i=1 Xi(w)− C(w).
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a given candidate mapping w 7→ X(w) yields a candidate for the gradient of w 7→ U(w) with

components w 7→ Zi(w)
def
≡ −υi

wi
(Xi(w), wi) for all i ∈ {1, ..., p}. However, not every com-

bination of mappings w 7→ Zi(w) can effectively be the gradient of a mapping w 7→ U(w).

The utility profile w 7→ U(w) has to exhibit symmetric second-order cross-derivatives, i.e.

Uwj,wk
(w) = Uwk ,wj

(w) for all j, k and all w. Hence, only candidate mappings w 7→ X(w) that

imply a utility profile that verifies ∂Zk(w)/∂wj = ∂Zj(w)/∂wk for all j, k and for all w, are im-

plementable. These additional implementability constraints are irrelevant in one-dimensional

optimal tax problems but cannot be ignored in the multidimensional case.14 To avoid the

implementation problems that surface when optimizing w 7→ X(w) in multidimensional tax

problems, we instead directly optimize the mapping w 7→ U(w) and deduce the allocation

w 7→ (C(w), X(w)) from the gradient of w 7→ U(w) using the first-order incentive constraints

(25). By directly choosing the mapping w 7→ U(w), we automatically incorporate the imple-

mentability constraints.

In our mechanism design approach, we thus maximize the Lagrangian (6) with respect to

the mapping w 7→ U(w). The corresponding allocation w 7→ (C(w), X(w)) is characterized by

the fact that it is incentive compatible for all taxpayers, and by the fact that it maximizes the

resources ∑
n
i=1 xi − c that are extracted from each taxpayer under the constraint that all types

w receive utility U(w). For each type w, we thus take utility level u = U(w) and the gradient

zi = Uwi
(w) for all i = 1, ..., p as given in the following resource-maximizing subprogram:

R(u, z; w)
def
≡ max

x1,...,xn

n

∑
i=1

xi − C(u; x; w) (28)

s.t : ∀i ∈ {1, ..., p} : zi = Uwi
(C (u, x; w) , x; w) .

In what follows, we make the following assumption:15

Assumption 4. Subprogram (28) admits a single solution denoted X1(u, z; w), ..., Xn(u, z; w) which

is twice continuously differentiable in (u, z; w).

For individuals of type w enjoying utility u and facing a gradient of utility z = (z1, ..., zp),

the government extracts resources equal to:

R(u, z; w) =
n

∑
i=1

Xi(u, z; w)− C (u, X1(u, z; w), ..., Xn(u, z; w); w) .

One then has to choose the mapping w 7→ U(w) to maximize:

∫∫

W

{
R

(
U(w),

∂U(w)

∂w1
, ...,

∂U(w)

∂wp
; w

)
+

Φ(U(w); w)

λ

}
f (w)dw − E.

14The implementation problem that we here discuss is not about ignoring the second-order conditions associated
to the right-hand side of (24). The problem is about the symmetry of second-order cross derivatives of w 7→ U(w).

15Note that we make Assumption 4 from the outset. Mirrlees (1976, p. 342) notes only afterwards that his optimal-
ity condition does not characterize the optimum in a straightforward way, and reformulates it as a "second-order
partial differential equation in" w 7→ U(w). Kleven et al. (2007, p. 18 ) also warn of the implementability constraints,
but do not provide a solution.
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For given type w and utility gradient z, the first-order incentive constraints (25) impose p

limitations on the n-dimensional set of incomes. The set of incomes that verify the first-order

incentive constraints (25), which constitute the choice set of Subprogram (28), is then typically

of dimension n − p. If n = p, then this choice set is typically a singleton, which is then the

solution of Subprogram (28). In this case, the utility level u, the utility gradient z and the

type w together uniquely determine the corresponding incentive compatible income x. On the

other hand, u, w and x together yield Uwi
and thus via (25) a unique value for z. In this case,

Assumption 4 amounts to assuming that first-order incentive constraints (25) define a smooth

one-to-one mapping:

Assumption 4’. The number n of different incomes is equal to the number p of unobserved character-

istics, i.e. n = p, and for each utility level u and each type w ∈ W , the mapping

(u, x; w) 7→
(
Uw1 (C(u, x; w), x; w) , ...,Uwp (C(u, x; w), x; w)

)

is twice continuously differentiable in (u, x, w), and bijective in x with an invertible Jacobian.

When the utility function is of the additively separable form described in Equation (23),

Assumption 4’ is equivalent to υi
xi ,wi

6= 0. Hence, Assumption 4’ is a way to extend the single

crossing condition in a multidimensional context.16 If, on the other hand, there are more actions

than types, i.e. if n > p, then the government has degrees of freedom beyond respecting

the incentive constraints, which it then uses to maximize the resources extracted from each

taxpayer.17

If Assumption 4 holds, the FOMD approach consists of selecting the twice differentiable

utility profile w 7→ U(w) that maximizes:
∫∫

W
L
(
U(w), Uw1

(w), ..., Uwp(w); w, λ
)

dw − E,

subject to incentive constraints (25), where L denotes the Lagrangian:

L (u, z; w, λ)
def
≡

[
R (u, z; w) +

Φ(u; w)

λ

]
f (w). (29)

Now consider the following perturbation of the utility function: w 7→ U(w) + t R(w), for

any twice differentiable direction R(·). In the optimum with t close to zero, any such perturba-

tion should not affect the value of the Lagrangian. In Appendix B.1, we show that this leads us

to the Euler-Lagrange Equation:

∀w ∈ W : Lu 〈w〉 =
n

∑
j=1

∂Lzj 〈w〉

∂wj
, (30a)

16Mirrlees (1976, page 342) adds a similar assumption when interpreting his optimality condition.
17Several efficiency results in the literature rely on the existence of such degrees of freedom. The most famous

example being the Atkinson and Stiglitz (1976) theorem. If, for instance, the type space is one-dimensional, p = 1,
and Uw depends only on c and x1, but not on (x2, ..., xp), then marginal tax rates on (x2, ..., xp) should be zero.
More generally, as argued by Gauthier and Laroque (2009), if one includes externalities or public good provision in
(x2, ..., xp), then one retrieves first-best rules, such as a Pigouvian tax rule in case of an externality, or a Samuelson
rule in case of public good provision.
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and to the boundary conditions:

∀w ∈ ∂W : 0 =
n

∑
j=1

Lzj 〈w〉 ej(w), (30b)

where the notation 〈w〉 is a shortcut to denote that functions C(·), X(·), U(·) are evaluated at

w. We then obtain the following proposition which we prove in Appendix B.1:

Proposition 5. Under Assumptions 3 and 4, the optimal utility profile w 7→ U(w) has to verify:

∀w ∈ W , ∀i ∈ {1, ..., n} :
(

1 − S i 〈w〉
)

f (w) = Uc 〈w〉
n

∑
j=1

θj(w) S i
wj
〈w〉 , (31a)

∀w ∈ W :
n

∑
j=1

∂θj

∂wj
(w) =

(
1

Uc 〈w〉
−

Φu(U(w); w)

λ

)
f (w)−

n

∑
j=1

θj(w)
Ucwj 〈w〉

Uc 〈w〉
, (31b)

∀w ∈ ∂W : 0 =
n

∑
j=1

θj(w)ej(w), (31c)

where we denote:

∀w ∈ W , ∀j ∈ {1, ..., n} : θj(w)
def
≡ −Lzj

(U(w), Uw1
(w), ..., Uwn(w); w, λ) . (31d)

Equation (31a) corresponds to Equation (60) in Mirrlees (1976) and characterizes the optimal

incomes X(w). Equation (31b) is the Euler-Lagrange equation characterizing the cost θ(wj) of

distorting the jth component of the gradient of w 7→ U(w) (see Equation (31d)). It corresponds

to Equation (61) in Mirrlees (1976). Equation (31c) corresponds to the boundary conditions that

have to hold on the boundary of the type space ∂W . It corresponds to Equation (62) in Mirrlees

(1976). Note that θj(·) corresponds to the multiplier of the incentive constraints in Mirrlees

(1976), as well as to the multiplier of the incentive constraints in the resource maximization

subprogram (28). Our approach of perturbing w 7→ U(w) and deducing from the first-order

incentive constraint the implied perturbation of the allocation w 7→ (C(w), X(w)), thus clarifies

the economic meaning of θj(·).

We now compare the necessary conditions obtained in Proposition 3 using the tax pertur-

bation approach with the necessary conditions obtained in Proposition 5 using the FOMD. In

Appendix B.2, we rewrite the conditions of Proposition 5 in terms of behavioral elasticities,

type densities and welfare weights when n = p. We show that under Assumptions 3 and 4’,

the Euler-Lagrange Equation (31b) can be rewritten as:

∀w ∈ W :

[
1 − g(w)−

n

∑
i=1

Txi
(X(w))

∂Xi(w)

∂ρ

]
f (w) =

n

∑
j=1

∂
n

∑
i=1

(
Txi

(X(w)) Aj,i(w) f (w)
)

∂wj
,

(32a)

while the Boundary conditions become:

∀ w ∈ ∂W : ∑
1≤i,j≤n

Txi
(X(w)) Aj,i(w) ej(w) = 0, (32b)
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where the matrix A is defined by:

[
Ai,j

]
i,j

def
≡
[
S i

wj

]−1

i,j
= −

[
∂Xi(w)

∂wj

]−1

i,j

·

[
∂Xi(w)

∂τj

]

i,j

. (32c)

In Appendix A.9, we show how optimal tax formulas (32) can also be retrieved by applying

the tax perturbation approach using Assumption 1 and only Parts i) and ii) of Assumption

2’. Hence, we show that the optimality conditions derived by Mirrlees (1976, 1986) through a

mechanism design approach are consistent with the optimality conditions in terms of sufficient

statistics derived by Golosov et al. (2014) using a tax perturbation approach. We thus confirm

that these two approaches are consistent in the multi-dimensional setting, as Saez (2001) shows

for the one-dimensional case. The tax perturbation approach and FOMD approach are two

faces of the same coin: while the FOMD approach computes the effects of directly perturbing a

utility profile, the tax perturbation approach considers the effects of perturbing a tax function

that decentralizes an allocation and the corresponding utility profile. The tax perturbation

approach thus indirectly deals with perturbed allocations and yields similar conditions for

optimality as the FOMD approach that uses direct perturbations.

We now compare the strengths and weaknesses of the tax perturbation and the mechanism

design approaches when the number n of incomes is equal to the number p of types. Assume

that individual preferences verify Parts i), ii) and iii) of Assumptions 2’ and Assumption 4’.18

The tax perturbation approach then requires the tax function to be smooth enough in the sense

of Assumption 1 and of Part iv) of Assumption 2’, while the first-order mechanism approach re-

quires incentive-compatible allocations that are smooth in the sense of Assumption 3. We show

in Appendix A.2 that Assumptions 1 and 2’ together imply Assumption 3, but we cannot show

the reverse. The tax perturbation approach thus appears to be slightly more demanding than

the mechanism design approach. The tax perturbation can be easily adapted to the case where

the number p of types is larger than the number n of incomes. Conversely, the mechanism

design approach is typically tractable only in the case where p ≤ n.19 Finally, our mechanism

design approach makes it possible to derive a condition under which the necessary optimality

conditions are also sufficient, as shown in the following Proposition (see the proof in Appendix

B.3).

Proposition 6. Under Assumptions 3 and 4, if for each type w ∈ W and each λ ∈ R+ the mapping

(U, z) 7→ L (U, z; w, λ) is concave and w 7→ U⋆(w) verifies Equations (31), then w 7→ U⋆(w) is the

unique solution to the relaxed problem.

This result is especially important for the numerical simulations below because it ensures

that, whenever (U, z) 7→ L(U, z; w, λ) is concave, and an allocation is found that verifies the

necessary conditions, this allocation is the unique solution to the government’s problem.

18Recall that when individual preferences are additively separable as in (23), Parts i), ii) and iii) of Assumption 2’
on the one hand and Assumption 4’ on the other hand are both equivalent to υi

wi ,yi
6= 0.

19See however Jacquet and Lehmann (2021c) when n = 1 < p.
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V Numerical simulations

Because both the type space and the income space are multidimensional, the optimal tax

formulas do not take the form of (systems of) ordinary differential equations, as in Mirrlees

(1971), Diamond (1998) and Saez (2001) but they take the form of a second-order partial differ-

ential equation, as in Mirrlees (1976) and Golosov et al. (2014). This significantly complicates

the process of solving the optimal tax equations. To understand this, it helps to consider the

effects of a tax perturbation from a geometric perspective. In the one-dimensional case, the

change in the marginal tax rate at a given income level is directly connected to changes in tax

liabilities at all higher incomes. In the multidimensional case, a change in the gradient of the

tax function at one point of the income space, by changing tax liabilities near that point, trig-

gers changes in the tax gradients elsewhere in a complicated way, as illustrated, for example,

by Figure 2. To deal with this complexity, we rely on numerical simulations.

We develop a new numerical algorithm and apply it to the optimal taxation of couples.

We consider an economy where couples differ in the productivity of females (w f ) and males

(wm), so unobserved heterogeneity is bi-dimensional (p = 2). Each couple chooses the labor

supply of both spouses, so there are two incomes (i.e. n = p = 2). Following Kleven et al.

(2007), preferences over the couple’s consumption c, female income x f and male income xm are

assumed to be quasilinear in consumption, additively separable and isoelastic in each income:

U (c, x f , xm; w f , wm) = c −
ε f

1 + ε f
x

1+ε f
ε f

f w
− 1

ε f

f −
εm

1 + εm
x

1+εm
εm

m w
− 1

εm
m . (33)

Income effects are thus assumed away (i.e. ∂X f (w)/∂ρ = ∂Xm(w)/∂ρ = 0). Moreover, if the

tax schedule is additively separable, the cross responses are equal to zero (i.e. ∂X f (w)/∂τm =

∂Xm(w)/∂τf = 0). Finally, ε f and εm respectively denote the direct elasticities of male and

female incomes with respect to their own net-of-marginal-tax rates. Our baseline values are

ε f = 0.43 and εm = 0.11, which correspond to the mean labor supply elasticity for married

women and for men in the meta-analysis of Bargain and Peichl (2016, Figure 1).

We calibrate the skill density f (·) using the Current Population Survey (CPS) of the US

census of March 2016. We focus on married, mixed-gender couples that live together. We only

consider income from labor. We drop couples in which either partner earns less than $1, 000

per year or in which either of the partners’ incomes is top-coded. We drop same-sex couples

because in our simulations we attach labor elasticities based on gender in each couple. From

each observed couple, we recover their type (w f , wm) from their labor earnings (x f , xm) by

inverting the first-order conditions (3). For this purpose, we use a rough approximation of

the current tax schedule in the US by assuming a constant marginal tax rate of 37%, a figure

which is consistent with Barro and Redlick (2011, Table 1). Next, we estimate the type density

through a bi-dimensional kernel. We specify the social welfare function to be CARA with

Φ(u, w1, w2) = 1 − exp (−β u) /β, where β > 0 stands for the degree of inequality aversion.

For our baseline simulation, we select β such that the assumed 37% tax rate coincides with the
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optimal linear tax rate. This leads to β = 0.0061. Throughout the simulations, we assume that

the government’s revenue requirement equals 15% of GDP, which is close to the observed share

of public spending in GDP for the US.

With our functional specifications, the government’s Lagrangian (29) becomes:

L(u, z; w, λ) =

[

∑
i= f ,m

(
(1 + ε i)

εi
1+εi wi z

εi
1+εi
i − ε i zi wi

)
− u −

exp (−β u)

λ

]
f (w),

which is concave in (u, z f , zm). Since the Lagrangian is concave, Proposition 6 applies, meaning

that our optimal tax formulas are both necessary and sufficient for the unique optimum.

We first give an overview of the simulation algorithm, in Subsection V.1. Next, in Subsection

V.2, we report the results of the simulations for the baseline calibration. Finally, in Subsection

V.3, we consider a number of comparative statics. We conjecture what happens when we vary

the labor supply elasticities, the inequality aversion, or the simulation domain, and we verify

our conjectures in the simulations.

V.1 Simulation algorithm

The idea of our numerical algorithm is to first solve an optimal tax formula for given val-

ues of sufficient statistics, then to update the sufficient statistics using the tax schedule derived

from the optimal tax formula, and to repeat this procedure until it converges to the optimal tax

schedule. To do so, we can a priori use three optimal tax formulas, namely (20), (31) and (32).

Let us explain why we choose (32). The optimal formula in (31) takes the form of a second-

order nonlinear partial differential equation in the type space, which is numerically much more

challenging than solving a linear second-order partial differential equation. Conversely, the

optimal formula in Equations (20a) is a linear second-order partial differential equation. How-

ever, it is defined in the income set X . Hence, if one solves the optimal tax formula (20a) using

the same income set from one iteration to the next, which is required given the boundary con-

ditions (20b), then the corresponding typeset is changing from one iteration to the next. This

is problematic when, for instance, comparing the values obtained for the tax revenue or for

the social objective from one iteration to the next. Finally, the partial differential equation de-

scribed in (32) is linear, provided that the sufficient statistics g(w) and A(w) are taken as given.

In addition, it is defined over the fixed type set W . Appendix C.1 describes the algorithm in

more detail.

Here again, there is a difficulty. Equations (32a)-(32b) are defined in the type space, while

(Tx1
, ..., Txn) stands for the gradient of tax liability with respect to incomes. However, one can

rewrite (32a)–(32b) in terms of the gradient of tax liability in the skills-space by scaling matrix

A by the matrix
[
∂Xj(w)/∂wi

]−1

i,j
. We then iterate by i) finding the mapping w 7→ T(X(w)) that

solves Equations (32a)–(32b) for given Jacobian
[
∂Xj(w)/∂wi

]
i,j

and type density f (w) and get-

ting a tax schedule x 7→ T(x) from this solution, and ii) updating the Jacobian
[
∂Xj(w)/∂wi

]
i,j

given the new tax schedule. This hybrid approach thus combines the strength of the mech-

24



anism design approach (a fixed typeset over which to integrate), with the strength of the tax

perturbation approach (a linear PDE).

V.2 Results under the baseline calibration

(a) Full simulation set (b) Zoom on x f , xm ≤ $200, 000

Figure 3: Isotax curves in the baseline case

Figure 3 displays the solution of the optimal tax problem using our baseline calibration.

The optimal tax schedule is represented by the isotax curves, which are the loci of incomes for

which the tax liability is constant at a given value. Male income is shown on the horizontal axis,

while female income is indicated on the vertical axis. The left panel displays the whole domain

of the simulations running up to up to $500, 000, while the right panel zooms in at incomes

below $200, 000, where we find most taxpayers, roughly 97% of males and 99% of females.

Strikingly, isotax curves are almost linear and parallel, except close to the boundaries.

There, isotax curves are curved in order to satisfy boundary constraints (20b). This curvature

pattern is most outspoken at high income levels where there are very few taxpayers. For lower

incomes, the curvature only affects taxes very close to the lower bound.

Compared with the current economy, which is approximated by a linear tax rate of 37%,

the optimal tax schedule leads to an improvement of the social objective equivalent to 0.82%

of GDP in monetary terms. To understand which forces drive this gain, we decompose the

welfare gain in different steps. Going from our approximation of the current economy (where

we assume linear tax rates) to the optimal joint tax (x f , xm) 7→ T(x f + xm) captures the welfare

gain of allowing the joint income tax schedule to be nonlinear. We find this welfare gain to be

only 0.03%. If we now maintain the requirement that the isotax curves are linear and parallel,

but remove the requirement that both marginal tax rates are equal, so (x f , xm) 7→ T(x f + α xm)

where α is optimized, we obtain a welfare gain from the current economy equal to 0.81%. The

optimal value of α is 2.13, which implies that female income is discounted by 53%. Hence,
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while the gain of optimizing the slope of the isotax curves (optimizing α) is substantial, the

welfare gain of relaxing the constraint that isotax curves have to be linear and parallel appears

to be small.
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Figure 4: Optimal Jointness

Kleven et al. (2006, 2007) show that under our individual and social preferences, when

the abilities of both spouses are not correlated, the optimal marginal tax rates of each partner

decrease in the income of the other partner . This is the so-called negative jointness of the optimal

tax system. In a separate simulation with a population that replicates the moments of male and

female incomes, but removes any correlation between the two, we confirm the optimality of the

negative jointness of the tax system. In reality, however, the assumption that the skills of both

partners are not correlated, is counterfactual. We show in Figure 4 that the optimal negative

jointness result is not robust to using more realistic type densities with positive assortative

matching. Figure 4a (resp. Figure 4b) displays the marginal tax rate for females (males) as a

function of their own income. Each curve graphs this marginal income fixing male (female)

income at the 10-th, 50-th and 90-th percentile of the male (female) income distribution. In case

of negative jointness, the curve corresponding to male (female) income at the 10-th percentile

should be everywhere above the curve corresponding to male (female) income at 50-th and 90-

th percentiles of the distribution. Figures 4a and 4b contradict this prediction, thereby rejecting

the idea that negative jointness holds at the optimum.

V.3 Sensitivity analysis

To better understand the determinants of the optimal schedule, we examine how the sim-

ulated optimal schedule varies when we change the parameters of the simulations. For each

parameter that we vary, we first intuitively provide conjectures on how changes in these pa-

rameters are going to affect optimal isotax curves before examining whether our simulations

confirm or negate our a a priori guess.
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V.3.a Varying labor supply elasticity

One may conjecture that the slope of the isotax curves is affected by the ratio of the labor

supply elasticities of both spouses. Whenever the labor supply elasticities of the two spouses

are different, we expect that it is optimal to levy the lowest marginal tax rate on the spouse

with the highest elasticity. Doing so shifts the burden of taxation away from the most elastic tax

base. Recall that the empirical literature finds that married females have higher labor supply

elasticities than married males. With male earnings in the horizontal axis, this amounts to

making the isotax curves steeper. We thus conjecture that the larger is the ratio of female to

male labor supply elasticity, the steeper are the optimal isotax curves.

(a) ε f = εm = 0.11 (b) ε f = 0.43, εm = 0.11

Figure 5: Isotax curves with different elasticities.

We investigate the validity of this conjecture in Figure 5. The left panel displays isotax

curves when the two elasticities are equal ε f = εm = 0.11, while the right panel shows the

benchmark values ε f = 0.43 for female and εm = 0.11 for male income.20 As we conjectured,

isotax curves are steeper when the two elasticities are different.

In Figure 6, we assume ε f = εm = 0.11 in the left panel and ε f = εm = 0.43 in the right

panel. In this figure, the slope of isotax curves looks the same in both panels. However, all else

equal, higher labor supply elasticities decrease the optimal marginal tax rates, similar to what

is found in the one-dimensional case. This is visible in the figure in the increasing distance

between the isotax curves.

V.3.b Varying inequality aversion

We now investigate the sensitivity of the optimal tax schedule to the inequality aversion

parameter β. In Figure 7, we contrast the case where the inequality aversion parameter is half

lower than its baseline value in the left panel to the case where this parameter is half above

20When changing the elasticities, we keep the inequality aversion parameter at its baseline value of β = 0.0061.
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(a) ε f = εm = 0.11 (b) ε f = εm = 0.43

Figure 6: Isotax curves with different elasticities.

its baseline value in the right panel. The shape of isotax curves are virtually unaffected by

change in the inequality aversion. However, the isotax curves are much closer together in the

right panel when the government is more inequality averse. As in the one-dimensional case,

a higher inequality aversion, all else being equal, leads to higher optimal marginal tax rates,

causing the isotax curves to be closer together.

(a) β = 0.003 (b) β = 0.009

Figure 7: Isotax curves with different inequality aversion.

V.3.c Simulation domain

So far, it seems that the main departure from parallel and linear isotax curves is the cur-

vature imposed by the boundary conditions. To verify the plausibility of this conjecture, we

see what happens if we move the boundaries of the income space. In Figure 8 we compare the
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(a) Simulations on x f ≤ $500, 000
and xm ≤ $500, 000.
Full simulation set.

(b) Simulations on x f ≤ $800, 000 and xm ≤
$500, 000.
Full simulation set.

(c) Simulations on x f ≤ $500, 000
and xm ≤ $500, 000.
Zoom on x f , xm ≤ $200, 000.

(d) Simulations on x f ≤ $800, 000
and xm ≤ $500, 000.
Zoom on x f , xm ≤ $200, 000.

Figure 8: Isotax curves with different domains

simulated isotax curves when both incomes are below $500, 000 (Figures 8a and 8c), and when

male income is below $500, 000 while female income is below $800, 000 (Figures 8b and 8d). As

expected, changing the simulation domain has virtually no effect for incomes below $200, 000

(Figures 8c and 8d). One difference between the simulations is that the larger domain adds

some very rich taxpayers which triggers a slight inwards shift of the isotax curves. Simulta-

neously, the curvatures of the isotax curves near the high-income boundaries adapt to where

these boundaries are (Figures 8a and 8b). For instance, when female income is simulated up

to $800, 000, then the $130, 000 isotax curve is concave everywhere (see Figure 8b). In this case,

the shape of the isotax curve is affected by the boundary condition for a zero male income and

a female income just above $500, 000. Conversely, when the income space is limited to female

incomes below $500, 000, the isotax curve for a tax liability of $130, 000 exits the domain by

crossing the top boundary and therefore becomes convex for low male income. Figure 8 thus

confirms our conjecture that boundary conditions are the main explanation for the nonlinearity

29



of the isotax curves at high income levels.

VI Conclusion

We study the optimal tax problem with multiple incomes and multiple dimensions of un-

observed heterogeneity. We propose a numerical algorithm that addresses the difficulties in-

herent to the multidimensional tax problem. We apply this algorithm to the optimal taxation of

couples. We find that the optimal isotax curves are close to linear and parallel. Optimal isotax

curves are closer together when labor supply elasticities are higher or when inequality aversion

is higher. When the labor supply elasticity of one spouse increases, the optimal marginal tax

rate for this spouse decreases. We show that the optimal negative jointness of the tax schedules

when skills are uncorrelated is not robust to the introduction of a more realistic distribution

based on empirical simulations.

Analytically, we find a necessary condition for the tax schedule to be Pareto Efficient. If

this condition is not verified, we describe a tax reform that is Pareto-improving. Second, we

find conditions that ensure the necessary conditions of the optimal tax problem are unique

and sufficient. Third, we verify that the tax perturbation and mechanism design approach

lead to the same tax formula. Fourth, we improve the tax perturbation approach by proposing

conditions under which income bundles respond smoothly to small tax reforms. Fifth, we

propose a mechanism design approach that encapsulates not only incentive constraints, but

also the implementability constraints embedded in the multidimensional optimal tax problem.

Lastly, we consider the cases where the number of incomes differs from the number of types.

Comparing the mechanism design approach to the tax perturbation approach, we find that

the latter implies slightly more demanding restrictions on the smoothness of the tax sched-

ule. The tax perturbation approach is thus slightly more demanding than the mechanism de-

sign approach. An additional advantage of the mechanism design approach is that it allows

identifying a condition under which the necessary optimality conditions are also sufficient. A

disadvantage of the mechanism design approach is that it is tractable only when the number

of dimensions of unobserved heterogeneity does not exceed the number of incomes. An ad-

vantage of the tax perturbation approach is that it is allows providing an intuitive, graphical

interpretation for the optimality conditions. We have shown that the tax perturbation approach

is not less rigorous than the mechanism design approach.

Our paper can be extended in different ways. First, one could apply our algorithm to cases

where the labor supplies of spouses interact through child care or home production. Second,

one could also apply our algorithm to the cases where tax units receive different source of

incomes such as labor and capital incomes. Third, one could introduce general equilibrium

effects. While our algorithm is sufficiently general to tackle these problems, implementing

them would require significant changes to our simulations. We leave these problems for further

research.

30



A Appendices on the Tax Perturbation approach

A.1 Convexity of the indifference sets

We verify that assuming convex indifference sets is equivalent to assuming the second-

order conditions of the taxpayers’ program strictly hold when the tax schedule is linear.

On the one hand, the indifference sets are defined by c = C(u, x; w). Applying the implicit

function theorem to the definition of C(u, x; w), we find the gradient of the indifference sets:

Cxi
(u, x; w) = −

Uxi
(C(u, x; w), x; w)

Uc (C(u, x; w), x; w)
.

The Hessian of the indifference surfaces is therefore a matrix whose ith row and jth column is:

Cxi ,xj
= −

Uxi ,xj
Uc − Uc,xi

Uxj

Uc
Uc − Uc,xj

Uxi
+ Uc,c

Uxj

Uc
Uxi

U 2
c

= −
Uxi ,xj

U 2
c − Uc,xi

Uxj
Uc − Uc,xj

Uxi
Uc + Uc,cUxj

Uxi

U 3
c

.

On the other hand, from (2), we get:

S i
xj
+ S jS i

c = −
Uxi ,xj

Uc − Uc,xj
Uxi

U 2
c

+
Uxj

Uc

Uc,xi
Uc − Uc,cUxi

U 2
c

= −
Uxi ,xj

U 2
c − Uc,xi

Uxj
Uc − Uc,xi

Uxj
Uc + Uc,cUxj

Uxi

U 3
c

= Cxi ,xj
. (34)

The assumption that indifference sets are convex thus implies that the matrix
[
S i

xj
+ S jS i

c

]
i,j

is

symmetric and positive definite. If then taxes are linear, so Txi
xj = 0, Assumption 1 is fulfilled.

A.2 Behavioral Responses

Under Assumption 1, one can differentiate Equations (9) with respect to t, x and w to get:
[
Cxjxi

+ Txjxi

]
j,i
· [dxi]i =

[
Rxj

(X(w))
]

j
dt −

[
S

j
c

]
j

R(X(w)) dt −
[
S

j
wk

]
j,k
· [dwk]k , (35)

where the expressions are evaluated at t = 0, x = X(w) and c = C(w) and we use (3) and (34).

From (10b), a compensated reform of the jth marginal tax rate is characterized by R(X(w)) =

0, Rxj
(X(w)) = 1 and Rxk

(X(w)) = 0 for k 6= j. Using (35), the matrix of compensated re-

sponses for type w is:
[

∂Xi(w)

∂τj

]

i,j

=

[
∂Xj(w)

∂τi

]

i,j

=
[
Cxjxi

+ Txjxi

]−1

j,i
. (36a)

Since the matrix of compensated responses is the inverse of the symmetric and positive definite

matrix
[
Cxjxi

+ Txjxi

]
j,i

, it is also symmetric and positive definite.

From (10a), a lump-sum perturbation of the tax function is characterized by R(X(w)) = 1

and Rxj
(X(w)) = 0. Using (35), the vector of income responses of type w is therefore given by:

[
∂Xi(w)

∂ρ

]

i

= −
[
Cxjxi

+ Txjxi

]−1

j,i
·
[
S

j
c

]
j
= −

[
∂Xi(w)

∂τj

]

i,j

·
[
S

j
c

]
j
. (36b)
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Multiplying both sides of (35) by Matrix
[
Cxjxi

+ Txjxi

]−1

j,i
and using Equations (36) leads to (11).

Finally, the implicit function theorem ensures that the mapping w 7→ X(w) is differentiable

for all w ∈ W with a Jacobian given by:

[
∂Xi(w)

∂wk

]

i,k

= −
[
Cxjxi

+ Txjxi

]−1

j,i
·
[
S

j
wk

]
j,k

= −

[
∂Xi(w)

∂τj

]

i,j

·
[
S

j
wk

]
j,k

. (36c)

Equation (36c) shows that when the tax schedule verifies Assumption 1 and individual prefer-

ences verify Assumption 2’, the ensuing allocation w 7→ X(w) verifies Assumption 3.

A.3 Total versus Direct Responses

We define “direct responses” as the behavioral responses to a tax perturbation or to a change

in the taxpayer’s type if the tax schedule were linear. Let ∂X⋆
i (w)/∂ρ and ∂X⋆

i (w)/∂τj denote

the direct income and compensated responses of the incomes and let ∂X⋆
i (w)/∂wj denote the

direct responses to a change in types.

We now clarify the difference between direct and total responses. Let ∆1x denote the change

in income induced by a tax perturbation or a perturbation in types if we assume the tax sched-

ule is linear. This vector is obtained by setting [Txixj
]i,j = 0 in (35). We thus get direct responses

ignoring the effects due to the non-linearity of the tax schedule:

∆1x =
[
Cxixj

]−1

i,j
· dB,

where dB is the column vector on the right-hand side of (35).

When the tax function is nonlinear, this “first” change ∆1x in income induces a change

[Txi ,xj
]i,j · ∆1x in the vector of marginal tax rates that generates a “second” change in income

through compensated responses that are given by:

∆2x = −

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j · ∆1x,

which in turn generates a further change in marginal tax rates. Hence, the kth change in income

∆kx is related to k − 1th change in income ∆k−1x by:

∆kx = −

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j · ∆k−1x,

and so:

∆kx =

(
−

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j

)k−1

· ∆1x.

Adding all the effects and assuming convergence leads to a total effect:

∆x =
∞

∑
k=1

∆kx =
∞

∑
k=1

(
−

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j

)k−1

· ∆1x =

(
In +

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j

)−1

· ∆1x

=

(
In +

[
Cxixj

]−1

i,j
· [Txixj

]i,j

)−1

·
[
Cxixj

]−1

i,j
· dB =

[
Cxixj

+ Txixj

]−1

i,j
· dB,
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where In denotes the identity matrix of rank n. We thus retrieve (35), which we showed in

Appendix A.2 leads to (11), and we thus obtain total responses including the effects due to the

non-linearity of the tax schedule:

[
∂Xi(w)

∂τj

]

i,j

=

(
In +

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j

)−1

·

[
∂X⋆

i (w)

∂τj

]

i,j

, (37a)

[
∂Xi(w)

∂ρ

]

i

=

(
In +

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j

)−1

·

[
∂X⋆

i (w)

∂ρ

]

i

, (37b)

[
∂Xi(w)

∂wj

]

i,j

=

(
In +

[
∂X⋆

i

∂τj

]

i,j

· [Txixj
]i,j

)−1

·

[
∂X⋆

i (w)

∂wj

]

i,j

. (37c)

Equations (36a) and (37a) imply that Part ii) of Assumption 1 is equivalent to assuming that the

matrix In +
[
∂X⋆

i /∂τj

]
i,j
· [Txixj

]i,j is positive definite despite the nonlinearity of the tax schedule.

A.4 Proof of Proposition 1

To find the derivative of (12) with respect to t, we add (14) to (15). We integrate the result

over all types w to obtain (17). To obtain (16), we use the lump-sum perturbation (10a) in (17),

i.e. we set R(X(w)) = 1 and Rxj
(X(w)) = 0 in (17).

We now show that a tax perturbation in the direction R(·) with t > 0 is welfare improv-

ing if and only if the effect on the perturbed Lagrangian is positive. For all t, let ℓR(t) de-

note the lump-sum transfer that ensures that the following tax perturbation keeps the govern-

ment’s budget balanced: x 7→ T(x) − t R(x) − ℓR(t). Let (∂L̃R(t)/∂t)|t=0 denote the partial

derivatives of the government’s Lagrangian with respect to size t of the perturbation w 7→

T(x) − t R(x). Similarly, let (∂ÕR+ℓ(t)/∂t)|t=0, (∂B̃R+ℓ(t)/∂t)|t=0 and (∂L̃R+ℓ(t)/∂t)|t=0 de-

note the partial derivatives of, respectively, the social objective, of government’s revenue and

of government’s Lagrangian with respect to size t of the budget-balanced perturbation w 7→

T(x)− t R(x)− ℓR(t). Let finally (∂L̃ρ(ρ)/∂ρ)|ρ=0 denote the partial derivatives of the govern-

ment’s Lagrangian with respect to size ρ of the lump sum perturbation (10a). From (17), one

get that:

∂L̃R+ℓ(t)

∂t

∣∣∣∣∣
t=0

=
∂L̃R(t)

∂t

∣∣∣∣∣
t=0

+ b′(t)
∂L̃ρ(ρ)

∂ρ

∣∣∣∣∣
ρ=0

.

Since Equation (16) is equivalent to (∂L̃ρ(ρ)/∂ρ)|ρ=0, we thus get:

∂L̃R+ℓ(t)

∂t

∣∣∣∣∣
t=0

=
∂L̃R(t)

∂t

∣∣∣∣∣
t=0

.

Finally, since the perturbation w 7→ T(x) − t R(x) − ℓR(t) is budget balanced, one gets that

(∂B̃R+ℓ(t)/∂t)|t=0 = 0, so that (1/λ)(∂ÕR+ℓ(t)/∂t)|t=0 = (∂L̃R+ℓ(t)/∂t)|t=0 and eventually:

1

λ

∂ÕR+ℓ(t)

∂t

∣∣∣∣∣
t=0

=
∂L̃R

∂t

∣∣∣∣∣
t=0

.
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The derivations in this proof are valid whenever Assumption 1 holds true, regardless of whether

n = p, n < p or n > p.

A.5 Optimal Tax for given isotax curves, Proof of Proposition 2

We decompose the tax schedule x 7→ T(x) in two consecutive mappings: the first mapping

defines a taxable income y = Γ(x) ∈ R for each combination of incomes x; the second mapping

denoted T assigns a tax liability to each taxable income y. The tax liability at incomes x thus

equals T(x) = T (Γ(x)).

We first consider tax perturbations that preserve the isotax curves. Applying Equation (11)

to the tax perturbation x 7→ T (Γ(x))− t R (Γ(x)) leads to:

∂X̃R
i (w, t)

∂t

∣∣∣∣∣
t=0

=
∂Xi(w)

∂ρ
R(Γ(X(w))) +

n

∑
i=1

∂Xi(w)

∂τj
Γxj

(w) R′ (Γ(X(w))) . (38)

The definition of perturbed taxable income ỸR(w, t) = Γ
(

X̃R(w, t)
)

implies that

∂ỸR(w, t)

∂t

∣∣∣∣∣
t=0

=
n

∑
i=1

Γxi
(X(w))

∂X̃R
i (w, t)

∂t

∣∣∣∣∣
t=0

. (39)

Applying Equation (38) to the tax liability perturbation R(y) = 1 and using (39) leads to (18a).

Applying Equations (38) and (39) to the compensated perturbation R(y) = y − Y(w) leads

to (18b). Combining Equations (18a), (18b), (38) and (39), the response of taxable income to a

generic tax perturbation R(·) is given by:

∂ỸR(w, t)

∂t

∣∣∣∣∣
t=0

=
∂Y(w)

∂ρ
R(Y(w)) +

∂Y(w)

∂τ
R′(Y(w)).

The response of tax liability to a generic tax perturbation in the direction R(·) is thus given by:

∂
(
T
(

ỸR(w, t)
)
− t R

(
ỸR(w, t)

))

∂t

∣∣∣∣∣∣
t=0

= −R(Y(w)) + T ′(Y(w))
∂ỸR(w, t)

∂t

∣∣∣∣∣
t=0

=

[
−1 + T ′(Y(w))

∂Y(w)

∂ρ

]
R(Y(w))

+ T ′(Y(w))
∂Y(w)

∂τ
R′(Y(w)).

Using (15), the response of the perturbed Lagrangian (12) to a tax perturbation in the direction

R(·) then is:

∂LR(t)

∂t

∣∣∣∣
t=0

=
∫∫

w∈W

{[
g(w)− 1 + T ′(Y(w))

∂Y(w)

∂ρ

]
R(Y(w))

+ T ′(Y(w))
∂Y(w)

∂τ
R′(Y(w))

}
f (w)dw

=
∫

y∈R+

{∫

Y(w)=y

{[
g(w)− 1 + T ′(y)

∂Y(w)

∂ρ

]
R(y)

+ T ′(y)
∂Y(w)

∂τ
R′(y)

}
f (w|Y(w) = y)dw

}
m(y)dy, (40)
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where m(·) denotes the density of taxable income Y as before. Denote the mean of the compen-

sated responses among taxpayers earning Y(w) = y as:

∂Y(y)

∂τ

def
≡
∫

Y(w)=y

∂Y(w)

∂τ
f (w|Y(w) = y)dw. (41a)

Similarly, denote the mean of the income responses among taxpayers earning Y(w) = y as:

∂Y(y)

∂ρ
(y)

def
≡
∫

Y(w)=y

∂Y(w)

∂ρ
f (w|Y(w) = y)dw. (41b)

Finally, denote the mean of welfare weights among taxpayers earning Y(w) = y as:

g(y)
def
≡
∫

Y(w)=y
g(w) f (w|Y(w) = y)dw. (41c)

Equation (40) then simplifies to:

∂LR(t)

∂t

∣∣∣∣
t=0

=
∫

y∈R+

{[
g(y)− 1 + T ′(y)

∂Y(y)

∂ρ

]
R(y) + T ′(y)

∂Y(y)

∂τ
R′(y)

}
m(y)dy. (42)

Integrating by parts leads to:

∂LR(t)

∂t

∣∣∣∣
t=0

=
∫

y∈R+

{
−
∫ ∞

z=y

[
1 − g(z)− T ′(z)

∂Y(z)

∂ρ

]
m(z)dz + T ′(y)

∂Y(y)

∂τ
m(y)

}
R′(y)dy

−R(0)
∫

y∈R+

[
1 − g(y)− T ′(y)

∂Y(y)

∂ρ

]
m(y)dy. (43)

The effect of perturbation on the Lagrangian is nil for all directions R if and only if Equation

(19b) and the following Equation:

∀y : T ′(y)
∂Y(y)

∂τ
m(y) =

∫ ∞

z=y

[
1 − g(z)− T ′(z)

∂Y(z)

∂ρ

]
m(z)dz,

are valid. Rearranging terms using (19c) leads to (19a) if T ′(y) < 1.

The definition of the two mappings x
Γ
−→ y

T
−→ R is not unique. Let α(·) be a differentiable

and increasing mapping, let Γ̂(x)
def
≡ α (Γ(x)) be an alternative definition of taxable income that

we denote ŷ = α(y) and let T̂ (ŷ)
def
≡ T

(
α−1(ŷ)

)
be the associated assignment of tax liability to

taxable income. Finally let m̂(·) and M̂(·) be the PDF and CDF of ŷ. We get

T̂ ′ (ŷ) =
T ′
(
α−1(ŷ)

)

α′ (α−1(ŷ))
=

T ′ (y)

α′ (y)
.

Differentiating both sides of M̂ (α(y)) = M (y) leads to:

m̂(ŷ) =
m(y)

α′(y)
.

Applying respectively (18) and (18b) to Ŷ(w) = α (Y(w)) leads to:

∂Ŷ(w)

∂ρ
= α′(Y(w))

∂Y(w)

∂ρ
and

∂Ŷ(w)

∂τ
=
(
α′(Y(w))

)2 ∂Y(w)

∂τ
.

Hence

T̂ ′ (ŷ)
∂Ŷ(ŷ)

∂ρ
= T ′(y)

∂Y(y)

∂ρ
and T̂ ′ (ŷ)

∂Ŷ(ŷ)

∂τ
m̂(ŷ) = T ′(y)

∂Y(y)

∂τ
m(y).

Therefore (A.5) and (19b) are equivalent in terms of y or in terms of ŷ.
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A.6 Optimal tax formula in the income space, Proof of Proposition 3

In Appendix A.4, we show that equation (17) holds under Assumption 1. We can rewrite

Equation (17) in terms of the income density h(·) (which is well defined under Assumption 2),

rather than the type density f (·) to obtain:

∂L̃R(t)

∂t

∣∣∣∣∣
t=0

=
∫∫

X

{[
g(X(w))− 1 +

n

∑
i=1

Txi
(x)

∂Xi(x)

∂ρ

]
R (x) (44)

+ ∑
1≤i,j≤n

Txi
(x)

∂Xi(x)

∂τj
Rxj

(x)

}
h(x)dx.

Using the divergence theorem to integrate the term on the second line of this equation by parts

and rearranging, yields:

∂L̃R(t)

∂t

∣∣∣∣∣
t=0

=
∮

∂X
∑

1≤i,j≤n

Txi
(x)

∂Xi(X(w))

∂τj
h(x) ej(x) R (x)dΣ(x) (45)

−
∫∫

X





[
1 − g(X(w))−

n

∑
i=1

Txi
(x)

∂Xi(x)

∂ρ

]
h(x) +

n

∑
j=1

∂

[
n

∑
i=1

Txi
(x)

∂Xi(X(w))

∂τj
h(x)

]

∂xj





R (x)dx.

If the tax schedule T(·) is optimal, Equation (45) has to equal 0 for all possible directions R(·).

This is only possible if the Euler-Lagrange Partial Differential Equation (20a) and the boundary

conditions (20b) are both satisfied.

A.7 Proof of Proposition 4

Equations (22) and (45) are valid when Assumption 1 and Assumption 2 hold true. Accord-

ing to Equations (5), (6) and (15), removing the term g(X(w)) from Equation (45) provides the

effects of a tax perturbation on government’s revenue:

∂B̃R(t)

∂t

∣∣∣∣∣
t=0

=
∮

∂X
∑

1≤i,j≤n

Txi
(x)

∂Xi(X(w))

∂τj
h(x) ej(x) R (x) dΣ(x)

−
∫∫

X





[
1 −

n

∑
i=1

Txi
(x)

∂Xi(x)

∂ρ

]
h(x) +

n

∑
j=1

∂

[
n

∑
i=1

Txi
(x)

∂Xi(X(w))

∂τj
h(x)

]

∂xj





R (x) dx,

which, given (22), can be simplified to:

∂B̃(t)

∂t

∣∣∣∣∣
t=0

=
∮

∂X
∑

1≤i,j≤n

Txi
(x)

∂Xi(X(w))

∂τj
h(x) ej(x) R (x)dΣ(x)−

∫∫

X
ĝ(x) R(x) h(x)dx, (46)

Note that the right-hand side of (22), and thus also ĝ(·), is continuous with respect to x.

Let x⋆ be an income bundle in the interior of X such that ĝ(x⋆) < 0. By continuity of ĝ(·),

there exists r > 0 such that the ball of radius r around x⋆ remains in the interior of X and ĝ(·)
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remains negative everywhere in this ball. Consider then a tax perturbation x 7→ T(x)− t R(x)

where R(·) is twice continuously differentiable, positive inside the ball of radius r around x⋆

and nil otherwise.21 Hence, ĝ(x) R(x) is negative inside the ball of radius r around x⋆ and nil

outside.

The first term in the right-hand side of (46) is nil, because the tax schedule is unperturbed on

the boundary ∂X of X , while the second term is positive. Implementing this tax perturbation

with t > 0 therefore generates tax revenue. Moreover, for incomes x inside the ball of radius r

around x⋆, utility increases since there R(x) is positive so perturbed tax liability T(x)− t R(x) <

T(x) decreases. Finally utility is unchanged outside the ball. Consequently, implementing this

tax perturbation and rebating the extra revenue in a lump-sum way strictly increase the welfare

for all taxpayers and is thereby Pareto-improving. This ends the proof of Part i) of Proposition

4. If a tax schedule is Pareto efficient, then such Pareto improving reform should not exist,

which requires ĝ(x) ≥ 0 for all x ∈ X .

A.8 Proof of Lemma 1

Given that X is defined as the range of the typeset W under the allocation w 7→ X(w), it

is sufficient to show that the mapping w 7→ X(w) is injective to establish that it is a bijection.

Assume there exists x ∈ X and w, ŵ ∈ W such that X(w) = X(ŵ) = x. From Assumption

1, the first-order conditions (3) have to be verified both at (c, x; w) and at (c, x; ŵ), so we get

S i(c, x, w) = S i(c, x, ŵ) for all i ∈ {1, ..., n}. According to Part iii) of Assumption 2’, these n

equalities imply that w = ŵ. Differentiability of w 7→ X(w) is ensured under Assumption 1 by

the implicit function theorem applied to (3). Part ii) of Assumption 2’ then ensures the Jacobian

of w 7→ X(w) is invertible (see Equation (36c) in Appendix A.2).

Because the mapping w 7→ X(w) is injective, we get that g(X(w)) = g(w), ∂Xi(X(w))/∂τj =

∂Xi(w)/∂τj and ∂Xi(X(w))/∂ρ = ∂Xi(w)/∂ρ. According to Equations (7), (36a) and (36b),

g(w), ∂Xi(w)/∂τj and ∂Xi(w)/∂ρ are continuously differentiable functions of c, x, w and, for

the latter two, of the terms Txixj
in the Hessian of the tax schedule. Hence, because the mapping

w 7→ X(w) is continuously differentiable and invertible, and because of Part iv) of Assumption

2’, ∂Xi(x)/∂τj, ∂Xi(x)/∂ρ and g(x) are continuously differentiable in x. Finally, the income

density is given by:

h(X(w)) =
f (w)∣∣∣∣∣det

[
∂Xi(w)

∂wj

]

i,j

∣∣∣∣∣

, (47)

which ensures the income density is also continuously differentiable in income. Hence As-

sumption 2 holds.

21For instance, one can take R(x) =
∫ r
‖x−x⋆‖ u2(u − r)2du inside the ball and zero outside.
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A.9 Optimal tax formula in the type space

To get an optimal tax formula in the type space, we need to rewrite the derivative of the

perturbed Lagrangian, (17), in the type space rather than in the income space. To reparametrize

the direction of a tax perturbation as a function of types, define:

R̂(w)
def
≡ R(X(w)).

Differentiating both sides with respect to wj yields:

R̂wj
(w) =

n

∑
i=1

(∂Xi(w)/∂wj) Rxi
(X(w)).

In matrix notation, the latter equality becomes:

[
R̂wj

(w)
]T

j
= [Rxi

(X(w))]Ti ·

[
∂Xi(w)

∂wj

]

i,j

⇔ [Rxi
(X(w))]Ti =

[
R̂wj

(w)
]T

j
·

[
∂Xi(w)

∂wj

]−1

i,j

,

where we use Parts i) and ii) of Assumption 2’ and Equation (36c) to ensure that matrix
[
∂Xi(w)/∂wj

]
i,j

is invertible. Using the symmetry of the matrix of compensated effects
[
∂Xi(w)/∂τj

]
i,j

, we can

rewrite the last term of Equation (17):

∑
1≤i,j≤n

Txi
(X(w))

∂Xi(w)

∂τj
Rxj

(X(w)) =
[

Rxj
(X(w)

]T

j
·

[
∂Xi(w)

∂τj

]

i,j

· [Txi
(X(w))]i

=
[

R̂wj
(w)

]T

j
·

[
∂Xi(w)

∂wj

]−1

i,j

·

[
∂Xi(w)

∂τj

]

i,j

· [Txi
(X(w))]i

= −
[

R̂wj
(w)

]T

j
·
[
S i

wj

]−1

i,j
· [Txi

(X(w))]i ,

where the last Equality follows from (36c). Using the definition of matrix Ai,j(w) in (32c),

Equation (17) can be rewritten as:

∂L̃R(t)

∂t

∣∣∣∣∣
t=0

=
∫∫

W

{[
g(w)− 1 +

n

∑
i=1

Txi
(X(w))

∂Xi(w)

∂ρ

]
R̂ (w)

− ∑
1≤i,j≤n

Txi
(X(w)) Aj,i(w) R̂wj

(w)

}
f (w)dw.

Using the Divergence theorem to perform integration by parts, we get:

∂L̃(t)

∂t

∣∣∣∣∣
t=0

= −
∮

∂W
∑

1≤i,j≤n

Txi
(X(w)) Aj,i(w) ej(w) f (w) R̂(w) dΣ(w)

−
∫∫

W

{[
1 − g(w)−

n

∑
i=1

Txi
(X(w))

∂Xi(w)

∂ρ

]
f (w)

−
n

∑
j=1

∂

(
n

∑
i=1

Txi
(X(w)) Aj,i(w) f (w)

)

∂wj





R̂ (w) dw.

This partial derivative is equal to zero for any direction of tax perturbation R̂(·) if and only if

the Euler-Lagrange Equation (32a) and Boundary conditions (32b) are verified.
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B Appendices on the First-Order Mechanism Design approach (FOMD)

B.1 Proof of Proposition 5

Let R be a twice differentiable function defined over W into R. We consider the effects of

perturbing the utility profile w 7→ U(w) in the direction R. Consider the perturbed Lagrangian,

with the unperturbed Lagrangian defined by (29):

L̃R(t)
def
≡
∫∫

W
L
(
U(w) + t R(w), Uw1

(w) + t Rw1
(w), ..., Uwp(w) + t Rwp(w); w, λ

)
dw. (48)

Applying the chain rule and denoting 〈w〉 as a shortcut to denote that a function is evaluated

at
(
U(w), Uw1

(w), ..., Uwp(w); w, λ
)
, we obtain:

∂L̃R(t)

∂t

∣∣∣∣∣
t=0

=
∫∫

W

{
Lu 〈w〉 R(w) +

p

∑
j=1

Lzj 〈w〉 Rwj
(w)

}
dw.

Applying integration by parts using the divergence theorem leads to:

∂L̃R(t)

∂t

∣∣∣∣∣
t=0

=
∫∫

W

{
Lu 〈w〉 −

p

∑
j=1

∂Lzj 〈w〉

∂wj

}
R(w)dw +

∮

∂W

p

∑
j=1

Lzj 〈w〉 ej(w) R(w) dΣ(w).

At the optimal allocation, the latter expression is nil for any perturbation R. This implies that

the boundary conditions (30b) must hold together with the Euler-Lagrange Equation (30a).

Using (31d) leads to (31c), and Euler-Lagrange equation (30a) becomes:

∀w ∈ W :
p

∑
j=1

∂θj(w)

∂wj
= −Lu 〈w〉 . (49)

Using incentive compatibility constraint (25), we can rewrite Lagrangian (29):

[
p

∑
i=1

Xi(w)− C(U(w), X(w); w) +
Φ(U(w); w)

λ

]
f (w) = (50)

L (U(w),Uw1 (C(U(w), X(w); w), X(w); w) , ...,Uwn (C(U(w), X(w); w), X(w); w) ; w, λ) .

Differentiating both sides of (50) with respect to Xi(w) and using (2) and (31d) leads to:

(
1 − S i 〈w〉

)
f (w) = −

p

∑
j=1

θj(w)
[
Uxiwj 〈w〉+ S i 〈w〉 Ucwj 〈w〉

]
,

which leads to (31a) given that S i
wj

= (Ucwj
Uxi

− Uxiwj
Uc)/U 2

c = −
[
Uxiwj

+ S i Ucwj

]
/Uc. Dif-

ferentiating (50) with respect to U(w) and using Cu = 1/Uc and (31d) leads to:

(
−

1

Uc 〈w〉
+

Φu(U(w); w)

λ

)
f (w) = Lu 〈w〉 −

p

∑
j=1

θj(w)
Uc,wj 〈w〉

Uc 〈w〉
. (51)

Substituting (49) into (51) yields (31b).
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B.2 Derivation of the optimal tax formula in the type space

Using (3), Equation (31a) leads to:

Txi
(X(w)) f (w) =

p

∑
j=1

µj(w) S i
wj
〈w〉 , (52)

where we denote µj(w)
def
≡ θj(w) Uc (C(w), X(w); w). This can be rewritten [Txi

(X(w))]i f (w) =[
S i

wj

]
i,j
·
[
µj(w)

]
j

in matrix notation, which leads to:
[
µj(w)

]
j
=
[
S i

wj

]−1

i,j
· [Txi

(X(w))]i f (w).

Using (32c), we therefore get:

∀w ∈ W , ∀i ∈ {1, ..., p} µi(w) =
n

∑
j=1

Ai,j(w) Txj
(X(w)) f (w). (53)

Combining Equation (31c) with (53) thus leads to (32b). Using Equation (7), Equation (31b)

implies that:

p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w)−

p

∑
j=1

θj(w) Ucwj 〈w〉

+
p

∑
j=1

θj(w)

[
Ucc 〈w〉

∂C(w)

∂wj
+

n

∑
i=1

Ucxi 〈w〉
∂Xi(w)

∂wj
+ Ucwj 〈w〉

]

= (1 − g(w)) f (w) +
p

∑
j=1

θj(w)

[
Ucc 〈w〉

∂C(w)

∂wj
+

n

∑
i=1

Ucxi 〈w〉
∂Xi(w)

∂wj

]
. (54)

Differentiating C(w) = C(U(w), X(w); w) with respect to wj and using Cu = 1/Uc, Cxi
=

−Uxi
/Uc, Cwj

= −Uwj
/Uc and (25) leads to:

∂C(w)

∂wj
=

Uwj 〈w〉

Uc 〈w〉
−

n

∑
i=1

Uxi 〈w〉

Uc 〈w〉

∂Xi(w)

∂wj
−

Uwj 〈w〉

Uc 〈w〉
= −

n

∑
i=1

Uxi 〈w〉

Uc 〈w〉

∂Xi(w)

∂wj
.

Plugging this equality into (54) leads to

p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w) +

p

∑
j=1

n

∑
i=1

θj(w)

[
Ucxi 〈w〉 −

Uxi 〈w〉

Uc 〈w〉
Ucc 〈w〉

]
∂Xi(w)

∂wj

= (1 − g(w)) f (w)−
p

∑
j=1

n

∑
i=1

µj(w) S i
c 〈w〉

∂Xi(w)

∂wj
. (55)

Substituting Equation (36c) into (55) yields:

p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w) +

p

∑
j=1

n

∑
i=1

n

∑
k=1

µj(w) S i
c 〈w〉

∂Xi(w)

∂τk
S k

wj
(w). (56)

Substituting Equation (36b) into (56) and using ∂Xi(w)
∂τk

= ∂Xk(w)
∂τi

yields:

p

∑
j=1

∂µj(w)

∂wj
= (1 − g(w)) f (w)−

p

∑
j=1

n

∑
k=1

µj(w) S k
wj
(w)

∂Xk(w)

∂ρ
. (57)
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Plugging (52) into (57) leads to:

p

∑
j=1

∂µj(w)

∂wj
=

(
1 − g(w)−

n

∑
k=1

Txk
(X(w))

∂Xk(w)

∂ρ

)
f (w). (58)

Plugging (53) into (58) leads to (32a).

The last equality in (32c) follows from Equation (36c) of Appendix A.2.

B.3 Proof of Proposition 6

If (u, z) 7→ L(u, z; w, λ) is concave then for any perturbation p, the function t 7→ L̃R(t)

defined in (48) is concave. Let w 7→ U(w) be another utility profile that verifies Equations

(31a) and take the perturbation R(w) = U(w) − U⋆(w). As the utility profile w 7→ U(w)

verifies Equations (31), we get that function t 7→ L̃R(t) admits a zero derivative at t = 0 and is

concave. So L̃R(0) > L̃R(1) and U⋆(·) provides a strictly higher welfare than U(·).

If two distinct allocations w 7→ U⋆(w) and w 7→ U(w) verify Equations (31) then, follow-

ing the reasoning above, U(·) strictly dominates U⋆(·) and U⋆(·) strictly dominates U(·), a

contradiction. So at most one allocation can verify Equations (31).

C Appendix on the Numerical Simulations

C.1 Simulations for the full optimum

We assume n = p = 2. Denote the tax liability assigned to type w as T (w)
def
≡ T(X(w)). Let

J (w) denote the inverse of the Jacobian matrix associated to the mapping w 7→ X(w):

J (w)
def
≡




∂X1(w)

∂w1

∂X1(w)

∂w2
∂X2(w)

∂w1

∂X2(w)

∂w2




−1

.

Given the mapping w 7→ T (w) and the allocation w 7→ X(w), we find the marginal tax rates

for a type-w taxpayer:

Txi
(X(w)) =

n

∑
k=1

Twk
(w)Jk,i(w). (59)

Taking into account that individual preferences (33) do not feature income effects, we rewrite

optimal tax condition (32a) in the type space:

(1 − g(w)) f (w) =
p

∑
j=1

∂

(
∑

1≤i,k≤n
Twk

(w) Jk,i(w) Aj,i(w) f (w)

)

∂wj
,

with boundary conditions:

∀ w ∈ ∂W : ∑
1≤i,j,k≤n

Twk
(w)

∂X−1
k (X(w))

∂xi
Aj,i(w) ej(w) = 0.

The simulation algorithm then works as follows. We start from some initial value of the

government budget multiplier λ.
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1. Start a loop from an initial tax function. Denote the tax function in iteration ℓ by x 7→

T(ℓ)(x). Starting from the tax function x 7→ T(ℓ)(x), we use the individual first-order

conditions to calculate the corresponding allocation w 7→ X(ℓ)(w), and the corresponding

inverse Jacobian w 7→ J (ℓ)(w)
def
≡ ∂

(
X

(ℓ)
k

)−1
(X(w))/∂xi.

2. We use the Partial Differential Equation toolbox 3.5 in MATLAB R2020b to find the map-

ping w 7→ T (ℓ+1)(w) that solves the Partial Differential Equation using the finite element

method:

(1 − g(w)) f (w) =
p

∑
j=1

∂

(
∑

1≤i,k≤n
T

(ℓ+1)
wk

(w) J
(ℓ)

k,i (w) Aj,i(w) f (w)

)

∂wj
, (60a)

with boundary conditions:

∀ w ∈ ∂W : ∑
1≤i,j,k≤n

T
(ℓ+1)

wk
(w) J

(ℓ)
k,i (w) Aj,i(w) ej(w) = 0. (60b)

In Equations (60), welfare weights g(w) are computed endogenously through (7), and

matrices A(w) through (32c), both as functions of the allocation w 7→ X(w). The al-

location is computed from marginal tax rates x 7→ Txi
(x). Marginal tax rates are de-

duced from w 7→ T
(ℓ+1)

wk
(w) and from w 7→ J (ℓ)(w) using (59). By keeping the Jacobian

w 7→ J (ℓ)(w) fixed, the Partial Differential Equation remains solvable by MATLAB.

3. We repeat these steps until the process converges to a fixed point x 7→ T(x). As conver-

gence criterion, we require that for more than 0.1% of all points on the simulation mesh,

the difference of the tax liability with the previous iteration is smaller than 0.5% or 50

USD, whichever is larger.22

We repeat this algorithm for various value of λ until the budget constraint (4) is fulfilled.

While solving the partial differential equation (60a) for T (ℓ+1), MATLAB’s solver will in-

spect different candidate solutions T (ℓ+1) with corresponding partial derivatives T
(ℓ+1)

wj
. Un-

avoidably, some candidates will correspond through (59) to marginal tax rates T
(ℓ+1)
xl

which are

larger than one for at least some taxpayers. Since the individual optimization problem yields

no solution when T
(ℓ+1)
xl

> 1, the algorithm halts when such a point is reached. Since we

cannot control the candidate solutions T (ℓ+1) inspected by MATLAB, we need a way to guide

the solver past any points that imply T
(ℓ+1)
xl

> 1. Suppose that straightforward application of

(59) yields candidate marginal tax rates denoted by T
∗(ℓ+1)
xj

. We then use instead the follow-

ing marginal tax rates to solve the individual optimization problem and to compute g(w) and

22Given that the lower bound for the income space equals 3.000 USD in the empirical baseline, and the upper
bound equals 500.000 USD, this is a high level of precision for practical purposes.
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A(w):

∀w : T
(ℓ+1)
xj

(X(w)) ≡





T
∗(ℓ+1)
xj

(X(w))

T
∗(ℓ+1)
xj

(X(w)) + 1 − T
(ℓ)
xj

(X(w))
if T

∗(ℓ+1)
xj

(X(w)) ≥ 0,

T
∗(ℓ+1)
xj

(X(w)) if T
∗(ℓ+1)
xj

(X(w)) < 0.

(61)

Equation (61) ensures that T
(ℓ+1)
xj

(X(w)) < 1, given that T
(ℓ)
xl

< 1. Moreover, T
(ℓ+1)
xj

(X(w))

is continuous and increasing in T
⋆(ℓ+1)
xj

(X(w)). Finally, if the algorithm converges, it con-

verges to the correct schedule w 7→ T (w), i.e. if T
⋆(ℓ+1)
xj

(X(w)) = T
(ℓ)
xj

(X(w)), then one has

T
(ℓ+1)
xj

(X(w)) = T
⋆(ℓ+1)
xj

(X(w)) = T
(ℓ)
xj

(X(w)).

The Partial Differential Equation Toolbox creates an evenly spaced mesh for the skills of

the individuals. It is not possible to directly increase the detail of the mesh in certain regions.

In order to have sufficient detail where necessary, e.g. near the boundaries and where most

households are, we use a transformation of the types. We use the following utility function:

U (c, x; w) = c − ∑
i=m, f

ε i

1 + ε i
x

1+εi
εi

i [Wi(wi)]
− 1

εi ,

where Wi(wi) are transformations of the individual abilities wi. For given observations of the

incomes and for given marginal tax rates, we find for an optimizing individual:

Wi(wi) = xi(1 − Txi
)−εi .

An appropriate choice of the transformations Wi(wi) allows increasing the detail of the mesh

grid where desired. We use the following transformations:

Wi(wi) =

∫ wi

wi

1
Di(ŵi)

dŵi
∫ wi

wi

1
Di(ŵi)

dŵi

(wi − wi) + wi,

where Di(wi) are functions that determine the detail of the mesh grid. Note that Wi(wi) = wi

and Wi(wi) = wi. The transformations wi 7→ Wi(wi) thus maintain the domain of the types.

Furthermore:

dWi(wi)

dwi
=

1
Di(wi)∫ wi

wi

1
Di(ŵi)

dŵi

(wi − wi) + wi > 0.

With an evenly spaced grid for w, the grid for W(w) will be more detailed where dWi(wi)/dwi

is smaller, and thus Di(wi) is larger. We increase the detail of the simulation grid near the lower

bounds, where the income densities are larger, by choosing the detail functions:

Di(wi) = 5
(wi − wi)

8

maxwi
[(wi − wi)8]

+ 0.1.

The inverse Jacobian matrices J (w) of the allocation w 7→ X(w) are approximated for

distances dwk = 10−7 in the skill domain. We smooth the resulting inverse Jacobian by inter-

polating one fourth of the nodes of the mesh in each dimension using a spline method and by

extrapolating linearly for the bottom 0.16% of the population.
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C.2 Individual taxation

In this subsection we describe our algorithm for finding the optimal individual tax system.

With some abuse of notation we will write the individual-tax system as:

T̃(x) = T(x f ) + T(xm).

With our utility function (33), the labor supply decisions of the couple can be decomposed as

the sum of two programs, one for each spouse, according to:

max
x f

x f − T(x f )−
ε f

1 + ε f
x

1+ε f
ε f

f + max
xm

xm − T(xm)−
εm

1 + εm
x

1+εm
εm

m .

Hence, female (male) labor supply x f (xm) depends only on female (male) type w f (wm). Denote

then Wi(x) the reciprocal wi 7→ Xi(wi). From Jacquet and Lehmann (2021b), the optimal-tax

formula is given by:

T′(x)

1 − T′(x)
=

∑i

∫ wi

ω=Wi(x) (1 − g̃i(ω)) fi(ω)dω

ε f W f (x) f f (W f (x)) + εm Wm(x) fm(Wm(x))
, (62)

where g̃i(wi) denotes the average welfare weight of a couple in which spouse i has ability wi

and fi(wi) is the marginal distribution of wi.

Our strategy is to apply a fixed-point algorithm to (62). That is, we calculate the right-hand

side of (62) under a given tax schedule. This allows us to update the tax schedule, which in

turn updates the right-hand side of (62), and so on.

Equation (33) allows us to calculate maximized utility as a function of type, U(w f , wm). This

in turn allows us to find the value of λ by noting that with quasi-linear utility, in absence of

income effects, Equation (16) can be written as:

λ =
∫ w f

w f

∫ wm

wm

Φ′(U(w f , wm) f (w f , wm)dwmdw f . (63)

The solution for λ from (63) allows us to find welfare weights as:

g(w f , wm) =
Φ′(U(w f , wm))

λ
.

Finally, the average welfare weight of a couple in which spouse i has ability wi can be found

through integration:

g̃i(wi) =

∫ wj

wj
g(w f , wm) f (w f , wm)dwj

fi(wi)
for i 6= j. (64)

This gives us all the necessary elements to calculate the right-hand side of (62) for a given tax

schedule on the basis of the primitives of our model.

We solve our fixed-point algorithm over a fixed income range X = [w, w] where w is the

minimum ability level in the sample, and w the maximum ability level. Note that for our utility

function xi = wi when marginal tax rates equal 0. Hence, the range of income X is consistent
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with our type-space for any optimal-tax function that satisfies the boundary constraint T′(w) =

T′(w) = 0. Moreover, note that in our simulations w f = wm and w f = wm, such that the

minimum and maximum ability level are the same for males and females.

We now have all the ingredients in place to provide a step-by-step description of our fixed-

point algorithm:

1. Create a grid with S linearly spaced incomes {xs}S
s=1 between w and w.

2. Start a loop. Denote the tax function in iteration k by T(k)(x). The first tax function is given

by T(0)(x) = T(0)(0) = E. That is, a lump-sum tax equal to exogenous expenditure. Note

that the initial tax function satisfies the boundary conditions T(0)′(w) = T(0)′(w) = 0.

Moreover, equations (62)–(63) jointly imply that an updated tax function also satisfies the

boundary conditions. Therefore, we can be sure that in each iteration of the loop wi = xi

and wi = xi.

3. For each income level xs, use the first-order conditions (3) to find the ability level of

spouse i that would choose xs under tax function T(k)(x). We again use the skill trans-

formation described in Subsection C.1 , to increase the detail of our simulations near the

boundaries of the domain and where most of the population resides. This provides a grid

of abilities for each spouse Ωi = {ws
i }

S
s=1.

4. Expand Ωi to create an S × S mesh of ability levels Ω by matching each ws
i ∈ Ωi to

the full vector {ws
j}

S
s=1 for i 6= j. Note that because i.) preferences are quasi-linear in

consumption, ii.) preferences are separable, iii.) the tax function is separable, and iv.) the

skill transformations are separable, each spouse with ability ws
i will earn xs

i independent

of the ability of the partner. This allows us to map ability to income for every type in the

mesh Ω. We will refer to this mapping as Xi(wi).

5. Find the marginal densities fi(wi) and use Equation (64) to find the welfare weight g̃i(wi)

for each agent in Ω.23

6. Use Equation (62) to find new marginal tax rates (T′(x))new.

7. Update marginal tax rates by taking a weighted average between old and new tax rates:

(T′(x))(k+1) = p(T′(x))(k) + (1 − p)(T′(x))new. (65)

8. Now we determine the lump-sum tax. Gross tax liabilities as a function of income for the

points on our grid are given by:

T
(k+1)
gross (xs) =

∫ xs

mini(wi)
(T′(x))(k+1)dx. (66)

23Throughout this subsection, and the next subsection all numerical integration occurs over a discretized grid
using Simpson’s rule as an approximation of the integral.
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Total tax receipts are thus:

B =
∫ w f

w f

∫ wm

wm

(
T
(k+1)
gross (X f (w f , wm) + T

(k+1)
gross (Xm(w f , wm)

)
f (w f , wm)dwmdw f . (67)

Hence, the intercept of the tax function consistent with the marginal tax rates equals

T(k+1)(0) = E − B. Together, the intercept and the marginal tax rates provide sufficient

information to create the new tax function T(k+1)(x) = T(k+1)(0) + T
(k+1)
gross (x).

The algorithm converges if the update in the marginal tax rate is small. Otherwise, reset

the counter k = k + 1 and loop back to step 3.

C.3 Linear isotax curves and joint taxation

In this section we describe our algorithm for finding the optimal-tax function with linear

isotax curves where taxable income is defined as:

y ≡ a x f + xm,

and a is a parameter that determines the slope of the isotax curve. We want to find the optimal

tax function T(y) as well as the optimal slope a. Our strategy is to apply a fixed-point algorithm

to equation (19a) for a given slope a. We then use a grid search to find the optimal value for a.

For the optimal joint taxation, we fix a = 1.

To apply the fixed-point algorithm we first need to express each term in (19a) as a function

of the primitives of our model, and for a given tax function. More specifically, we are looking

for an expression of i.) the distribution of joint income m(y), ii.) the elasticity of joint income

ε(y), and iii.) welfare weights g(y).

We first consider the joint density function m(y) which we find by initially defining the

cumulative density M(y), and then differentiating with respect to y.

We consider a rectangular income space. In a rectangular income space the set of couples

with joint income less than or equal to y can take four forms. In the first case the set forms

a triangle with vertices (x f , xm), (x f , y − ax f ), ((y − xm)/a, xm). The second case is where the

space forms a trapezoid with vertices (x f , xm), (x f , xm), ((y− xm)/a, xm), ((y− xm)/a, xm). The

third case is also a trapezoid with vertices: (x f , xm), (x f , xm), (x f , y − ax f ), (x f , y − ax f ). The

final case is a pentagon with vertices (x f , xm), (x f , xm), (x f , y − ax f ), ((y − xm)/a, xm), (x f , xm).

We can write the cumulative density on the set with joint incomes smaller than or equal to y

more succinctly by using a double integral:

M(y) ≡
∫ min(y−ax f ,xm)

xm

(∫ min( y−xm
a ,x f )

x f

h(x f , xm)dx f

)
dxm. (68)

In the integral, the four cases are subsumed in the upper bound of the integrals. If for a particu-

lar value of y, y − ax f ≤ xm and (y − xm)/a ≤ xm we are effectively integrating over a triangle.

If y − ax f > xm and (y − xm)/a ≤ xm, we are in the first trapezoidal case, and so on.
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The density function m(y) is defined as:

m(y) ≡
dM(y)

dy
.

Given the double integral in (68) we need to apply Leibniz’ rule for integration twice. To sim-

plify this step, first define:

φ(y, xm) ≡
∫ min( y−xm

a ,x f )

x f

h(x f , xm)dx f .

Applying Leibniz’ Rule a first time, we arrive at:

m(y) =
d
(∫ min(y−ax f ,xm)

xm
φ(y, xm)dxm

)

dy

=
∂ min(y − ax f , xm)

∂y
φ(y, min(y − ax f , xm)) +

∫ min(y−ax f ,xm)

xm

∂φ(y, xm)

∂y
dxm.

Now apply Leibniz’ rule a second time to arrive at:

m(y) = 1(y − ax f < xm)
∫ min(

y−min(y−ax f ,xm)

a ,x f )

x f

h(x f , min(y − ax f , xm))dx f

+
∫ min(y−ax f ,xm)

xm

∂

(∫ min( y−xm
a ,x f )

x f
h(x f , xm)dx f

)

∂y
dxm (69)

=
∫ min(y−ax f ,xm)

xm

∂

(∫ min( y−xm
a ,x f )

x f
h(x f , xm)dx f

)

∂y
dxm, (70)

where 1(·) is an indicator function that equals one if its argument is true, and zero other-

wise. In (69), the first term drops for the following reason. First, if xm ≥ y − ax f the indicator

function equals zero. Second, if xm < y − ax f the upper bound to the integral simplifies to:

min
(
(y − (y − ax f ))/a, x f

)
= x f , which equals the lower bound of the integral.

Equation (70) describes m(y) in terms of the primitives of our model and the tax function,

since h(·) is given by equation (47).

Next we consider the elasticity of joint income εy(y). The maximization problem of couples

that face tax schedule T(y), and have quasi-linear and separable preferences is given by:

max
x f ,xm

x f + xm − T(ax f + xm)− v(x f , w f )− v(xm, wm).

First-order conditions are:

1 − aT′(ax f + xm) = vx f
(x f , w f ),

1 − T′(ax f + xm) = vxm(xm, wm).

Perturbing the marginal tax rate by τ and totally differentiating with respect to x f , xmandτ, we

arrive at:

−adτ = (vx f ,x f
+ a2T′′)dx f + aT′′dxm, (71)

−dτ = aT′′dx f + (vxm,xm + T′′)dxm. (72)
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Using Cramer’s rule we have:

dx f

dτ
=

−a(vxm,xm + T′′) + aT′′

(vx f ,x f
+ a2T′′)(vxm,xm + T′′)− a2(T′′)2

=
−avxm,xm

vx f ,x f
vxm,xm + vx f ,x f

T′′ + a2T′′vxm,xm

,

dxm

dτ
=

−(vx f ,x f
+ a2T′′) + a2T′′

vx f ,x f
vxm,xm + vx f ,x f

T′′ + a2T′′vxm,xm

=
−vx f ,x f

vx f ,x f
vxm,xm + vx f ,x f

T′′ + a2T′′vxm,xm

.

Therefore, the elasticity of joint income as a function of the individual incomes is given by:

εy(x f , xm) = −
dy

dτ

1 − T′

y
= −

d(ax f + xm)

dτ

1 − T′

ax f + xm

=
a2vxm,xm + vx f ,x f

vx f ,x f
vxm,xm + vx f ,x f

T′′ + a2T′′vxm,xm

vxm

ax f + xm
. (73)

Hence, the average elasticity of a couple with joint income y is given by:

εy(y) =
1/a

∫ min(y−ax f ,xm)

max(xm,y−ax f )
εy( y−xm

a , xm)h(
y−xm

a , xm)dxm

m(y)
. (74)

This in turn can be expressed in terms of the primitives of our model, and the tax function by

using equation (73) for εy(x f , xm) and the definition of the utility function (33) to determine its

derivatives.

We can use the individual first-order condition (3) to find utility as a function of the in-

comes. In turn, (63) gives us the Lagrange multiplier. Welfare weights are then g(x f , xm) =

Φ′(U(x f , xm))/λ. Finally, the welfare weight of a couple with joint income y is given by:

g(y) =
1/a

∫ min(y−ax f ,xm)

max(xm,y−ax f )
g( y−xm

a , xm)h(
y−xm

a , xm)dxm

m(y)
. (75)

Next we describe the implementation of our algorithm. The general idea is to start with

a given tax schedule, which allows us to calculate the right-hand side of (19a). This in turn

updates the tax schedule, and so on until the algorithm converges to a specific tax schedule.

More specifically, our algorithm takes the following steps:

1. Initialize an outer loop by choosing the slope of the isotax curves along a grid of points α

between 0 and 1 and setting a = α/(1− α). Here α = .5 represents the case of unweighted

joint income, α < .5 implies female income is taxed more than male income, and vice

versa for α > .5.

2. Create a mesh of incomes {xs
f , xs

m, ys} = {xs
f , xs

m, axs
f + xs

m}
S
s= f between bottom income

{w f , wm, aw + wm} and top incomes {w f , wm, aw + wm}.

Our grid has a rectangular structure. Specifically, we first select 100 linearly spaced values

of x f between w f and w f . Then for each value of x f we choose 100 values of xm wm and
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wm creating a total of S = 100 · 100 = 10, 0000 representative couples. We create this

grid such that there is more detail close to the boundaries of the domain, similar to what

we did in the full simulations (see Appendix C.1). Furthermore, we slightly round the

corners of the income domain at (w f , wm) and (w f , wm), to prevent the sharp corners

from causing discontinuities in the Lagrangian for the optimal tax problem.24

3. Initialize an inner loop by setting a T0(y) = E.

4. For each point in the grid calculate the corresponding type (wi
f , wi

m), the density h(xi
f , xi

m),

the elasticity εy(xi
f , xi

m) and the utility U(xi
f , xi

m).

5. Use (63) for λ and use this to determine welfare weights g(x f , xm).

6. Numerically integrate equations (70), (73) and (75) to get m(y), g(y), ǫy(y).

7. Evaluate the right-hand side of (19a) and find updated marginal tax rates
(
T′(yi)

)new

8. Update marginal tax rates by taking a weighted average between new and previous

marginal tax rates:

(
T′(yi)

)(k+1)
= ζ

(
T′(yi)

)(k)
+ (1 − ζ)

(
T′(yi)

)new
,

where ζ is a number between 0 and 1.

9. Calculate gross tax receipts Tgross(y) =
∫ y

y (T′(ω))(k+1) dω and gross tax revenue revenue =
∫ y

y Tgross(y)m(y)dy. The intercept of the tax function is given by T(k+1)(0) = E − Revenue.

Together, the intercept and the marginal tax rates provide sufficient information to create

the new tax function T(k+1)(x) = T(k+1)(0) + T
(k+1)
gross (x).

10. Evaluate whether marginal tax rates are sufficiently close between iterations. If they are,

the inner loop has converged. If they are not close, return to step 4 using the new tax sys-

tem T(k+1)(y) and update the counter k = k + 1. When determining the starting function

for the next iteration, we smooth the tax function and we linearly extrapolate it for the

bottom 3.98% of the population rather than letting the marginal tax rates go to zero. This

extrapolation and smoothing prevents sharp swings in the second-order derivative of the

tax function in intermediate iterations of the algorithm.

11. Once the inner loop has converged, we evaluate welfare under the optimal tax system

and store it. Return to step 2 for a different value of α until all have been tried.

12. The algorithm returns the value of α that provides the highest level of welfare as well as

the corresponding welfare level.

24Income is endogenous to the tax function. However, for our utility function, when the marginal tax rate equals
zero, we find xi = wi. Moreover, from the boundary conditions we know that optimal marginal tax rates at the
top and bottom of the income distribution equal 0. Therefore, the top and the bottom of the income space are
independent of the tax system if the tax system satisfies the boundary conditions. The rest of boundaries of the
income space however can change from one iteration to the other.
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C.4 Comparisons of social welfare

In order to find a money metric to compare social welfare between different simulations,

we invert the social welfare function to find the evenly distributed level of utility that gives

rise to the measured level of social welfare:

u = −
log [β (1 − Φ)]

β
.

Since we use a quasi-linear social welfare function, differences in disposable income give rise

to equal differences in utility levels.
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A Mathematical Appendix not for publication

Studying multidimensional screening problems requires mathematical tools that are un-

usual to most economists. For the sake of completeness, this appendix states some results from

the mathematics literature that are useful for our paper. Hence, this appendix is not intended

for publication. For additional results and for proofs, an excellent reference is Basov (2005).

A mapping from a set X of Rn onto R is a scalar field. A mapping from a set X of Rn onto

Rn is a vector field. When a scalar field ϕ : x 7→ ϕ(x) is differentiable, the vector of its partial

derivatives (∂ϕ/∂x1, ..., ∂ϕ/∂xn) is called the gradient. The gradient of a scalar field is therefore

a vector field. When a vector field is the gradient of a scalar field, this vector field is said to

be conservative. When n = 1, any continuous (vector) field is conservative, simply because any

continuous function over an interval of R is integrable. This result does not easily generalize

when n > 1. This is because if a scalar field is twice continuously differentiable, the Hessian

matrix of its second order derivative has to be symmetric. This imposes a necessary condition

on the partial derivatives of a vector field to be conservative. The following theorem ensures

that symmetry of second-order cross derivatives is also sufficient.

Theorem 1. Let f : x 7→ f(x) = ( f1(x), ..., fn(x)) ∈ R
n be a continuously differentiable vector field

defined over a compact subset X of R
n. Then f is conservative if and only if:

∀x ∈ X and ∀(i, j) ∈ {1, ..., n}2 :
∂ fi

∂xj
(x) =

∂ f j

∂xi
(x).

We now state the divergence theorem, which generalizes to multiple dimensions a corollary

of the fundamental theorem of calculus in one dimension according to which f (b) − f (a) =
∫ b

a f ′(x)dx.

Theorem 2 (Divergence theorem). Let f : x 7→ f(x) = ( f1(x), ..., fn(x)) ∈ R
n be a continuously

differentiable vector field defined over a compact subset X of R
n. Let Ω be a connected compact subset

of X which admits a continuously differentiable boundary denoted ∂Ω. For any x on the boundary ∂Ω

of Ω, let e(x) = (e1(x), ..., en(x)) denote the outward unit surface normal vector to the boundary of Ω.

Then: ∫∫

x∈Ω

n

∑
i=1

∂ fi

∂xi
(x) dΣ(x) =

∮

x∈∂Ω

n

∑
i=1

fi(x)ei(x) dx.

The Divergence theorem can be used to perform integration by parts in multiple dimen-

sions.

Theorem 3 (Multidimensional integration by parts). Let f : x 7→ f(x) = ( f1(x), ..., fn(x)) ∈ R
n

and a : x 7→ a(x) ∈ R be respectively a vector and a scalar field that are continuously differentiable over

a compact subset Ω of R
n, with a smooth boundary ∂Ω and let e(x) = (e1(x), ..., en(x)) be the outward

unit surface normal vector defined on the boundary ∂Ω. Then:

∫∫

Ω

(
n

∑
i=1

fi(x)
∂a

∂xi
(x)

)
dx =

∮

x∈∂Ω

n

∑
i=1

a(x) fi(x)ei(x)dΣ(x)−
∫∫

Ω

(
n

∑
i=1

∂ fi

∂xi
(w)a(x)

)
dx.
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Proof: Let Q(x) = (Q1(x), ..., Qn(x))
def
≡ a(x)f(x) = (a(x) f1(x), ..., a(x) fn(x)). Since (∂Qi/∂xi)(x) =

(∂a/∂xi)(x) fi(x) + a(x)(∂ fi/∂xi)(x), applying the divergence theorem to Q gives the result. �

Theorem 4 (Integral form of a divergence PDE). Let a : x 7→ a(x) ∈ R and f : x 7→ f(x) =

( f1(x), ..., fn(x)) ∈ R
n be respectively a continuously differentiable scalar and vector fields defined over

a compact subset X of R
n. Then f verifies the divergence partial differential equation:

n

∑
i=1

∂ fi

∂xi
(x) = a(x),

if and only if it verifies the integrated divergence equation:

∮

x∈∂Ω

n

∑
i=1

fi(x)ei(x) dΣ(x) =
∫∫

x∈Ω
a(x) dx,

for any compact subset Ω of X which admits a continuously differentiable boundary denoted ∂Ω with

an outward unit surface normal vector to the boundary of Ω denoted e(x) = (e1(x), ..., en(x)).

Proof: This result is obtained by applying the Divergence theorem to left-hand side of the
divergence partial differential equation. For the reciprocal, applying the Divergence theorem to
left-hand side of the integrated divergence equation leads to:

∫∫

x∈Ω

n

∑
i=1

∂ fi

∂xi
(x) dx =

∫∫

x∈Ω
a(x) dx.

As this equality should be verified for any smooth compact subset of X , and f is assumed

continuously differentiable, then the two integrand must be equal everywhere inside Ω, which

leads to the divergence PDE. �
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