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1 Introduction

In this paper, we derive partial identification and inference results for a partially lin-

ear model, in a context where the outcome of interest and some of the covariates are

observed in two different datasets that cannot be merged. Relevant situations include

cases where the researcher is interested in the effect of a particular variable that is not

observed jointly with the outcome variable, as well as cases where the outcome and

covariates of interest are jointly observed but some of the potential confounders are

observed in a different dataset. This type of data combination environment, some-

times also referred to as data fusion, arises very frequently in a number of subfields

of empirical microeconomics. This includes, among others, health (Bhattacharya,

2013; Davillas and Pudney, 2020), income and consumption (Buchinsky et al., 2022),

education and returns to skills (Piatek and Pinger, 2016), as well as early childhood

development (Garcia et al., 2020). A common example is one where the researcher

seeks to combine experimental data with another observational dataset (Athey et al.,

2020), although data combination issues are also pervasive when working with obser-

vational data only (see Ridder and Moffitt, 2007 for a survey).

We consider the following partially linear model:

E(Y |X) = f(Xc) + X Õ
nc—0, X = (Xnc, Xc), (1)

in a data combination environment where FY,Xc
and FXnc,Xc

are supposed to be iden-

tified, but the joint distribution FY,X is not. The variables Xc are thus common to

both datasets, whereas the variables Xnc are only observed in one of the two datasets.

In this setup, —0 = (—01, ..., —0p)Õ is generally not point-identified, and as a result we

focus on the identified set of either —0 or —0k for some k œ {1, ..., p}.

We first provide a tractable characterization of the sharp identified set. Using in

particular Strassen’s theorem (Strassen, 1965), a recent result in optimal transport

by Backhoff-Veraguas et al. (2019), and a convenient characterization of second-order

stochastic dominance, we show that this set is convex, compact, includes the origin

and can be simply constructed from its radial function.1 The identified set of —0k,

1The radial function S of a closed, compact convex set C including the origin is defined, for any

q on the unit sphere, by S(q) = maxλq∈C ⁄.
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then, can also be computed at low computational cost by solving an unconstrained

convex minimization problem.

The characterization of the identified set also implies that point identification may be

achieved if —0 = 0, or under a restriction on the unobserved term Y ≠ f(Xc) ≠ X Õ
nc—0.

In the partially identified case, the identification region may be reduced by adding

restrictions on f(·). The two-sample two-stage least squares estimator (TSTSLS), for

instance, relies on the assumption f(Xc) = X Õ
c,i“0 for some “0 and Xc = (X Õ

c,e, X Õ
c,i)

Õ.2

Point identification then follows. But the exclusion restriction that E(Y |X) does not

depend on Xc,e may not be credible. We show instead that shape restrictions on f

may be sufficient to, e.g. identify the sign of —0k. Finally, we prove that our results are

robust to measurement errors on Y and X: under some conditions on these errors, —0

belongs to the identified set we obtain using the error-ridden covariates and outcome

instead of the true variables.

Our identification result is constructive, and readily leads to a simple, plug-in estima-

tor of the identified sets for —0 or —0k. The estimator of the radial function, however,

is not asymptotically normal in general. To construct asymptotically valid confidence

regions on —0 or confidence intervals on —0k, we show that we can use the numerical

bootstrap (Hong and Li, 2018, 2020).

Our method is based on a specific characterization of the identified set, and one

may wonder whether alternative characterizations would be more convenient. In

particular, the identified set can also be expressed through an infinite collection of

moment inequalities. Therefore, general approaches for such problems such as that

developed by Andrews and Shi (2017) could be used instead. We show through

simulations the advantages of relying on the targeted method we propose. First, it

often leads to a power gain, that is to say shorter confidence intervals. Second, our

method is fast. With a univariate Xnc, confidence regions are typically computed

in seconds, whereas they take less than seven minutes with a bivariate Xnc in the

hardest case we consider. Compared to the method of Andrews and Shi (2017), this

corresponds to a reduction by a factor of more than 200 of the computational time.

Finally, we apply our method to study intergenerational income mobility over the

2In this context, Xc,e (resp. Xc,i) corresponds to the excluded (resp. included) instruments.
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period 1850 to 1930 in the United States, revisiting the analysis of Olivetti and

Paserman (2015). In this context where the main variable and outcome of interest are

observed in two different datasets that cannot be linked, we show that the confidence

sets obtained using our method are quite informative in practice, while allowing us

to relax the exclusion restrictions underlying the two-sample 2SLS approach used in

Olivetti and Paserman (2015).

Related literature

Our paper is connected to the seminal article of Cross and Manski (2002) and subse-

quent work by Molinari and Peski (2006). They consider the issue of identifying the

“long regression”, in our context E(Y |Xc, Xnc), in the same data combination set-up

as here. Importantly though, these two papers focus on deriving the identification

region for E(Y |Xc, Xnc), but do not address the issue of inference. They also consider

a setup where the covariates Xnc that are not observed jointly with the outcome have

a discrete distribution with finite support, while we allow Xnc to be continuously

distributed. On the other hand their setup is entirely nonparametric, whereas we

consider a model that is linear in the covariates Xnc. This linearity assumption plays

an important role in our ability to derive a tractable inference method.

Our paper is also related to Pacini (2019), which constructs bounds on the best linear

predictor of Y on X in a similar data combination framework as here. We show that

if one is ready to impose the usual assumption that the model is partially linear, large

identification gains may be achieved, possibly up to point identification.

More generally speaking, our paper relates to the broader literature on data combi-

nation problems in econometrics and statistics. We refer the reader to Ridder and

Moffitt (2007) for a survey of this literature and to Fan et al. (2014), Fan et al. (2016),

Buchinsky et al. (2022), and Athey et al. (2020) for recent contributions. Contrary

to ours, most of these papers impose restrictions that entail point identification.

From a technical point of view and within the data combination literature, our paper

is closest to D’Haultfoeuille et al. (2021). Though that paper considered the entirely

different context of rational expectation testing, we also relied therein on Strassen’s

theorem to obtain a characterization of the null hypothesis of rational expectations.
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Importantly, we extend here our previous main result in a highly non-trivial way,

by relying in particular on recent results from Backhoff-Veraguas et al. (2019) to

handle the case where Xnc is multivariate. Also, we previously based our inference

on Andrews and Shi (2017). In contrast, a key contribution of our paper lies in the

novel and tractable inference method that we derive.

By developing in this data combination context a feasible inference method that can

be implemented at a very limited computational cost, our paper also adds to the

growing set of papers that propose tractable computational methods for partially

identified models (see Bontemps and Magnac, 2017 and Molinari, 2020 for recent

surveys). In particular, our paper fits into the strand of the literature that uses

tools from optimal transport to devise computationally tractable identification and

inference methods for partially identified models (Galichon and Henry, 2011; Gali-

chon, 2016). By characterizing the sharp identified set based on the radial function,

a novel approach in the partial identification literature, we show that it is possible to

achieve very substantial tractability gains in this context, relative to a more standard

characterization in terms of many moment inequalities.

Finally, our method can be used to conduct inference on the causal effect of a variable

of interest, in a setup where some of the confounders are observed in an auxiliary

dataset. As such, one can see our paper as expanding the range of data environments

in which unconfoundedness is a credible assumption, complementing a small set of

papers that focus on evaluating its reasonableness in the absence of data combination

(see, e.g., Altonji et al., 2005).

Organization of the paper

The remainder of the paper is organized as follows. In Section 2 we present our main

identification results for the two-sample partially linear model described above. Sec-

tion 3 studies estimation and inference for this model, while Section 4 illustrates the

finite sample performances of our inference method through Monte Carlo simulations.

In Section 5 we apply our method to revisit the analysis of Olivetti and Paserman

(2015) about intergenerational income mobility over the period 1850 to 1930 in the

United States. Section 6 concludes. The Appendix gathers details on inference with

weights and different sample sizes, additional material on the application, and all the
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proofs. Finally, our inference method can be implemented using our companion R

package, RegCombin, available at github.com/cgaillac/RegCombin.

2 Identification

Before presenting our main identification results, we introduce some notation that will

be used throughout the paper. We let 0p and Sp denote respectively the vector 0 and

the unit sphere in R
p; we may omit the index p in the absence of ambiguity. For any

cumulative distribution function (cdf) F defined on R, we let F ≠1(t) = inf{x : F (x) Ø
t} denote its generalized inverse. For any random variable A, we let A0 = A ≠ E(A),

Supp(A) be its support and FA denote its cdf. We also let ºcv denote the convex

ordering, namely, for two random variables A and B, A ºcv B if E[„(A0)] Ø E[„(B0)]

for all convex functions „. We write A ”ºcv B when A ºcv B does not hold. Finally,

for any sets C and C Õ, we denote by ˆC the boundary of C and by dH(C, C Õ) the

Hausdorff distance between C and C Õ, defined by

dH(C, C Õ) = max

A
sup
cÕœCÕ

inf
cœC

||c ≠ cÕ||, sup
cœC

inf
cÕœCÕ

||c ≠ cÕ||

B
.

2.1 Identification without common regressors

2.1.1 A tractable characterization of the identified set

We first derive the sharp identified set of —0 in the absence of common regressors

observed in both datasets. We suppose that we observe from two samples that can

not be merged the distributions of the outcome, FY , and covariates, FX . We maintain

the following assumption:

Assumption 1. We have E(Y 2) < Œ, E(ÎX2Î) < Œ, V (Y ) > 0 and E(X0X
Õ
0) is

non-singular. Moreover, E(Y0|X0) = X Õ
0—0 for some —0 œ R

p.

The identified set of — is defined as the set of all vectors in R
p that are compatible

with the model and the marginal distributions of Y and X, namely

B :=
;

— œ R
p : ÷ r.v. (ÊX, ÂY ) : E( ÂY0|ÊX0) = ÊX Õ

0—, ÊX d
= X, ÂY d

= Y
<

.
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Our goal is to express B to make it amenable to (simple) estimation. To this end, we

define, for any – œ (0, 1), F and G cdfs with expectation 0, the following functions:

R(–, F, G) =

s 1
α F ≠1(t)dt

s 1
α G≠1(t)dt

, (2)

S(F, G) = inf
αœ(0,1)

R(–, F, G).

These two functions play an important role in our analysis. Remark that, since F and

G are cdfs of mean zero distributions,
s 1

α F ≠1(t)dt and
s 1

α G≠1(t)dt are both positive,

so that R(–, F, G) is well-defined, with R(–, F, G) > 0 and S(F, G) Ø 0. Theorem 1

is our main identification result.

Theorem 1. Suppose that Assumption 1 holds. Then

B =
Ó
⁄q : q œ S, 0 Æ ⁄ Æ S(FY0 , FXÕ

0q)
Ô

. (3)

B includes 0p and is a convex, compact subset of BV = {— œ R
p : —ÕV (X)— Æ V (Y )}.

We first give a sketch of the proof of (3). Let BÕ denote the set on the right-hand side

of (3). First, by definition of S(FY0 , FXÕ

0q),

BÕ =
;

— œ R
p : ’– œ (0, 1),

⁄ 1

α
F ≠1

XÕ

0β(t)dt Æ
⁄ 1

α
F ≠1

Y0
(t)dt

<
.

This, in turn, is equivalent to FXÕ

0β dominating FY0 at the second order (see, e.g. De la

Cal and Cárcamo, 2006), implying that

BÕ = {— œ R
p : Y ºcv X Õ—} .

The inclusion B µ BÕ then follows essentially from Jensen’s inequality. As a side

remark, note that we can also express BÕ through infinitely many moment inequality

restrictions:

BÕ = {— œ R
p : E [max(0, Y0 ≠ t)] Ø E [max(0, X Õ

0— ≠ t)] ’t œ R} . (4)

This equality directly follows from Fubini-Tonelli, applied to the standard character-

ization of the second-order stochastic dominance condition, namely
s y

≠Œ FY0(t)dt Ø
s y

≠Œ FXÕ

0β(t)dt ’y œ R. We will return to this alternative characterization of the iden-

tified set in Section 4, where we will document the computational advantages of using

our characterization instead.
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The inclusion BÕ µ B is more intricate to prove. First, if Y ºcv X Õ—, we have, by

Strassen’s theorem (Theorem 8 in Strassen, 1965),

inf
(ÂY , ÂXβ):ÂY d

=Y, ÂXβ
d
=XÕβ

E
Ë---ÊXβ

0 ≠ E[ ÂY0|ÊXβ
0 ]

---
È

= 0. (5)

This result was already used in D’Haultfoeuille et al. (2021) to characterize the re-

strictions on FY and Fψ entailed by the rational expectation hypothesis E(Y |Â) = Â,

where Â denotes the subjective expectations on an outcome Y . Importantly though,

when X is multivariate, (5) is not sufficient to conclude that BÕ µ B, as the ‡-algebras

generated by X and X Õ— are not equal in general. Nonetheless, we prove,3 using a

recent result in optimal transport (Theorem 1.3 in Backhoff-Veraguas et al., 2019),

that

inf
(ÂY , ÂX):ÂY d

=Y, ÂX d
=X

E
Ë---ÊX Õ

0— ≠ E[ ÂY0|ÊX0]
---
È

Æ inf
(ÂY , ÂXβ):ÂY d

=Y, ÂXβ
d
=XÕβ

E
Ë---ÊXβ

0 ≠ E[ ÂY0|ÊXβ
0 ]

---
È

. (6)

Together, (5), (6), and the existence of a minimizer on the left-hand side of (6)

(Theorem 1.2 in Backhoff-Veraguas et al., 2019), imply that we can find random

variables ÂY and ÊX such that E[ ÂY0|ÊX0] = ÊX Õ
0—, ÂY d

= Y and ÊX d
= X. Thus, — œ B.

Turning to the second part of the theorem, 0p œ B follows by noting that one can

always rationalize, from the sole knowledge of their marginal distributions, that X

and Y are independent. That B µ BV comes from the inclusion B µ BÕ, combined

with the fact that Y ºcv X Õ— implies V (Y ) Ø V (X Õ—). Hence, B is included in

a bounded ellipsoid. The equality B = BV occurs for instance when Y and X are

normally distributed. Otherwise, B may be substantially smaller than BV , as we

illustrate below.

A point worth mentioning with the expression (3) of the identified set is that we

characterize the convex set B using S, which corresponds to the inverse of the

Minkowski gauge function of B (see, e.g., Definition 1.2.4 p.137 and Proposition 3.2.4

p.157 Hiriart-Urruty and Lemaréchal, 2012), also known as the radial function of B.

This function differs from the support function ‡ of B, defined by ‡(q, FY0 , FX0) =

supbœB qÕb. The difference between these two functions is illustrated in Figure 1.

3We thank Nathael Gozlan for his help in obtaining (6).
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The partial identification literature has largely relied on support functions, as these

are powerful tools that uniquely characterize their convex sets. But the radial func-

tion also uniquely characterizes convex sets if, as is the case here, these sets include

the origin. A key practical advantage of using the radial function S instead of the

support function ‡ in our context lies in its computational simplicity, as this only re-

quires minimizing a simple function over the interval (0, 1). In contrast, the support

function approach requires evaluating a supremum over the whole set B, which can

be computationally demanding.

Figure 1: Two characterizations of a closed convex set including the origin, either

through its support function ‡ (green), or through the radial function S (red).

On the other hand, the support function plays a key role in our context when one

is interested in a component of —0 = (—0,1, ..., —0,p)Õ, say —0,k. The following result

shows that we can actually recover this function at a low computational cost once S

is known. Hereafter, we let ek denotes the k-th element of the canonical basis in R
p

and use the convention 1/0 = Œ and 1/Œ = 0.

Corollary 1. Suppose that Assumption 1 holds. Then, the identified set Bk of —0,k

satisfies Bk = [≠‡(≠ek, FY0 , FX0), ‡(ek, FY0 , FX0)]. Moreover,

‡(ek, FY0 , FX0) =
1

infqœRp:qk=1 1/S(FY0 , FXÕ

0q)
. (7)

The same holds with ‡(≠ek, FY0 , FX0), after replacing qk = 1 by qk = ≠1.
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Expression (7) is appealing because q ‘æ 1/S(FY0 , FXÕ

0q) is convex, as shown in the

proof of Proposition 1 below. Thus, we can recover the support function ‡, and in

turn the sharp bounds on —k, by simply minimizing a convex function over R
p≠1.

Regularization An issue for estimation and inference on B is that when – æ 0 or

– æ 1, R(–, F, G) is a ratio of two terms tending to 0. Then, its plug-in estimator

may become very unstable. To regularize the problem, we consider an outer set

of B based on the removal of extreme values of –. Specifically, we define, for any

Á œ (0, 1/2),

Sε(F, G) = min
αœ[ε,1≠ε]

R(–, F, G), (8)

Bε =
Ó
⁄q : q œ S, 0 Æ ⁄ Æ Sε(FY0 , FXÕ

0q)
Ô

.

Note that for all F, G, – ‘æ R(–, F, G) is continuous on [Á, 1≠Á]. Thus, the minimum

in (8) is well-defined. Proposition 1 below describes some properties of Bε and relates

it with the sharp identified set B.

Proposition 1. Suppose that Assumption 1 holds. Then:

1. For all Á œ (0, 1/2), Bε includes 0p, is compact and convex;

2. For all 0 < Á < ÁÕ < 1/2, B µ Bε µ BεÕ and flεœ(0,1/2)Bε = B;

3. Suppose that there exist 0 < – Æ – < 1 such that, for all q œ S, – ‘æ
F ≠1

Y0
(–)/F ≠1

XÕ

0q(–) is (weakly) increasing on [–, 1) and (weakly) decreasing on

(0, –]. Then, there exists 0 < Á0 < 1/2 such that Bε0 = B.

The first part of Proposition 1 states that the regularized set Bε, for all Á œ (0, 1/2),

preserves the compactness and convexity of the sharp identified set B. The second

part states that Bε is always a superset of B, which is arbitrarily close to B as Á ¿ 0.

The third part states that under a regularity condition on the quantile ratio function

– ‘æ F ≠1
Y0

(–)/F ≠1
XÕ

0q(–), the set Bε coincides with the sharp set B for Á small enough.

As a leading special case, suppose that Y and X are both normally distributed, with

Y ≥ N (µY , ‡2) and X ≥ N (µX , Σ), where Σ is nonsingular. Then, it is easy to check

that for all q œ S, – ‘æ F ≠1
Y0

(–)/F ≠1
XÕ

0q(–) is constant and equal to ‡/(qÕ
Σq)1/2. In this

particular case, we actually have Bε = B for all Á œ (0, 1/2). In general though, Bε

will be a strict superset of B for Á large enough.
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Measurement errors We have assumed so far that the outcome and covariates

are perfectly observed. However, measurement errors are pervasive in survey data.

We now explore the robustness of the identified set proposed earlier to measurement

errors on the outcome and covariates, which we denote by Y ú and Xú. Specifically,

consider a situation where both the covariates and the outcome are measured with

error, such that: Y
_]
_[

X = Xú + ›X , ›X ‹‹ Xú,

Y = Y ú + ›Y , ›Y ‹‹ (Xú, Y ú).
(9)

We introduce a new set, Bú, which is defined as the original identified set B after

replacing the observed measurement error-ridden covariates and outcome (X, Y ) by

their latent counterparts (Xú, Y ú).

Proposition 2. If Assumption 1 is satisfied with (X, Y ) replaced by (Xú, Y ú), (9)

holds and for all — œ Bú, ›Y ºcv ›Õ
X—, then Bú µ B.

This proposition establishes that the identified set is robust to measurement errors in

the following sense: if measurement errors on the outcome Y ú second-order stochas-

tically dominate those on the linear index XúÕ— for all — œ Bú, the identified set B

based on the observed covariates and outcome X and Y always contains the true value

of the parameter of interest. To better understand the above domination condition,

suppose that p = 1, ›Y ≥ N (0, ‡2
Y ) and ›X ≥ N (0, ‡2

X). Then, recalling that any

— œ Bú satisfies the variance restriction —2V (Xú) Æ V (Y ú), a sufficient condition for

the dominance condition ›Y ºcv ›X— is ‡2
Y Ø [V (Y ú)/V (Xú)]‡2

X . In our application

for instance, Y ú and Xú are the log earnings of fathers and sons (or sons-in-law),

respectively, so V (Y ú) ƒ V (Xú) and ‡2
Y ƒ ‡2

X seem credible. This suggests that the

key domination condition from Proposition 2 is likely to hold in this context.

2.1.2 Point identification

We now show that under some additional restrictions, our approach yields point

identification of the parameters of interest.

Proposition 3. Suppose that Assumption 1 holds. Let U := Y ≠ X Õ—0. Then:

1. If —0 ”= 0p and for all ⁄ > 0, U ”ºcv (X Õ—0)⁄, then —0 œ ˆB.

11



2. If —0 = 0p and for all — ”= 0p, Y ”ºcv X Õ—, then B = {0p}.

A consequence of the first point is that —0 is point identified if X œ R and in addition

to E(Y |X) = X—0, we impose (i) —0 > 0 (say) and (ii) U ”ºcv X⁄, for all ⁄ > 0.

Then, —0 is equal to the upper bound of B. Condition (ii) basically imposes that the

tails of X⁄ are fatter than those of U , as we shall see more precisely below. Thus, the

relative thickness of the tails of the distributions of the observable index, X⁄, and of

the distribution of the unobservables U , plays an important role in attaining point

identification of —0. Note that, for the case where the unobservables U are normally

distributed, this condition is satisfied under the relatively mild restriction that the

linear index X—0 has thicker tails than a normal distribution.

The second point of Proposition 3 further establishes point identification when the

true coefficient satisfies —0 = 0p and for all — ”= 0p Y ”ºcv X Õ—, so that Y has lighter

tails than any linear index of X. In contrast to the first part of the proposition, point

identification holds for such DGP without using any restrictions on —0, since in this

case the identified set is reduced to a singleton (B = {0p}).

The following lemma allows us to derive sufficient conditions for the key restrictions

we have imposed in Proposition 3, namely U ”ºcv (X Õ—0)⁄ for all ⁄ > 0 or Y ”ºcv X Õ—

for all — ”= 0p.

Lemma 1. Let S œ R and T œ R
p be two random variables and suppose that there

exists „1 and „2 functions from R
+ to R

+ such that (i) „1 is increasing and convex;

(ii) limxæŒ „2(x)/x = Œ; (iii) E[„1 ¶ „2(|S0|)] < Œ and E[„1(|T
Õ
0“|)] = Œ for all

“ œ S. Then, for all — ”= 0p, S ”ºcv T Õ—.

This lemma shows for instance (taking p = 1) that S ”ºcv T⁄ for all ⁄ ”= 0 if for

some a > b > 0, E[|S|a] < E[|T |b] = Œ. Alternatively, the condition holds if

E[exp(a|S|b)] < E[exp(c|T |)] = Œ for some b > 1 and a, c > 0. The lemma also

applies for any p œ N if E[exp(|S|2+η)] < Œ for some ÷ > 0 and T is a Gaussian

vector with nonsingular variance matrix.

To illustrate Point 2 of Proposition 3 and Lemma 1, suppose that p = 1, X follows

a Laplace distribution (with density exp(≠|x|)/2 on R) and Y ≥ N (0, 1). Then, by

Lemma 1, Y ”ºcv X⁄ for all ⁄ ”= 0. It then follows from Point 2 of Proposition 3 that
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—0 = 0 is point identified in this case. On the other hand, the variance restrictions only

set identify —0, with an identified set given by BV = [≠1/
Ô

2, 1/
Ô

2] ƒ [≠0.707, 0.707].

2.2 Identification with common regressors

We now turn to the frequent situation where some regressors are observed in both

datasets. Namely, suppose we observe regressors Xc that are common to both

datasets, and assume that the partially linear model (1) holds:

E(Y |X) = f(Xc) + X Õ
nc—0, X = (Xnc, Xc),

The key here is to note, following Robinson (1988), that this case is equivalent to the

previous setup without common regressors once we compute the following residuals,

for all x in the support of Xc:

Xx = Xnc ≠ E(Xnc|Xc = x),

Y x = Y ≠ E(Y |Xc = x).

It directly follows that —0 satisfies E(Y x|Xx) = XxÕ—0, which allows us to use the char-

acterization of the identified set without common regressors obtained in Section 2.1.

Let Bc and F denote the identified sets of —0 and f , respectively. We have the

following characterization of Bc and F :

Proposition 4. Suppose that E(Y 2) < Œ, for all x œ Supp(Xc), E(XxXxÕ|Xc = x)

is nonsingular and (1) holds. Then:

Bc =
Ó
⁄q : q œ S, 0 Æ ⁄ Æ S(FY,Xc

, FXÕ

ncq,Xc
)
Ô

,

F = {x ‘æ E(Y |Xc = x) ≠ E(Xnc|Xc = x)Õ— : — œ Bc} ,

where S(FY,Xc
, FXÕ

ncq,Xc
) = infxœSupp(Xc) S(FY x|Xc=x, FXxÕq|Xc=x). Bc includes 0p, is

compact and convex.

The set Bc is simply the intersection over all xc œ Supp(Xc) of the identified sets

obtained on the subpopulations for whom Xc = xc. Clearly, this identified set can be

reduced if one imposes some constraints on f(·). We consider below a few important

special cases.
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Consider first the restriction f(Xc) = f1(Xi,c), with Xc = (X Õ
i,c, X Õ

e,c)
Õ. This restriction

is implicit in, and central to the two-sample two-stage least squares strategy. Under

this restriction, the model is rewritten as:

E [Y ≠ E(Y |Xi,c)|Xc] = RÕ—0,

with R = E [Xnc ≠ E(Xnc|Xi,c)|Xc]. Hence, under the relevance condition that

E(RRÕ) is nonsingular, —0 is point identified.

Another restriction one may consider is linearity of f(·), namely f(Xc) = X Õ
c“0. It

follows from this restriction that:

E(Y |Xc) = X Õ
c“0 + E(Xnc|Xc)

Õ—0.

If Xc and E(Xnc|Xc) are not collinear, which implies that E(Xnc|Xc) is a nonlinear

function of Xc, —0 is again point identified. Note that this point identification result

fully relies on the linearity of f(·) combined with the nonlinearity of E(Xnc|Xc), and

is thus akin to, e.g., the identification of sample selection models without instruments

exploiting the nonlinearity of the inverse Mill’s ratio.

Third and most importantly, shape constraints on f(·) arise naturally in many em-

pirical applications. For concreteness, we consider the case of monotonicity con-

straints, where we assume that Xc is finitely supported. Specifically, assume that

Supp(Xc) = {xc,1, ..., xc,K}, f(Xc) =
qK

k=1 “0,k1 {Xc = xc,k} and let us consider

(weak) sign constraints on some of the “0,k. We let sk = 1 if the constraint is “0,k Ø 0,

sk = ≠1 if the constraint is “0,k Æ 0. Finally, let sk = 0 if we do not impose any

constraint on “0,k. We denote by Bcon the identified set under these constraints.

We first express Bcon using the unconstrained set Bc. Denoting by Y k = E (Y |Xc = xc,k),

Xk = E(Xnc|Xc = xc,k), we have

sk

1
Y k ≠ X

Õ
k—0

2
Ø 0 ’k œ {1, ..., K}. (10)

Because these are the only constraints on f(·), Bcon satisfies

Bcon = {b œ Bc : (10) holds.} (11)

Since the set of parameter values b satisfying the constraints (10) is convex and closed,

Bcon is still convex and compact. On the other hand, it does not include the origin if

skY k < 0 for some k.
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It is possible to express Bcon in a way that is closer to the characterizations of B and

Bc in Theorem 1 and Proposition 4, respectively. Let q œ S+ denote a direction in

the upper hemisphere. From (11) and Proposition 4, any ⁄q œ Bcon should satisfy

≠S(FY,Xc
, F≠XÕ

ncq,Xc
) Æ ⁄ Æ S(FY,Xc

, FXÕ

ncq,Xc
),

⁄
1
skX

Õ
kq

2
Æ skY k ’k œ {1, ..., K}.

This shows that ⁄ satisfies additional inequalities. To write these, we introduce the

sets K+(q) =
Ó
k œ {1, ..., K} : skX

Õ
kq > 0

Ô
and K≠(q) =

Ó
k œ {1, ..., K} : skX

Õ
kq < 0

Ô
.

Then, define

Scon(q, FY,Xc
, FXnc,Xc

) = max

A
≠S(FY,Xc

, F≠XÕ

ncq,Xc
), max

kœK≠(q)

Y k

X
Õ
kq

B
(12)

S
con

(q, FY,Xc
, FXnc,Xc

) = min

A
S(FY,Xc

, FXÕ

ncq,Xc
), min

kœK+(q)

Y k

X
Õ
kq

B
. (13)

By what precedes, we can rewrite the identified set as follows:

Bcon =
Ó
⁄q : q œ S+, Scon(q, FY,Xc

, FXnc,Xc
) Æ ⁄ Æ S

con
(q, FY,Xc

, FXnc,Xc
)
Ô

. (14)

The identified set for f(·) is then

F con =

I
Kÿ

k=1

“k1 {Xc = xc,k} : ÷— œ Bcon : “k = Y k ≠ X
Õ

k—

J
.

Note that we may have Scon(q, FY,Xc
, FXnc,Xc

) > S
con

(q, FY,Xc
, FXnc,Xc

), in which case

the intersection of Bcon with the linear span of q is empty. If Bcon itself is empty, one

would reject the model (1) together with the constraints (10).

2.3 Numerical illustration

We conclude this section with a numerical illustration of the identification results

above. We consider the following model:

Y = “0,0 + “0,11{Xc = 1} + Xnc,1—nc,1 + Xnc,2—nc,2 + U, U |X ≥ N (0, 4).

We set the coefficients as follows: “0,0 = ≠0.1, “0,1 = 0.3, —nc,1 = 1 and —nc,2 = 1.

The variables X are transformations of (N1, N2, N3)
Õ, which is supposed to follow a
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multivariate normal distribution with mean 0 and covariance matrix

Σ =

Q
ccca

1 0.8 ≠0.1

0.8 1 ≠0.2

≠0.1 ≠0.2 1

R
dddb .

Specifically, the common regressor is given by Xc = 1 {N1 Æ 1.2}, and we consider

three cases for the regressors that are observed in one of the datasets only, Xnc. In

the first case, (Xnc,1, Xnc,2) = (N2, N3), in the second, (Xnc,1, Xnc,2) = (N2, exp(N3))

and in the third, (Xnc,1, Xnc,2) = (exp(N2), exp(N3)).

Figure 2 displays several identified sets for each of the three data-generating processes

described above, each of them being associated with particular restrictions. Namely,

the set in red, denoted by BV , is obtained from the variance restrictions only:

BV =
Ó
— : —ÕV (X0)— Æ V (Y 0)

Ô
fl

Ó
— : —ÕV (X1)— Æ V (Y 1)

Ô
,

where Xx and Y x are defined as in Section 2.2. Hence, BV is the intersection of

two ellipses. The set in green, Bc, is obtained as in Proposition 4 and relies on the

restrictions E(Y x|Xnc, Xc = x) = XxÕ—0 for x œ {0, 1}. Finally, the set in blue, Bcon,

is a subset of Bc that imposes the additional sign constraint “0,1 Ø 0.

(a) Xnc,1 and Xnc,2 normal (b) Xnc,1 and ln(Xnc,2) normal (c) Xnc,1 and Xnc,2 lognormal

Note: the sets are obtained using a sample of 100,000 observations and taking the convex hull of the

set obtained from 6,000 directions sampled uniformly on the 2 dimensional sphere.

Figure 2: Identification regions for different distributions of (Xnc,1, Xnc,2)

A couple of comments are in order. In case (a), the sets BV and Bc are equal. This is

expected because conditional on Xc, the distributions of Y and Xnc are close to normal
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distributions, in which case the variance restrictions are sufficient to rationalize the

linear conditional expectation restriction. The sign restriction on Xc nearly cuts by

half the area of the identified set and excludes 02 from Bcon. In case (b) on the

other hand, the restrictions implied by the model are much more informative than

the variance restrictions, because of the non-normality of Xnc,2, and in particular the

fact that it has fatter tails than the residuals U . The true point is at the boundary

of Bc, illustrating Proposition 3 applied conditional on Xc = 0 and Xc = 1. In this

case also, the restriction “0,1 Ø 0 is sufficient to imply that 02 ”œ Bcon. Here, when

projecting on the x-axis, we can also reject that —nc,1 = 0.

Finally, the identified set Bc is reduced further in case (c), as a result of the fatter

tails of both Xnc,1 and Xnc,2. Like in case (b), under the sign constraint on “0,1,

we reject not only that 02 œ Bcon, but also that —nc,1 = 0. Overall, that the sharp

identified sets Bc are, for the cases (b) and (c), much more informative than the

identified set BV based on the variance restrictions highlights the importance of using

all of the restrictions implied by the model. Another takeaway from these numerical

illustrations is that sign constraints can be very informative in practice, resulting in

significant shrinkage of the identified set.

3 Inference

We now consider the estimation of the identified set, and how to conduct inference

on the parameters of interest —0. As in the previous section, we first consider the case

without common regressors and then show how to incorporate such regressors. We

conclude this section by discussing some computational and implementation details

of our procedure.

3.1 Inference without common regressors

We rely on a random sample from the distributions of Y and X.

Assumption 2. We observe (Y1, ..., Yn) and (X1, ..., Xn), two independent samples

of i.i.d. variables with the same distribution as Y and X, respectively.
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To simplify the exposition, we assume in the following that the two samples have

equal size; the general case is described in Appendix A.

3.1.1 Estimation of the identification region and confidence region

For any q œ S, we let (X Õq)(1) < ... < (X Õq)(n) and Y(1) < ... < Y(n) denote the order

statistics associated with the X Õq and Y , respectively. For any – œ (1/n, 1 ≠ 1/n),

‚R(–, FY0 , FXÕ

0q) =

qn
i=ÁnαË[Y(i) ≠ Y ]

qn
i=ÁnαË[(X

Õq)(i) ≠ X
Õ
q]

,

where ÁxË = min{j œ N : j Ø x}. ‚R(–, FY0 , FXÕ

0q) is a modified plug-in estimator of

R(–, FY0 , FXÕ

0q), in the following sense. Let ‚FY and ‚FXÕq denote the empirical cdf of

Y and X Õq and let ‚FY0(t) = ‚FY (t + Y ) and ‚FXÕ

0q(t) = ‚FXÕq(t + X
Õ
q). Then, for any

– œ (1/n, 1 ≠ 1/n), the plug-in estimator of R(–, FY0 , FXÕ

0q) satisfies, in view of (2),

R(–, ‚FY0 , ‚FXÕ

0q) =

qn
i=ÁnαË[Y(i) ≠ Y ] + (Án–Ë ≠ n–)(YÁnαË≠1 ≠ Y )

qn
i=ÁnαË[(X

Õq)(i) ≠ X
Õ
q] + (Án–Ë ≠ n–)(X Õ

ÁnαË≠1q ≠ X
Õ
q)

.

Compared to this plug-in estimator, we thus neglect in ‚R(–, FY0 , FXÕ

0q) the second

terms appearing in the numerator and denominator of R(–, ‚FY0 , ‚FXÕ

0q).

Then, for any Á œ (1/n, 1/2(1 ≠ 1/n)) we estimate the regularized radial function,

Sε(FY0 , FXÕ

0q), by

‚Sε

1
FY0 , FXÕ

0q

2
= min

αœ[ε,1≠ε]

‚R(–, FY0 , FXÕ

0q)

= min
ÁεnËÆjÆn≠ÂεnÊ

qn
i=j[Y(i) ≠ Y ]

qn
i=j[(X

Õq)(i) ≠ X
Õ
q]

, (15)

with ÂxÊ = max{j œ N : j Æ x}. Equation (15) makes it clear that the computation

of ‚Sε

1
FY0 , FXÕ

0q

2
is almost immediate.

With ‚Sε

1
FY0 , FXÕ

0q

2
at hand, we estimate the identified set Bε simply by:

‚Bε :=
Ó
⁄q : q œ S, 0 Æ ⁄ Æ ‚Sε

1
FY0 , FXÕ

0q

2Ô
.

Next, we build confidence regions on —0. As the asymptotic distribution of ‚Sε

1
FY0 , FXÕ

0q

2

is not Gaussian in general, we rely on a particular bootstrap scheme called the numer-

ical bootstrap (see, e.g., Hong and Li, 2018, 2020). This method is well-suited here
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because the map Sε is Hadamard directionally differentiable, but not Hadamard dif-

ferentiable unless strong conditions hold.4 The main idea of this method is to approxi-

mate the local behavior of Sε by taking finite differences. Specifically, let (W1, ..., Wn)

(resp. (Wq,1, ..., Wq,n)) be standard (namely, multinomial) bootstrap weights associ-

ated with the sample (Y(1), ..., Y(n)) (resp. ((X Õq)(1), ..., (X Õq)(n))). Then, let

‚Rú(–, FY0 , FXÕ

0q) =

qn
i=ÁnαË Wi[Y(i) ≠ Y ]

qn
i=ÁnαË Wq,i[(X Õq)(i) ≠ X

Õ
q]

denote the bootstrap counterpart of ‚R(–, FY0 , FXÕ

0q) and define

Z
ú
n,q(–) =

Ô
n

1
‚Rú(–, FY0 , FXÕ

0q) ≠ ‚R(–, FY0 , FXÕ

0q)
2

.

We let ‚cβ,ε(q) denote the quantile of order — œ (0, 1) of

minαœ[ε,1≠ε]( ‚R(–, FY0 , FXÕ

0q) + ”nZ
ú
n,q) ≠ ‚Sε(FY0 , FXÕ

0q)

”n

, (16)

for some ”n such that ”n æ 0 and
Ô

n”n æ Œ. For a nominal coverage of 1 ≠ –, the

confidence region on —0 we consider is given by

CR1≠α(—0) =
Ó
⁄q : q œ S, 0 Æ ⁄ Æ ‚Sε

1
FY0 , FXÕ

0q

2
≠ ‚cα,ε(q)n≠1/2

Ô
.

The idea behind the use of ‚cα,ε(q) is that the distribution of (16) consistently estimates

the asymptotic distribution of

Ô
n

1
‚Sε

1
FY0 , FXÕ

0q

2
≠ Sε

1
FY0 , FXÕ

0q

22
. (17)

An alternative for consistently estimating the asymptotic distribution of (17) would

be subsampling, see Politis et al. (1999).

In practice, one is often interested in conducting inference on subcomponents of —0.

In view of (7), the identified (outer) set Bk,ε of —0,k corresponding to Bε satisfies

Bk,ε = [≠‡ε(≠ek, FY0 , FX0), ‡ε(ek, FY0 , FX0)], (18)

4We refer to Fang and Santos (2019) for the difference between these two notions of differentia-

bility, the proof that the standard bootstrap generally fails for Hadamard directionally differentiable

functions, and the validity of the numerical bootstrap in this context (see in particular their discus-

sion pp. 390-91).
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where ‡ε(·, FY0 , FX0) denotes the support function associated to q ‘æ Sε(FY0 , FXÕ

0q) and

ek the k-th element of the canonical basis of Rp. To construct confidence intervals on

—0k, we first estimate ‡ε(·, FY0 , FX0) by

‚‡ε(e, FY0 , FX0) =
1

infqœRp:qÕe=1 1/ ‚Sε

1
FY0 , FXÕ

0q

2 , (19)

see Corollary 1. Then, we estimate the asymptotic distribution of ‚‡ε(·, FY0 , FX0), in

a similar way as above. Let Âcβ,ε(e) denote the quantile of order — œ (0, 1) of

1

”n

S
U 1

infqœRp:qÕe=1 1/ minαœ[ε,1≠ε]( ‚R(–, FY0 , FXÕ

0q) + ”nZ
ú
n,q)

≠ ‚‡ε(e, FY0 , FX0)

T
V , (20)

where ”n is as above. Then, the confidence interval we consider for —0,k is

CI1≠α(—0,k) =

S
U

A
≠‚‡ε(≠ek, FY0 , FX0) +

Âcα,ε(≠ek)

n1/2

B≠

,

A
‚‡ε(ek, FY0 , FX0) ≠ Âcα,ε(ek)

n1/2

B+
T
V ,

where x≠ = min(0, x) and x+ = max(0, x). The rationale for using (·)≠ and (·)+ is to

ensure that 0 œ CI1≠α(—0,k); recall that without constraints, 0 œ Bk,ε. The advantage,

then, is that we can still use the quantiles of order – while maintaining coverage even

under point identification, as shown formally in Theorem 3 below.

3.1.2 Consistency and validity of the confidence region

The following theorem shows that ‚Bε is consistent for Bε, in the sense of the Hausdorff

distance, under mild regularity conditions.

Theorem 2. Suppose that Assumptions 1-2 hold. Then,

dH

1
‚Bε, Bε

2
P≠æ 0.

Next, we establish the asymptotic validity of CR1≠α(—0) and CI1≠α(—0,k), under the

following regularity conditions.

Assumption 3. (Regularity conditions for CR1≠α(—0)) E[ÎXÎ2] < Œ, E[Y 2] < Œ.

Also, for all q œ S, there exists ÁÕ œ (0, Á) such that FXÕq and FY are continuous and

strictly increasing on [F ≠1
XÕq(Á

Õ), F ≠1
XÕq(1 ≠ ÁÕ)] and [F ≠1

Y (ÁÕ), F ≠1
Y (1 ≠ ÁÕ)] respectively.
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Assumption 4. (Regularity conditions for CI1≠α(—0,k)) E[ÎXÎ2] < Œ, E[Y 2] < Œ.

Also, there exists ÁÕ œ (0, Á) such that for all (–, –Õ) œ [ÁÕ, 1≠ÁÕ]2, there exists a strictly

increasing and continuous function m such that m(0) = 0 and

sup
qœS

---F ≠1
XÕq(–

Õ) ≠ F ≠1
XÕq(–)

--- < m(|–Õ ≠ –|),

---F ≠1
Y (–Õ) ≠ F ≠1

Y (–)
--- < m(|–Õ ≠ –|).

The second part of Assumption 3 holds if for all q œ S, the distributions of X Õq

and Y are continuous with respect to the Lebesgue distribution and their support

is a (possibly unbounded) interval. Assumption 4 is basically a reinforcement of

Assumption 3 to ensure that some of our results hold uniformly over q. This is needed

when we consider the support function, as this function implies an optimization over

q. A sufficient condition for the last part of Assumption 4 (on X, say) is that, for

all q œ S, X Õq admits a density fXÕq with respect to the Lebesgue measure and

inf(q,α)œS◊[ε,1≠ε] fXÕq(–) > 0.

Theorem 3. Fix (Á, –) œ (0, 1/2)2 and suppose that Assumptions 1-2 hold. Then:

1. If Assumption 3 also holds,

inf
βœB

lim inf
næŒ

P (— œ CR1≠α(—0)) Ø inf
βœBε

lim inf
næŒ

P (— œ CR1≠α(—0)) = 1 ≠ –. (21)

2. If Assumption 4 also holds and the asymptotic distributions of
Ô

n (‚‡ε(e, FY0 , FX0)

≠‡ε(e, FY0 , FX0)) for e = ±ek are continuous at their –-th quantile,

lim inf
næŒ

inf
βkœBk

P (—k œ CI1≠α(—0,k)) Ø lim inf
næŒ

inf
βkœBk,ε

P (—k œ CI1≠α(—0,k)) = 1≠–. (22)

Note that we get equalities in (21)-(22) when Bε = B. This occurs in particular under

the conditions displayed in Point 3 of Proposition 1, a leading example of which being

when both Y and X are normally distributed.

To prove the result, we first show the weak convergence of

Ô
n

1
‚R(–, FY0 , FXÕ

0q) ≠ R(–, FY0 , FXÕ

0q)
2

,

seen as a process indexed by either – or (–, q). Then, to prove the consistency of the

numerical bootstrap and in turn (21)-(22), we check the conditions of Theorem 3.2 in
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Fang and Santos (2019). To this end, we use in particular the Hadamard directional

differentiability of the minimum and maximin maps, shown respectively by Cárcamo

et al. (2020) and Firpo et al. (2021).

Finally, note that to obtain (22), we impose the continuity of the asymptotic distribu-

tion (FŒ,e, say, for e = ±ek) of
Ô

n (‚‡ε(e, FY0 , FX0) ≠ ‡ε(e, FY0 , FX0)). This regularity

condition can be shown to hold if R(·, FY0 , FXÕ

0q) admits a unique minimizer for all

q œ S, and we conjecture that it holds more generally.5

3.2 Inference with common regressors

We now turn to inference on —0 with common regressors Xc. Recall from Proposition

4 that the identified set on —0 is

Bc =
Ó
⁄q : q œ S, 0 Æ ⁄ Æ S(FY,Xc

, FXÕ

ncq,Xc
)
Ô

,

with S(FY,Xc
, FXÕ

ncq,Xc
) = infxœSupp(Xc) S(FY x|Xc=x, FXxÕq|Xc=x).

Let us first assume that Xc has a finite support. We follow the same logic as above.

For any x œ Supp(Xc), define ‚Sε(FY x|Xc=x, FXxÕq|Xc=x) as in (15), but restricted to

the subsamples of (Y, Xc) and (Xnc, Xc) for which Xc = x (in case these subsamples

are of different size, see Appendix A). Then, let

‚S(q, FY,Xc
, FXnc,Xc

) = min
xœSupp(Xc)

‚Sε(FY x|Xc=x, FXxÕq|Xc=x).

Next, denote by ‚cc
β,ε(q) the quantile of order — œ (0, 1) of

1

”n

I
min

xœSupp(Xc)

C
min

αœ[ε,1≠ε]

1
‚R(–, FY x|Xc=x, FXxÕq|Xc=x) + ”nZ

ú
n,q,x

2D

≠ ‚S(q, FY,Xc
, FXnc,Xc

)

J
, (23)

with Z
ú
n,q,x =

Ô
n

1
‚Rú(–, FY x|Xc=x, FXxÕq|Xc=x) ≠ ‚R(–, FY x|Xc=x, FXxÕq|Xc=x)

2
. For a

nominal coverage of 1 ≠ –, the confidence region on —0 we consider is

CRc
1≠α(—0) =

;
⁄q : q œ S, 0 Æ ⁄ Æ ‚S(q, FY,Xc

, FXnc,Xc
) ≠ ‚cc

α,ε(q)n≠1/2
<

.

5The methods developed by Davydov et al. (1998), often used to prove absolute continuity of

functional of Gaussian processes (as we do in Part 1 of Theorem 3), do not apply here: F∞,e is the

distribution of a functional of a Gaussian process, but this functional is neither smooth nor convex.
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The validity of this confidence region can be obtained as in the case without common

regressors. Specifically, using Theorem 3 and Supp(Xc) = {x1, ..., xK}, we have the

weak convergence of

Ô
n

Q
ccca

‚R(–, FY x1 |Xc=x1 , FXx1 Õq|Xc=x1) ≠ R(–, FY x1 |Xc=x1 , FXx1 Õq|Xc=x1)

:
‚R(–, FY xK |Xc=xK

, FXxK Õq|Xc=xK
) ≠ R(–, FY xK |Xc=xK

, FXxK Õq|Xc=xK
)

R
dddb ,

seen as a process indexed by either – or (–, q). Since the map S can be viewed

as the composition of two maps, R ‘æ (infαœ[ε,1≠ε] R1(–), . . . , infαœ[ε,1≠ε] RK(–)) and

„ : ◊ œ R
K ‘æ min(◊1, . . . , ◊K), the numerical derivative given by (23) satisfies the

assumptions of Theorem 3.2 in Fang and Santos (2019) (see the proof of Theorem 3

and Example 2.2 in Hong and Li, 2018). This ensures the consistency of the numerical

bootstrap and, in turn, the asymptotic validity of CRc
1≠α(—0).

With continuous common regressors, one can adapt the earlier arguments using sieve

estimation. Specifically, suppose that Model (1) holds and consider a linear sieve

approximation of f(·) by a step function xc ‘æ qKn

k=1 1 {xc œ In,k} “k for some partition

(In,k)k=1...Kn
of the support of Xc and with Kn tending to infinity at an appropriate

rate. Then, one can construct a confidence region on —0 by following a similar logic

as above.6

3.3 Tuning parameters and computational aspects

Our estimator of the identified set and confidence regions rely on the choice of a

regularization parameter Á. We distinguish the cases p = 1, where we can adapt

the choice to the direction q œ S while preserving the convexity of Bε and ‚Bε, from

the case p > 1. When p = 1, we suggest the following selection rule for a direction

q œ S = {≠1, 1},

Á(q) = argmin
εœ[ε0,0.5]

‚Sε(FY , FXÕq) ≠ ‚cα,ε(q)n≠1/2, (24)

and we let Á0 = C ln(n)/n with C = 1 without common regressors and C = 3

with common regressors. Hence, Á(q) simply minimizes the boundary value of the

6Establishing the asymptotic validity of such a confidence region would require to handle both the

bias stemming from the approximation of f(·) and the increasing complexity of the approximation.

We leave this analysis for future research.
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confidence region in the direction q œ S. This idea is similar to that of Chernozhukov

et al. (2013) in the context of intersection bounds.

Now consider the case p > 1. If one focuses on confidence intervals on —0k, we need to

choose the parameter Á that appears in ‡ε(±ek, FY0 , FX0). To this end, we simply use

Á(q) as given above, with q = ±ek. If, instead, we are interested in the set B itself,

we recommend using Á = minqœQ Á(q), where Q is a set of vectors in S, for instance

±ek for k = 1, ..., p.

Another tuning parameter we have to choose is ”n, which appears in the numerical

bootstrap, see Eq. (16). Its choice seems to matter less in practice than that of

Á. Without common regressors, we fix it to n≠0.3, so that it satisfies ”n æ 0 and

n1/2”n æ Œ. With common regressors, we use instead ”n = n≠0.35.

To compute ‡ε(±ek, FY0 , FX0), we solve (19), in which q ‘æ 1/ ‚Sε(FY0 , FXÕ

0q) is also

convex. In practice, we use the BFGS quasi-Newton method implemented in the R

package optim, using as a starting point the considered direction e.

Finally, the exact computation of ‚Bε and CR1≠α(—0) requires the computation of
‚Sε(FY , FXÕq) and ‚cα,ε(q) for all q œ S, which is in practice infeasible if p > 1 as S is infi-

nite. Instead, we suggest to (i) fix a grid ÂS µ S; (ii) compute ‚Sε(FY , FXÕq) and ‚cα,ε(q)

for each q œ ÂS; (iii) construct an approximation of ‚Bε and CI1≠α by computing the con-

vex hulls of { ‚Sε(FY , FXÕq)q : q œ ÂS} and
Ó1

‚Sε(FY , FXÕq) ≠ ‚cα,ε(q)n≠1/2
2

q : q œ ÂS
Ô
,

respectively.7 The resulting sets, ÂBε and ÁCR1≠α(—0) say, are convex, inner approx-

imations of ÂBε and CR1≠α(—0), and satisfy, as dH(S, ÂS) æ 0, dH( ÂBε, ‚Bε) æ 0 and

dH(ÁCR1≠α(—0), CR1≠α(—0)) æ 0.

The computation of the parameters (Á, ”n), the estimated set, confidence regions and

confidence intervals are implemented in our companion R package RegCombin.

4 Monte Carlo simulations

In this section we study the finite sample performances of our proposed inference

method through Monte Carlo simulations. We first consider the baseline case where

7The convex hull of n points in R
p can be computed efficiently by the quickhull algorithm (Barber

et al., 1996), which requires around np/2 operations.
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no common regressor is available to the econometrician, both in the univariate and

multivariate cases, before evaluating the performance of our method in the presence

of a common regressor. Finally, we discuss the computational time of our procedure

compared to a many moment inequality-based alternative.

4.1 Univariate case without common regressors

We first explore the finite sample performances of our inference method in the base-

line case (p = 1) considered in Section 3.1. Namely, we consider a sample of i.i.d.

observations drawn from the model

Y = Xnc—0 + U, —0 = 1, Xnc ‹‹ U.

Then, we either assume that Xnc ≥ N (0, 1.5) and U ≥ N (0, 1), referred to in the

following as the normal case, or Xnc ≥ Γ(1, 2) and U ≥ Γ(0.4, 2), which we refer to

as the gamma case.

We compare the finite sample performances of our inference method with those based

on Andrews and Shi, 2017, henceforth AS. Specifically, recall from (4) above that

B = {— œ R
p : E [max(0, Y0 ≠ t)] Ø E [max(0, X Õ

nc0— ≠ t)] ’t œ R} .

Hence, B is characterized by infinitely many moment inequalities. We then construct

confidence regions for —0 by inverting tests that these moment inequalities hold.8

In Table 1 below, we report the average bounds, across all 500 simulations, of the

estimated identified sets and the 95% confidence intervals associated with each of the

five different sample sizes (Column “Bounds”) obtained with our method (“DGM”)

and by applying Andrews and Shi (2017) (“AS”). In order to isolate sampling uncer-

tainty, we report for each sample size and separately for our method and AS what

we call the excess length (“Ex. length”), namely the mean difference between the

8These tests involve several tuning parameters. Following the recommendation of AS (and using

their notation), we fix ‘ = 0.05 and ÷ = 10−6. To fix b0 and Ÿ, we follow the same procedure as in

D’Haultfoeuille et al. (2021), which yields b0 = 0.5 and Ÿ = 10−4. To construct a confidence region

on —0, we first fix a few directions (q1, ..., qn) in S. Then, for q = qk, we compute by a bisection

method the maximal ⁄ œ R
+ such that the test of the moment inequalities at — = ⁄q is not rejected.
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length of the confidence sets and that of the identified set. We also report the cover-

age rates across simulations (“Coverage”). Finally, we report the average, across all

simulations, of the estimated identified set Bε(q), where Á(q) is given by (24) and thus

varies from one simulation to another.

DGM AS

Sample size Bounds Ex. length Coverage Bε(q) Bounds Ex. length Coverage

Normal

Identified set [-1.202,1.202] [-1.202,1.202]

400 [-1.317,1.316] 0.229 0.946 [-1.202,1.202] [-1.374,1.367] 0.337 0.983

800 [-1.279,1.28] 0.155 0.954 [-1.202,1.202] [-1.329,1.328] 0.253 0.985

1,200 [-1.271,1.27] 0.138 0.96 [-1.202,1.202] [-1.301,1.301] 0.198 0.978

2,400 [-1.249,1.248] 0.093 0.946 [-1.202,1.202] [-1.268,1.27] 0.134 0.975

4,800 [-1.235,1.235] 0.067 0.966 [-1.202,1.202] [-1.251,1.25] 0.097 0.98

Gamma

Identified set [-0.025,1.046] [-0.025,1.046]

400 [-0.441,1.36] 0.729 0.996 [-0.170, 1.282] [-0.538,1.343] 0.809 1

800 [-0.376,1.309] 0.613 0.984 [-0.148, 1.276] [-0.466,1.313] 0.707 1

1,200 [-0.353,1.291] 0.571 0.986 [-0.138, 1.266] [-0.438,1.302] 0.668 1

2,400 [-0.302,1.255] 0.486 0.994 [-0.123, 1.251] [-0.391,1.277] 0.596 1

4,800 [-0.267,1.23] 0.425 0.994 [-0.110, 1.224] [-0.362,1.258] 0.548 1

Notes: results obtained with 500 simulations. Column “Bounds” reports either the identified set or

the average of the bounds of the 95% confidence intervals over simulations. “Ex. length” is the excess

length, i.e. the average length of the confidence region minus the length of the identified set. Column

“Coverage” displays the minimum, over — œ B, of the estimated probability that — œ CR1−α(—0).

Column “Bε(q)” displays the average, across all simulations, of the estimated identified set Bε(q),

where Á(q) is given by (24). We use 1,000 bootstrap replications to compute the confidence intervals

for both DGM and AS methods.

Table 1: Finite sample performances for p = 1

A couple of remarks are in order. First, as expected, the 95% confidence intervals

shrink with the sample sizes n. For both DGPs and all sample sizes, comparing the

identified set with the confidence intervals indicates that identification uncertainty

clearly dominates sampling uncertainty. This is especially striking for the normal

case, which yields a substantially wider identified set, but also holds in the gamma

case, where the regressor Xnc has thicker tails. In particular, considering the excess
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length in the normal case, the confidence set is only between 9.5% (for n = 400) and

2.8% (for n = 4, 800) wider than the identified set. In the gamma case, the confidence

set ranges between 50.2% and 31.9% larger than the (regularized) identified set (Bε).

Second, the coverage of our confidence intervals is good: coverage rates are always

larger than 94.6%. Third, our inference method generally performs better than AS,

delivering consistently tighter confidence sets. For example, in the normal case, the

excess length of the confidence set is reduced by around 30% to 39% depending on the

sample sizes. Gains are smaller but remain quite sizable in the gamma case. These

results are consistent with our inference method exploiting the specific geometric

structure of the identified set. This could also be due to the fact that we do not

need to bear the cost, in terms of statistical power, of incorporating potentially many

non-binding inequality constraints.

Finally, the good finite sample performances of our inference method offers supporting

evidence that our choice of the regularization parameter Á(q), given by (24) and

motivated in Section 3.3 above, is appropriate. In the normal case where Bε = B for

all Á, Á(q) remains close to 0.5 for all sample sizes. In contrast, in the gamma case

where the minimum of R(·, FY0 , FXÕ

0q) is reached at Á = 0 for both q = 1 and q = ≠1,

Á(q) tends to 0 as n tends to infinity. Overall, the results suggest that the chosen

Á(q) achieves a good balance between identification (a large Á leading to an increase

in Bε) and statistical uncertainty (a small Á leading to more volatility in ‚Sε and thus

larger quantiles ‚cα,ε).

4.2 Multivariate case without common regressor

We now consider the multivariate case (p = 2) with

Y = “0 + X Õ
nc—0 + U, Xnc ‹‹ U, U ≥ N (0, 4). (25)

We set the coefficients as follows: “0 = ≠0.1, —0,1 = 1, and —0,2 = 1. The variables

Xnc follow a multivariate normal distribution with mean 0 and covariance matrix

Σ =

Q
a 1 ≠0.2

≠0.2 1

R
b .

We report in Table 2 below the performances of our inference method, applied to the

first component of —0, for the same sample sizes as above, along with the identified
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set of the projection. These results were obtained using 500 simulations. We restrict

to the first component of —0 as the results are very similar for the second component.

The main takeaway of this table is that our inference method exhibits similar finite-

sample performances to the ones discussed in the univariate (p = 1) normal case. In

particular, the excess length of the confidence sets relative to the identified set tends

to be quite small, even for small sample sizes, and declines as n gets larger.

Average Bounds Excess length Coverage

Identified set [-2.367,2.367]

Sample size

400 [-2.5951,2.592] 0.454 0.96

800 [-2.5479,2.551] 0.366 0.968

1,200 [-2.5256,2.525] 0.318 0.976

2,400 [-2.493,2.493] 0.254 0.986

4,800 [-2.470,2.47] 0.207 0.998

Notes: results obtained with 500 simulations. Column “Bounds” reports either the identified set or

the average of the bounds of the 95% confidence intervals over simulations. “Excess length” is the

average length of the confidence region minus the length of the identified set. Column “Coverage”

displays the minimum, over —1 œ B1, of the estimated probability that —1 œ CI1−α(—0,1). We use

200 bootstrap replications to compute the confidence intervals.

Table 2: Finite sample performances for —0,1 with p = 2

4.3 Case with a common regressor

We now examine the performances of our inference method in the presence of a

common regressor. Namely, we consider the data-generating process

Y = “01{Xc = 1} + Xnc—0 + U, X ‹‹ U, U ≥ N (0, 4).

Where we set the coefficients as follows: “0 = 0.3 and —0 = 1. The covariates are

transformations of (N1, N2)
Õ, which follows a multivariate normal distribution with

mean 0 and covariance matrix

Σ =

Q
a 1 0.8

0.8 1.5

R
b .
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Specifically, the common regressor is given by Xc = 1 {N1 Æ 0.3}, and the regressors

observed in one of the datasets only are such that Xnc = N2.

We report in Table 3 below the performances of our inference method applied to the

parameter —0 along with the identified sets. With the exception of the smallest sample

size (n = 400), for which we obtain a coverage rate of 93.4%, coverage ranges between

95% and 96.4% for sample sizes n Ø 800. Besides, and similar to the baseline case

without common regressor, the excess length of the confidence interval relative to

the identified set declines as n grows, and becomes quite small for the largest sample

sizes. For instance, for n = 4, 800, our confidence interval is only 4% larger than

the identified set, highlighting again the limited role of sampling uncertainty in this

context.

Average Bounds Excess length Coverage

Identified set [-2.121,2.121]

Sample size

400 [-2.357,2.358] 0.473 0.934

800 [-2.298,2.3] 0.356 0.95

1,200 [-2.278,2.278] 0.315 0.958

2,400 [-2.237,2.237] 0.233 0.962

4,800 [-2.206,2.208] 0.172 0.964

Notes: results obtained with 500 simulations. Column “Bounds” reports either the identified set or

the average of the bounds of the 95% confidence intervals over simulations. “Excess length” is the

average length of the confidence region minus the length of the identified set. Column “Coverage”

displays the minimum, over — œ B, of the estimated probability that — œ CR1−α(—0). We use 1,000

bootstrap replications to compute the confidence intervals.

Table 3: Finite sample performances for —0 with one common regressor

4.4 Computational time

We examine the computational time of our method and that of AS when p, the

dimension of Xnc, is equal to either 1 or 2, for the DGPs considered in Sections 4.1

and 4.2, respectively, and for the five different sample sizes considered above. Table
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4 below reports the computational time for CR1≠α(—0) when p = 1, and for the two

confidence intervals CI1≠α(—0,1) and CI1≠α(—0,2) when p = 2.9

In the univariate case (p = 1), the computational gains of our method range from

a factor of 185 to 282 compared to AS, for n = 4, 800 and n = 2, 400, respectively.

While the computational time associated with our method increases with the sample

size, it remains modest (around 6 seconds) for n = 4, 800.

In the multivariate case (p = 2), we compare our method with two alternative im-

plementations of the AS method. “AS fast” corresponds to an approximation of the

confidence intervals for both components of —0 that uses 25 directions in S to imple-

ment the method, while “AS recommended” corresponds to the computational time

associated with 250 directions. Since our method does not rely on any numerical

approximation of this kind (as we exactly compute 1/ infqœRp:qk=1 1/ ‚Sε(FY0 , FXÕ

0q)), it

is arguably more relevant to compare the computational times of our method and the

“AS recommended” implementation. While the computational time of our method

increases with p, it does remain tractable even with fairly large sample sizes, taking

for instance 6.5 minutes only to run for n = 4, 800. In the multivariate case also

our method outperforms both implementations of the AS method. For instance, for

n = 2, 400, our method runs 200 times faster than the recommended implementa-

tion of AS. In this case, computing Á(q) for one direction with our method takes the

same time as in the univariate case (p = 1). The main difference and computational

bottleneck with p > 1 lies in the bootstrapping of the convex optimization in (19).

To conclude, our approach can be implemented at a limited computational cost, and

achieves in our context considerable computational gains relative to the alternative

many moment inequality-based method of AS.

9All the computational times are obtained for a single simulation using our companion R package,

on an Intel Xeon Gold 6130 CPU 2.10GHz with 382Gb of RAM and a single core.
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Sample size 400 800 1,200 2,400 4,800

p = 1

AS (s) 241.8 349.2 458.4 823.2 1137.0

DGM (s) 1.2 1.5 1.9 2.9 6.1

p = 2

AS fast (min) 18.3 29.5 40.0 71.7 150.3

AS recommended (min) 177.8 296.5 393.5 702.8 1500.2

DGM (min) 1.6 1.9 2.3 3.5 6.5

Notes: The CPU time for the DGM method when p = 2 corresponds to the computation of the 4

projections associated to ±ek, k = 1, 2. For p = 2, the “AS fast” approximation uses 25 directions

to evaluate the computational time of the AS based method. The average over 50 replications of

the excess length between the confidence intervals obtained with 250 directions and 25 directions

over the length of the confidence intervals obtained with 250 directions (“AS recommended”) is of

3.2%, for n = 1, 200. As in Sections 4.1-4.2, we use 1,000 bootstrap replications when p = 1 and 200

replications when p = 2 for both DGM and AS methods. The CPU times are obtained using our

companion R package, on an Intel Xeon Gold 6130 CPU 2.10GHz with 382Gb of RAM.

Table 4: CPU time as function of sample size and dimension p of Xnc.

5 Application to intergenerational mobility in the

United States, 1850–1930

We apply our method to conduct inference on the intergenerational income mobility

over the period 1850 to 1930 in the United States, revisiting the influential analysis

of Olivetti and Paserman (2015) on this question. We follow their paper and focus on

the father-son and father-son-in-law intergenerational income elasticities. We conduct

our analysis using 1 percent extracts from the decennial censuses of the United States,

over the period 1850 to 1930 (1850-1930 IPUMS).10

10We refer the reader to Section 2 of Olivetti and Paserman (2015) for a detailed discussion of

the data used in the analysis. Note that they estimate the evolution of the intergenerational income

mobility over a longer time window (1850 to 1940) than we do. We confine our analysis to the period

1850-1930 as the 1940 portion of the data (1% extract of the IPUMS Restricted Complete Count

Data) is not publicly available.
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An important feature of the historical Census data used in this analysis is that father’s

and son’s (as well as son-in-law’s) incomes are not jointly observed. Olivetti and

Paserman (2015) address this measurement issue by predicting, for any given child

(John, say) observed in one of the Census datasets, their father’s log earnings using the

mean log earnings of fathers whose children have the same first name (namely, John).

Olivetti and Paserman then estimate in a second step the intergenerational elasticity

by regressing son’s log earnings on the predicted father’s log earnings computed from

the previous step. This procedure boils down to a two-sample two-stage least squares

estimator (TSTSLS), which, beyond this paper, is very frequently used in the presence

of data combination.11 For the periods 1860-1880 and 1880-1900 only, the IPUMS

Linked Representative Samples links fathers and sons using information on first and

last names, which allows us to estimate more directly the father-son elasticity using

OLS.

Using our notation and consistent with Olivetti and Paserman (2015), the population

parameter of interest here is given by

◊0 :=
Cov(Y, Xnc)

V (Xnc)
= —0 +

A
Cov(Xc, Xnc)

V (Xnc)

BÕ

“0,

where Y denotes the son’s (or son-in-law’s) log-income, Xnc the father’s log-income,

and Xc the vector of dummies corresponding to the son’s (or son-in-law’s) first names

observed in both datasets. The second equality follows from (1), since Xc is discrete

and thus f(Xc) = X Õ
c“0 for some “0. In what follows, we report the upper bound of

the estimated identified set and confidence interval on ◊0.

Even though the sample sizes as well as the number of common regressors Xc are

quite large, our method can still be implemented at a reasonable computational cost.

For instance, for the sample of sons over the first period (1850-1870), the computation

of the confidence intervals only takes less than 4 minutes with our R package. As

expected, computational time is highest for the period 1910-1930 that is associated

11Another limitation of the data used in Olivetti and Paserman (2015) and in this application is

that it does not allow us to directly calculate the intergenerational elasticity in income. Instead, we

follow the baseline specification of Olivetti and Paserman (2015) and proxy income using an index

of occupational standing available from IPUMS (OCCSCORE), which is constructed as the median

total income of the persons in each occupation in 1950.
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with a much larger number of observations (with n > 100, 000 for both samples of

Y and Xnc). Nonetheless, our inference procedure remains tractable in this case

too, with a computational time of about 14 minutes.12 Overall, this illustrates the

applicability of our method, which can be easily implemented even in this type of rich

and fairly high-dimensional data environment.

Figures 3(a)-3(b) and Table 5 below display the results, for the father-son as well

as father-son-in-law elasticities, obtained using our approach, the TSTSLS and, for

the sample of sons over the years 1860-1880 and 1880-1900, the OLS.13 Specifically,

we report in Figures 3(a)-3(b) the estimated upper bounds of the identified sets (in

solid red) and the confidence intervals (dashed red) obtained with our method, the

TSTSLS estimates and confidence intervals (solid and dashed blue, resp.) as well as,

for 1860-1880 and 1880-1900 and the sample of sons only, the OLS estimates and

confidence intervals (solid and dashed green, resp.).

A first conclusion from these results is that the upper bounds of the confidence inter-

vals associated with our method range, depending on the periods, between 0.53 and

0.69 (0.54 and 0.63) for the sample of sons (sons-in-law). These values of the inter-

generational correlation coefficient are all well below the natural upper bound of 1.

Also, even if the estimates vary depending on the data and econometric specification

used, most of the existing point estimates of the father-son income elasticity range

between 0.40 and 0.50 (Olivetti and Paserman, 2015). Overall, this indicates that our

method does lead to informative inference on the parameter of interest.

12These CPU times are obtained using our companion R package, parallelized on 20 CPUs on an

Intel Xeon Gold 6130 CPU 2.10GHz with 382Gb of RAM.
13In practice we need to restrict the set of first names included in Xc to avoid very uncommon

occurrences that are perfect predictors of the outcome variable Y . In our baseline specification, we

implement this by restricting Xc to the set of first names that account for at least 0.01% of the

observations in the pooled sample, and appear at least 10 times in either of the samples. We discuss

below the robustness of our results to alternative cutoffs.
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(a) For sons

(b) For sons-in-law

Note: for readability and because 0 is a natural lower bound, the y-axis starts at 0, even

though the lower bounds of our confidence intervals are negative (see Table 5).

Figure 3: Intergenerational income correlation using either TSTSLS, OLS (on

matched data only when available), or our method (DGM).
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Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930

Sons

DGM, pt. [-0.501,0.565] [-0.399,0.472] [-0.491,0.474] [-0.405,0.442] [-0.388,0.46]

DGM, CI. [-0.607,0.693] [-0.481,0.576] [-0.588,0.573] [-0.479,0.529] [-0.457,0.549]

TSTSLS, pt. 0.3403 0.4001 0.3998 0.4931 0.4143

TSTSLS, CI. [0.299,0.381] [0.364,0.436] [0.365,0.434] [0.469,0.518] [0.395,0.433]

Test of equality, p-value 0.000 0.029 0.167 0.971 0.797

(Stat.; critical val. 95%) (29.96; 22.04) (26.40; 24.88) (26.17; 29.52) (12.14; 37.23) (16.71; 32.53)

Number of names Xc 224 259 380 512 596

Sample sizes Y and Xnc (39,734; 34,603) (55,728; 47,014) (85,340; 73,999) (116,986; 102,053) (131,089; 116,328)

Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930

Sons-in-law

DGM, pt. [-0.436,0.504] [-0.367,0.489] [-0.287,0.459] [-0.421,0.461] [-0.384,0.443]

DGM, CI. [-0.539,0.628] [-0.451,0.605] [-0.35,0.562] [-0.504,0.561] [-0.453,0.539]

TSTSLS, pt. 0.3403 0.4001 0.3998 0.4931 0.4143

TSTSLS, CI. [0.2995,0.3811] [0.3638,0.4364] [0.365,0.4345] [0.4687,0.5176] [0.3954,0.4331]

Test of equality, p-value 0.012 0.126 0.645 0.989 0.951

(Stat.; critical val. 95%) (19.95; 17.17) (25.53; 28.04) (22.64; 31.87) (6.65; 28.90) (6.54; 21.77)

Number of names Xc 155 212 323 468 545

Sample sizes Y and Xnc (25,760; 33,256) (32,970; 45,800) (49,068; 71,141) (73,425; 99,871) (85,122; 112,763)

Notes: Dependent variable Y is son’s (or son-in-law’s) log income. Common regressors Xc are dummies for the first names appearing more than 0.01% in the

pooled dataset and 10 times in both datasets. “DGM, pt.” and “DGM, CI.” refer to the estimated identified set and 95% confidence interval, respectively,

obtained with our method. “TSTSLS, pt.” and “TSTSLS, CI.” refer to the TSTSLS point estimate and 95% confidence interval, respectively. The test of

equality between the TSTSLS (—T ST SLS) estimates and DGM (—DGM ) upper bound estimates is performed using subsampling with 1,000 replications. The

statistic (“Stat.”) is n1/2‚◊, where ‚◊ = ‚—T ST SLS ≠ ‚—DGM and n = nynx/(ny + nx), ny and nx being the respective sample sizes of Y and Xnc. The critical

value corresponds to the 1 ≠ – quantile of the distribution of b
1/2
n |‚◊∗ ≠ ‚◊|, where ‚◊∗ is a subsampled version of ‚◊ and bn is the subsample size.

Table 5: Intergenerational income correlation for sons using either TSTSLS or our

method (DGM).

Second, consider the two cases where the linked data is available (1860-1880 and

1880-1900 for the sample of sons). The corresponding OLS estimates of the inter-

generational income elasticities are quantitatively very close to the estimated upper

bound of our identified set. Recall that, from Proposition 3 in Section 2.1.2, the

upper bound of our identified set (◊0, say) plays a special role: under an additional

restriction on the distributions of Xnc and the error term, ◊0 is actually point iden-

tified and equal to ◊0.
14 In other words, the results from these two periods support

14Proposition 3 is obtained without Xc. Yet, it can be combined with Proposition 4 to show that

35



the hypothesis that the restriction on the distributions of Xnc and the error term

guaranteeing point identification of ◊0 by ◊0 hold. If so, our results are informative

not only on the maximal father-son elasticity coefficient for a given period of time,

but also on its evolution. It follows that our estimates point to a mild decrease, both

for sons and sons-in-law, in this elasticity coefficient over 1850-1930.

Third, the TSTSLS estimates are included in the confidence intervals associated with

our method, for all five periods and for both of the samples. In addition, the results

from the test of equality reported in Table 5 indicate that the TSTSLS estimates are

in most cases not statistically distinguishable from the estimated upper bounds of our

identified sets. The first two periods, 1850-1870 (for both samples) and 1860-1880

(for the sample of sons) are, however, notable exceptions. Besides, for the sample

of sons, the TSTSLS estimates exhibit a sharp increase, while our estimated upper

bound decreases between the periods 1880-1900 and 1900-1920. In that sense, our

results offer suggestive evidence that the intergenerational income correlation might

have been more stable at the beginning of the 20th century than what one would

infer from the TSTSLS estimates.

Finally, we provide in Tables 6 and 7 in Appendix B several robustness checks that

relate to the set of first names we are including as controls in our estimation procedure

(Panel A), the choice of the parameter Á (Panel B), the use of subsampling rather than

numerical bootstrap (Panel C), and restriction of the sample to the set of individuals

whose first name is included in the set of controls Xc (Panel D). Throughout these

tables we focus on the upper bound of the estimated identified set (“DGM, pt”) and

of the confidence interval (“DGM, CI.”).

The main takeaway from Table 6 is that, for the sample of sons, the results from

our inference procedure are qualitatively, and in most cases quantitatively, robust

to these different sensitivity analyses. The one case that exhibits more sensitivity is

the specification where we control for the first names that account for at least 0.02%

of the sample, instead of 0.01% in our baseline specification. The upper bound of

our confidence interval for the period 1900-1920 increases in this case from 0.53 to

0.61, the results remaining, however, stable for the other periods. The results for

the sample of sons-in-law (Table 7) are also, for most periods, qualitatively, and in

—0, and in turn “0 (and thus ◊0 here) are point identified with such Xc.
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some cases quantitatively similar across specifications. The main difference with the

sample of sons is that the choice of Á does appear to matter more for the sons-in-law,

a limitation that one should keep in mind when interpreting the findings for this

subgroup. Nonetheless, to the extent that our baseline choice of Á (see Section 3.3) is

motivated by the theory and is found to perform well in our Monte Carlo simulation

exercises, we do not view this as particularly worrisome.

6 Conclusion

We study the identification of and inference on partially linear models, in a data

combination environment where the outcome of interest and some of the covariates

are observed in two different datasets that can not be matched. This setup arises

frequently in economics, including in situations where one is interested in the effect

of a variable that is not observed jointly with the outcome variable, or in cases where

potential confounders are observed in a different dataset than the main outcome and

regressor of interest. Focusing on the coefficients of the regressors that are not jointly

observed with the outcome, we use recent insights from optimal transport to derive a

constructive characterization of the sharp identified set. We then build on this result

and develop a novel inference method that exploits the geometric properties of the

identified set. The resulting procedure is very tractable, and as a result can be widely

applied. We establish the asymptotic validity of the confidence region and show that

our inference method exhibits good finite sample properties.

We apply our method to study intergenerational mobility over the period 1850 to

1930 in the United States, revisiting the analysis of Olivetti and Paserman (2015)

on this question. Our method allows us to relax the exclusion restrictions underly-

ing the TSTSLS approach implemented in Olivetti and Paserman (2015). Overall

our confidence sets are informative, excluding for some periods values of the corre-

lation coefficients larger than .55. While the TSTSLS estimates are included in our

confidence intervals, our results suggest that the intergenerational income correlation

might have been more stable at the beginning of the 20th century than what one

would infer from the TSTSLS estimates.
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Del Barrio, E., Giné, E. and Matrán, C. (1999), ‘Central limit theorems for the

wasserstein distance between the empirical and the true distributions’, Annals of

Probability pp. 1009–1071.

D’Haultfoeuille, X., Gaillac, C. and Maurel, A. (2021), ‘Rationalizing rational expec-

tations: Characterizations and tests’, Quantitative Economics 12(3), 817–842.

Embrechts, P. and Wang, R. (2015), ‘Seven proofs for the subadditivity of expected

shortfall’, Dependence Modeling 3(1).

Fan, Y., Sherman, R. and Shum, M. (2014), ‘Identifying treatment effects under data

combination’, Econometrica 82(2), 811–822.

Fan, Y., Sherman, R. and Shum, M. (2016), ‘Estimation and inference in an ecological

inference model’, Journal of Econometric Methods 5(1), 17–48.

Fang, Z. and Santos, A. (2019), ‘Inference on directionally differentiable functions’,

Review of Economic Studies 86(1), 377–412.

Firpo, S., Galvao, A. F. and Parker, T. (2021), ‘Uniform inference for value functions’,

arXiv preprint arXiv:1911.10215 .

Galichon, A. (2016), Optimal transport methods in economics, Princeton University

Press.

Galichon, A. and Henry, M. (2011), ‘Set identification in models with multiple equi-

libria’, The Review of Economic Studies 78(4), 1264–1298.

39



Garcia, J., Heckman, J., D.E., L. and Prados, M. (2020), ‘Quantifying the life-cycle

benefits of an influential early-childhood program’, Journal of Political Economy

128(7), 2502–2541.
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A Inference with weights and different sample sizes

We describe here how to handle weights and different sample sizes. Consider (Y1, . . . , Yny
)

and (X1, . . . , Xnx
) two independent samples of i.i.d variables with associated weights

(W y
1 , . . . , W y

ny
) and (W x

1 , . . . , W x
nx

), which can represent either sampling or bootstrap

weights. Let us denote by FY,W y and FX,W x (resp. ‚FY,W y and ‚FX,W x) the weighted cdf

(resp. weighted empirical cdf) of Y and X. Let Y w and X Õqw be the corresponding

weighted sample averages. Let us consider

IW,n :=

Y
]
[

jÿ

i=1

W y
i : j = 1, . . . , ny

Z
^
\ fi

Y
]
[

jÿ

i=1

W x
i : j = 1, . . . , nx

Z
^
\

and IW,n,ε := {– œ IW,n fl [‘, 1 ≠ ‘]}. Then, we define

‚RW (–, FY,W , FXÕq,W x) =

qny

i=1 W y
i

1
Yi ≠ Y w

2
1

Ó
‚FY,W y(Yi) > –

Ô

qnx

i=1 W x
i

1
X Õ

iq ≠ X Õqw

2
1

Ó
‚FXÕq,W x(X Õ

iq) > –
Ô ,

‚Sε,W (FY,W y , FXÕq,W x) = min
αœIW,n,ε

‚RW (–, FY,W , FXÕq,W x) .

Consider Y(1) < · · · < Y(ny) and (X Õq)(1) < · · · < (X Õq)(nx) and let the associated

weights be (W y
(1), . . . , W y

(ny)) and (W x
(1), . . . , W x

(nx)). We also have

‚Sε,W (FY,W y , FXÕq,W x) = min
αœIW,n,ε

q
i:

qi

k
W y

(k)
Æα

W y
(i)

1
Y(i) ≠ Y w

2

q
i:

qi

k
W x

(k)
Æα

W x
(i)

1
(X Õq)(i) ≠ X Õqw

2 .

Hence, ‚Sε,W (FY,W y , FXÕq,W x) can still be computed quickly in this case.
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B Additional results on the application

Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930

Baseline specification

DGM, pt. 0.565 0.472 0.474 0.442 0.46

DGM, CI. 0.693 0.576 0.573 0.529 0.549

Number of names Xc 224 259 380 512 596

Panel A: Robustness to the set of first names

Threshold 0.005%

DGM, pt. 0.565 0.472 0.474 0.442 0.46

DGM, CI. 0.693 0.576 0.574 0.529 0.549

Number of names Xc 224 259 380 513 624

Threshold 0.02%

DGM, pt. 0.565 0.472 0.492 0.507 0.46

DGM, CI. 0.693 0.575 0.595 0.61 0.549

Number of names Xc 224 259 330 376 415

Panel B: Robustness to the choice of Á

Á/2

DGM, pt. 0.559 0.448 0.474 0.442 0.45

DGM, CI. 0.684 0.547 0.572 0.529 0.537

Number of names Xc 224 259 380 512 596

2Á

DGM, pt. 0.565 0.501 0.474 0.442 0.463

DGM, CI. 0.693 0.609 0.574 0.529 0.554

Number of names Xc 224 259 380 512 596

Panel C: Using subsampling

DGM, pt. 0.565 0.472 0.474 0.442 0.46

DGM, CI. 0.704 0.583 0.581 0.536 0.557

Number of names Xc 224 259 380 512 596

Panel D: Restricting the sample to the selected first names

DGM, pt. 0.566 0.472 0.472 0.436 0.451

DGM, CI. 0.695 0.578 0.571 0.517 0.533

Sample sizes Y 33,796 46,296 73,961 99,874 111,126

Sample sizes Xnc 29,209 40,431 62,567 85,202 99,270

Notes: Y =son’s log income. The baseline specification restricts Xc to be the dummies for the names appearing in the pooled dataset

more than 0.01%, and 10 times in both datasets. Panel A presents the results when we consider names appearing more than 0.005%

or 0.02% in the pooled dataset. In the baseline specification, the parameter Á is chosen according to the data-driven rule (24). Panel B

presents the results when using 0.5 or 2 times this choice of Á. Panel C presents results with the subsampling instead of the numerical

bootstrap, and the subsample size (calibrated on the simulations of Section 4) bn = 0.25n ≠ 0.05 max(n ≠ 800, 0) ≠ 0.05 max(n ≠

1200, 0) ≠ 0.05 max(n ≠ 1800, 0) ≠ 0.05 max(n ≠ 2000, 0) ≠ 0.05(1 ≠ log(2400)/ log(n)) max(n ≠ 2400, 0), with n = nynx/(ny + nx), ny

and nx being the respective sample sizes of Y and Xnc. Panel D presents results when we restrict the samples to the selected names

based on our rule in the baseline case. We report the corresponding modified sample sizes.

Table 6: Robustness checks for the upper bound on intergenerational income corre-

lation for sons using our method (DGM).
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Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930

Baseline specification

DGM, pt. 0.504 0.489 0.459 0.461 0.443

DGM, CI. 0.628 0.605 0.562 0.561 0.539

Number of names Xc 155 212 323 468 545

Panel A: Robustness to the set of first names

Threshold 0.02%

DGM, pt. 0.504 0.489 0.459 0.583 0.442

DGM, CI. 0.628 0.605 0.562 0.711 0.537

Number of names Xc 155 212 316 397 430

Panel B: Robustness to the choice of Á

Á/2

DGM, pt. 0.464 0.382 0.394 0.455 0.415

DGM, CI. 0.574 0.47 0.48 0.55 0.504

Number of names Xc 155 212 323 468 545

2Á

DGM, pt. 0.504 0.489 0.459 0.461 0.454

DGM, CI. 0.627 0.605 0.563 0.561 0.553

Number of names Xc 155 212 323 468 545

Panel C: Using subsampling

DGM, pt. 0.504 0.489 0.459 0.461 0.443

DGM, CI. 0.637 0.61 0.566 0.567 0.544

Number of names Xc 224 259 380 512 596

Panel D: Restricting the sample to the selected first names

DGM, pt. 0.502 0.496 0.459 0.456 0.437

DGM, CI.. 0.626 0.617 0.561 0.555 0.531

Sample sizes Y 20,375 26,418 41,212 61,742 70,656

Sample sizes Xnc 27,096 37,231 57,474 81,551 94,706

Notes: Y =son-in-law’s log income. The baseline specification restricts Xc to be the dummies for the names appearing in the pooled

dataset more than 0.01%, and 10 times in both datasets. Panel A presents the results when we consider names appearing more than

0.02% in the pooled dataset. Results with considering names appearing more than 0.005% in the pooled dataset are identical to the

baseline, hence note reported. In the baseline specification, the parameter Á is chosen according to the data-driven rule (24). Panel B

presents the results when using 0.5 or 2 times this choice of Á. Panel C presents results with the subsampling instead of the numerical

bootstrap, and the subsample size (calibrated on the simulations of Section 4) bn = 0.25n ≠ 0.05 max(n ≠ 800, 0) ≠ 0.05 max(n ≠

1200, 0) ≠ 0.05 max(n ≠ 1800, 0) ≠ 0.05 max(n ≠ 2000, 0) ≠ 0.05(1 ≠ log(2400)/ log(n)) max(n ≠ 2400, 0), with n = nynx/(ny + nx), ny

and nx being the respective sample sizes of Y and Xnc. Panel D presents results when we restrict the samples to the selected names

based on our rule in the baseline case. We report the corresponding modified sample sizes.

Table 7: Robustness checks for the upper bound on intergenerational income corre-

lation for sons-in-law using our method (DGM).
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C Proofs

C.1 Notation

We let Î · Î2 and Î · ÎŒ denote respectively the usual Euclidean norm in R
p and the

supremum norm. We denote by P(Rp) the set of Borel probability measures on R
p and

by Pq(R
p) the subset of P(Rp) whose elements have q finite absolute moments, namely

Pq(R
p) = {µ œ P(Rp),

s
Rp |x|qµ(dx) < Œ}. We assimilate herafter probability

measures on R
p with their cdf, so we may write for instance F œ Pq(R

p). Finally, we

let W1 denote the 1-Wasserstein distance and recall that for (F, G) œ P1(R)2,

W1(F, G) = inf
U≥F,V ≥G

E [|U ≠ V |] =
⁄ 1

0
|F ≠1(t) ≠ G≠1(t)|dt =

⁄ Œ

≠Œ
|F (t) ≠ G(t)|dt.

(26)

Denote also by ¸Œ(X ) the space of bounded functions on X for the uniform metric,

by ¸Œ
+ (X ) the space of positive such functions.

C.2 Theorem 1

Let BÕ denote the set on the right-hand side of (3). We first show that B µ BÕ. Then,

we show the other inclusion. Finally, we show the other properties of B.

1. B µ BÕ

Let F be such that 0 <
s

x2dF (x) < Œ and
s

xdF (x) = 0 and define g(–) =
s 1

α F ≠1(t)dt. Then, gÕ(–) = ≠F ≠1(–) is decreasing, which implies that g is concave.

Moreover, g(0) = g(1) = 0. For some – œ (0, 1), F ≠1(–) Ø s
xdF (x) = 0 so

g(–) Ø (1 ≠ –)F ≠1(–) Ø 0. Assume that g(–) = 0. Then, by concavity, g(x) = 0

for all x œ [0, 1]. This implies that F ≠1(–) = 0 for all – œ (0, 1), which contradicts
s

x2dF (x) > 0. Thus, for all – œ (0, 1), g(–) > 0.

Then, because E(X0X
Õ
0) is nonsingular,

s 1
α F ≠1

XÕ

0q(t)dt > 0 for all – œ (0, 1). This

means that 0 Æ ⁄ Æ S(FY0 , FXÕ

0q) is equivalent to

⁄ 1

α
F ≠1

XÕ

0(λq)(t)dt Æ
⁄ 1

α
F ≠1

Y0
(t)dt ’– œ (0, 1).

This, in turn, is equivalent to FXÕ

0(λq) dominating FY0 at the second order (see, e.g.
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De la Cal and Cárcamo, 2006). Then, by definition of second-order stochastic domi-

nance,

BÕ = {— œ R
p : E[„(Y0)] Ø E[„(X Õ

0—)] ’„ convex} .

Now, for any — œ B, there exists (ÊX, ÂY ) such that E( ÂY0|ÊX0) = ÊX Õ
0—, ÊX d

= X and
ÂY d

= Y . Then, for all convex function „, we have, by Jensen’s inequality,

E[„( ÂY0)|ÊX0] Ø „(E[ ÂY0|ÊX0]) = „(ÊX Õ
0—).

As a result, — œ BÕ.

2. BÕ µ B

For any (F, G, H) œ P, let us define

Ww(F, G) := inf
FU,V :FU =F,FV =G

E [|V ≠ E[U |V ]|] ,

Wc(F, G) := inf
FU,V,W : FU =F, FV,W =G

E [|V ≠ E(U |V, W )|] .

Now, let — œ BÕ. By Strassen’s theorem (Theorem 8 in Strassen, 1965), we have

Ww(FY , FXÕβ) = 0. Then, given the definition of B, it suffices to prove that Wc(F, G) Æ
Ww(F, G1), where G1 is the first marginal distribution of G.

Let us define c(x, H) = |x1 ≠ s
ydH(y)|, for any x = (x1, x2) œ R◊R

p and H œ P1(R).

Because c satisfies the assumptions of Theorem 1.3. in Backhoff-Veraguas et al.

(2019), we have

Wc(F, G) = sup
fœF

;⁄
Rc(f)(x1, x2)dG(x1, x2) ≠

⁄
f(y)dF (y)

<
,

where F is the space of continuous and bounded real functions on R and

Rc(f)(x1, x2) = inf
HœP1(R)

⁄
f(y)dH(y) +

----x1 ≠
⁄

ydH(y)
---- .

Let U ≥ F and V = (V1, V2) ≥ G. By definition of Rc(f),

Rc(f)(x1, x2) Æ E[f(U)|V1 = x1] + |x1 ≠ E[U |V1 = x1]| .

As a result,

⁄
Rc(f)(x1, x2)dG(x1, x2) ≠

⁄
f(y)dF (y)
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ÆE[f(U)] + E [|V1 ≠ E(U |V1)|] ≠
⁄

f(y)dF (y)

=E [|V1 ≠ E(U |V1)|] .

Since this holds for all (U, V1) with U ≥ F and V1 ≥ G1,
⁄

Rc(f)(x1, x2)dG(x1, x2) ≠
⁄

f(y)dF (y) Æ Ww(F, G1).

Taking the supremum over f œ F , we obtain Wc(F, G) Æ Ww(F, G1). Because c

satisfies the assumptions of Theorem 1.2 in Backhoff-Veraguas et al. (2019), there

exists a minimizer of the problem Wc(F, G). The result follows.

3. Other properties of B

Let ÊX, ÂY be independent variables such that ÊX d
= X and ÂY d

= Y . Then

E[ ÂY0|ÊX0] = E[ ÂY0] = 0 = ÊX Õ
00p.

Hence, 0p œ B. Now, let (—1, —2) œ B2 and t œ [0, 1]. For any convex function „, we

have

„(X Õ
0(t—1 + (1 ≠ t)—2)) Æ t„(X Õ

0—1) + (1 ≠ t)„(X Õ
0—2).

Hence, because (—1, —2) œ BÕ2,

E [„(X Õ
0(t—1 + (1 ≠ t)—2))] Æ E [„(Y0)] ,

which also implies that t—1 + (1 ≠ t)—2 œ BÕ µ B. Thus, B is convex. The inclusion

B µ BV follows from B µ BÕ and the convexity of x ‘æ x2 which implies BÕ µ BV .

This last point also implies that B is bounded, as a subset of BV . Thus, to prove

that B = BÕ is compact, it suffices to show that is closed. First, remark that in the

definition of BÕ, we can replace “„ convex” by “„ continuous and convex” (in fact, we

can focus on the functions x ‘æ max(0, x ≠ t) for t œ R). Let (—n)nœN be such that

—n œ BÕ and —n æ —. By Fatou’s lemma,

E [„(X Õ
0—)] = E

5
lim inf

n
„(X Õ

0—n)
6

Æ lim inf
n

E [„(X Õ
0—n)]

Æ E [„(Y0))] .

Thus, — œ BÕ = B, and B is closed.

47



C.3 Corollary 1

By definition, Bk = {bk : ÷— œ B : —k = bk}. Because B is convex and compact,

Bk is a compact interval [bk, bk], with bk = infβœB eÕ
k— and bk = supβœB eÕ

k—. Thus,

bk = ‡(ek, FY0 , FX0) and, similarly, bk = ≠‡(≠ek, FY0 , FX0).

Next, remark that solutions — of supβœB eÕ
k— are at the boundary of B and are thus

of the form — = S(FY0 , FXÕ

0q)q for some q œ S such that qk := eÕ
kq > 0. Thus,

‡(ek, FY0 , FX0) = sup
qœS:qk>0

qkS(FY0 , FXÕ

0q)

= sup
qœS:qk>0

S
1
FY0 , FXÕ

0q/qk

2

= sup
qœRp:qk>0

S
1
FY0 , FXÕ

0q/qk

2

= sup
qœRp:qk=1

S
1
FY0 , FXÕ

0q

2

=
1

infqœRp:qk=1 1/S
1
FY0 , FXÕ

0q

2 ,

where the second equality follows by definition of S. The same reasoning applies to

‡(≠ek, FY0 , FX0).

C.4 Proposition 1

1. Bε is compact and convex.

We showed in the proof of Theorem 1 that for all – œ (0, 1),
s 1

α F ≠1
XÕ

0q(t)dt > 0 and
s 1

α F ≠1
Y0

(t)dt > 0. Then, by continuity of – ‘æ s 1
α F ≠1

Y0
(t)dt/

s 1
α F ≠1

XÕ

0q(t)dt,

Sε(FY0 , FXÕ

0q) = min
αœ[ε,1≠ε]

s 1
α F ≠1

Y0
(t)dt

s 1
α F ≠1

XÕ

0q(t)dt
> 0.

Hence, pε(q) := 1/Sε(FY0 , FXÕ

0q) is well-defined and

pε(q) = max
αœ[ε,1≠ε]

s 1
α F ≠1

XÕ

0q(t)dt
s 1

α F ≠1
Y0

(t)dt
.

Besides, for any random variables U and V , and ⁄ œ [0, 1],

⁄ 1

α
F ≠1

λU+(1≠λ)V (t)dt Æ
⁄ 1

α
F ≠1

λU (t)dt +
⁄ 1

α
F ≠1

(1≠λ)V (t)dt
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= ⁄

⁄ 1

α
F ≠1

U (t)dt + (1 ≠ ⁄)
⁄ 1

α
F ≠1

V (t)dt,

where the first inequality follows from Theorem 1.1 in Embrechts and Wang (2015).

As a result, for any – œ (0, 1), the function q ‘æ s 1
α F ≠1

XÕ

0q(t)dt is convex. Because the

maximum of convex functions is also convex, the function pε is convex on R
p. As

such, it is also continuous. This implies that Bε = {q œ R
p : pε(q) Æ 1} is convex and

closed. Finally, by continuity of q ‘æ Sε(FY0 , FXÕ

0q),

sup
qœS

Sε(FY0 , FXÕ

0q) = max
qœS

Sε(FY0 , FXÕ

0q) < Œ,

which implies that Bε is bounded, and thus compact.

2. For all 0 < Á < ÁÕ < 1/2, B µ Bε µ BεÕ and flεœ(0,1/2)Bε = B.

The first result follows since by definition, Sε(F, G) Æ SεÕ(F, G) for any 0 < Á < ÁÕ <

1/2. Now,

flεœ(0,1/2)Bε =

I
⁄q : q œ S, 0 Æ ⁄ Æ inf

εœ(0,1/2)
Sε(FY0 , FXÕ

0q)

J
.

Thus, to prove flεœ(0,1/2)Bε = B, it suffices to show that infεœ(0,1/2) Sε(F, G) = S(F, G).

First, infεœ(0,1/2) Sε(F, G) Ø S(F, G) since Sε(F, G) Ø S(F, G) for all Á œ (0, 1/2).

Now, fix ÷ > 0. By definition, there exists –0 œ (0, 1) such that

S(F, G) > R(–0, F, G) ≠ ÷.

Hence, there exists Á œ (0, 1/2) such that

S(F, G) > Sε(F, G) ≠ ÷ Ø inf
εœ(0,1/2)

Sε(F, G) ≠ ÷.

Since ÷ is arbitrary, we have S(F, G) Ø infεœ(0,1/2) Sε(F, G). The result follows.

3. Under the stated condition, there exists 0 < Á0 < 1/2 such that Bε0 = B.

The function R(·, F, G) is differentiable on (0, 1), with

ˆR

ˆ–
(–, FY0 , FXÕ

0q) =
≠F ≠1

Y0
(–)

s 1
α F ≠1

XÕ

0q(t)dt + F ≠1
XÕ

0q(–)
s 1

α F ≠1
Y0

(t)dt
1s 1

α F ≠1
XÕ

0q(t)dt
22 . (27)
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Assume that – ‘æ F ≠1
Y0

(–)/F ≠1
XÕ

0q(–) is increasing on [–, 1] and suppose without loss of

generality that – is such that F ≠1
Y0

(–) · F ≠1
XÕ

0q(–) > 0. Fix – œ [–, 1). By the mean

value theorem, there exists –Õ œ [–, 1) such that

⁄ 1

α
F ≠1

Y0
(t)dt =

⁄ 1

α

S
U F ≠1

Y0
(t)

F ≠1
XÕ

0q(t)

T
V F ≠1

XÕ

0q(t)dt =
F ≠1

Y0
(–Õ)

F ≠1
XÕ

0q(–
Õ)

⁄ 1

α
F ≠1

XÕ

0q(t)dt.

Thus, because – ‘æ F ≠1
Y0

(–)/F ≠1
XÕ

0q(–) is increasing on [–, 1],

F ≠1
XÕ

0q(–)
⁄ 1

α
F ≠1

Y0
(t)dt Ø F ≠1

Y0
(–)

⁄ 1

α
F ≠1

XÕ

0q(t)dt.

In view of (27), this ensures that ˆR/ˆ–(–, FY0 , FXÕ

0q) Ø 0. Hence,

inf
αœ[α,1)

R(–, FY0 , FXÕ

0q) = R
1
–, FY0 , FXÕ

0q

2
.

Using a similar argument on [0, –], we finally obtain

inf
αœ(0,1)

R
1
–, FY0 , FXÕ

0q

2
= min

αœ[α,α]
R

1
–, FY0 , FXÕ

0q

2
.

The result follows, with Á0 = min(–, 1 ≠ –).

C.5 Proposition 2

Remark that for any random variables A, B and C such that A ºcv B, A ‹‹ C and

B ‹‹ C, we have A + C ºcv B + C. Fix — œ Bú. By assumption, ›Y ºcv ›Õ
X—. Thus,

XúÕ— + ›Y ºcv XúÕ— + ›Õ
X— = X Õ—. (28)

Now, because — œ Bú, we also have, by Theorem 1, Y ú ºcv XúÕ—. Hence, by indepen-

dence, Y ú + ›Y ºcv XúÕ— + ›Y . Combined with (28), this yields Y ºcv X Õ—. Hence,

— œ B and Bú µ B.

C.6 Proposition 3

By the proof of Theorem 1, we have

B = {— œ R
p : Y ºcv X Õ—} . (29)
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The second result follows. To prove the first result, let ⁄ > 0. Because U ”ºcv (X Õ—0)⁄,

there exists p0 œ (0, 1) such that

⁄ 1

p0

1
F ≠1

U0
(t) ≠ F ≠1

(XÕ

0β0)λ(t)
2

dt < 0. (30)

The subadditivity of the superquantiles (see, e.g. Embrechts and Wang, 2015) yields

that, for all p œ (0, 1),

⁄ 1

p
F ≠1

Y0
(t)dt Æ

⁄ 1

p
F ≠1

XÕ

0β0
(t)dt +

⁄ 1

p
F ≠1

U0
(t)dt.

Thus, we have

⁄ 1

p0

1
F ≠1

Y0
(t) ≠ F ≠1

XÕ

0β0(1+λ)(t)
2

dt =
⁄ 1

p0

1
F ≠1

Y0
(t) ≠ F ≠1

XÕ

0β0
(t) ≠ F ≠1

(XÕ

0β0)λ(t)
2

dt

Æ
⁄ 1

p0

1
F ≠1

U0
(t) ≠ F ≠1

XÕ

0β0λ(t)
2

dt < 0.

This shows that, for all ⁄ > 0, Y ”ºcv X Õ—0(1+⁄). Then, in view of (29), —0(1+⁄) ”œ B.

The first result follows.

C.7 Proof of Lemma 1

Fix — ”= 0p and let — = ⁄“ with ⁄ > 0 and “ œ S. Then, let „λ(x) = „1(x/⁄). We

have E[„λ(|T Õ
0—|)] = E[„1(|T

Õ
0“|)] = Œ. On the other hand, by condition (ii), there

exists c0 > 0 such that for all x Ø c0, x/⁄ Æ „2(x). Then, since „1 is increasing,

E[„λ(|S0|)] = E[„λ(|S0|)1 {|S0| Æ c0}] + E[„λ(|S0|)1 {|S0| Ø c0}]

Æ „1(c0/⁄) + E[„1 ¶ „2(|S0|)]

< Œ.

Thus, E[„λ(|S0|)] < E[„λ(|T Õ
0—|)]. Since x ‘æ „λ(|x|) is convex, we get S ”ºcv T Õ—.

C.8 Theorem 2

Recall that ‚FY0(t) = 1
n

qn
i=1 1

Ó
Yi ≠ Y Æ t

Ô
and ‚FXÕ

0q(t) is defined similarly. The

proof proceeds in three steps. First, we prove that for all q œ S, Sε( ‚FY0 , ‚FXÕ

0q)
P≠æ

Sε(FY0 , FXÕ

0q). Next, we prove that ‚Sε(FY0 , FXÕ

0q)
P≠æ Sε(FY0 , FXÕ

0q). Finally, we show

that dH( ‚Bε, Bε)
P≠æ 0.
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Step 1: Sε( ‚FY0 , ‚FXÕ

0q)
P≠æ Sε(FY0 , FXÕ

0q), for all q œ S.

The idea is to apply the continuous mapping theorem, with the metric

d((F, G), (F Õ, GÕ)) = W1(F, F Õ) + W1(G, GÕ),

where we recall that W1 is the 1-Wasserstein distance. To this end, we first show

that ( ‚FY0 , ‚FXÕ

0q) converges to (FY0 , FXÕ

0q) for this metric. It suffices to prove that

W1( ‚FY0 , FY0)
P≠æ 0, the proof being similar for X Õ

0q. Remark that ‚FY0(t) = ‚FY (t+Y )

and FY0(y) = FY (y + E(Y )). Then,

W1( ‚FY0 , FY0) =
⁄ Œ

≠Œ
| ‚FY (t + Y ) ≠ FY (t + Y ) + FY (t + Y ) ≠ FY (t + E(Y ))|dt

ÆW1( ‚FY , FY ) +
⁄ Œ

≠Œ
|FY (t + Y ) ≠ FY (t + E(Y ))|dt

=W1( ‚FY , FY ) + |Y ≠ E(Y )|,

where the first equality follows by (26) and the last equality by Fubini’s theorem.

Because E[|Y |] < Œ, we have, by the law of large numbers |Y ≠ E(Y )|
P≠æ 0 and

also (see (1.3) in Del Barrio et al., 1999) W1( ‚FY , FY )
P≠æ 0.

Thus, the first step follows if we prove that Sε is continuous for the metric d. We first

prove that R is continuous with respect to the metric dÕ on [Á, 1 ≠ Á] ◊ D2, where D

denote the set of cdfs with mean 0 and dÕ is defined by

dÕ((–, F, G), (–Õ, F Õ, GÕ)) = |–Õ ≠ –| + W1(F, F Õ) + W1(G, GÕ). (31)

Remark that for all a, aÕ, b, bÕ > 0, we have
-----
aÕ

bÕ
≠ a

b

----- Æ 1

b

C
|aÕ ≠ a| +

-----
aÕ

bÕ
≠ a

b

----- |bÕ ≠ b| +
a

b
|bÕ ≠ b|

D
. (32)

Therefore, if |bÕ ≠ b| < b,
-----
aÕ

bÕ
≠ a

b

----- Æ |aÕ ≠ a| + a/b |bÕ ≠ b|

b ≠ |bÕ ≠ b|
.

Fix – œ [Á, 1 ≠ Á], F and G and let GÕ be such that W1(G, GÕ) < (1/4)
s 1

α G≠1(t)dt.

Let also –Õ œ [Á, 1 ≠ Á] be such that
-----

⁄ αÕ

α
G≠1(t)dt

----- <
1

2

⁄ 1

α
G≠1(t)dt.
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Then,

⁄ 1

α
G≠1(t)dt =

⁄ αÕ

α
G≠1(t)dt +

⁄ 1

αÕ

G≠1(t)dt <
1

2

⁄ 1

α
G≠1(t)dt +

⁄ 1

αÕ

G≠1(t)dt.

Thus,
s 1

α G≠1(t)dt < 2
s 1

αÕ G≠1(t)dt. Moreover, since W1(F, F Õ) =
s 1

0 |F ≠1(t)≠F Õ≠1(t)|dt,

we have ----
⁄ 1

αÕ

GÕ≠1(t) ≠ G≠1(t)dt
---- Æ W1(G, GÕ) <

1

2

⁄ 1

αÕ

G≠1(t)dt.

Let cF = |F ≠1(Á)| ‚ |F ≠1(1 ≠ Á)| and define cG similarly. Then, using (32), we get

|R(–Õ, F, G) ≠ R(–, F, G)| Æ
---
s αÕ

α F ≠1(t)dt
--- + R(–, F, G)

---
s αÕ

α G≠1(t)dt
---

s 1
α G≠1(t)dt ≠

---
s αÕ

α G≠1(t)dt
---

Æ |–Õ ≠ –| (|F ≠1(–)| ‚ |F ≠1(–Õ)| + R(–, F, G)|G≠1(–)| ‚ |G≠1(–Õ)|)

1/2
s 1

α G≠1(t)dt

Æ 2|–Õ ≠ –| (cF + R(–, F, G)cG)
s 1

α G≠1(t)dt
. (33)

Next, for any F Õ, using again (32),

|R(–Õ, F Õ, GÕ) ≠ R(–Õ, F, G)| Æ
---
s 1

αÕ F ≠1(t) ≠ F Õ≠1(t)dt
--- + R(–Õ, F, G)

---
s 1

αÕ G≠1(t) ≠ GÕ≠1(t)dt
---

s 1
αÕ G≠1(t)dt ≠

---
s 1

αÕ GÕ≠1(t) ≠ G≠1(t)dt
---

Æ W1(F, F Õ) + R(–Õ, F, G)W1(G, GÕ)

1/4
s 1

α G≠1(t)dt

Æ 4
s 1

α G≠1(t)dt

C
W1(F, F Õ) +

A
2|–Õ ≠ –| (cF + R(–, F, G)cG)

s 1
α G≠1(t)dt

+ R(–, F, G)

B
W1(G, GÕ)

D
. (34)

Inequalities (33) and (34) and the triangle inequality imply that R is continuous for

the metric dÕ defined by (31).

Now, because the product topology is induced by dÕ, R is continuous on the product

[Á, 1 ≠ Á] ◊ D2. Since [Á, 1 ≠ Á] is compact, it follows by Berge maximum theorem (see,

e.g., Theorem 9.14 in Sundaram et al., 1996) that Sε is also continuous with respect

to the metric d. The result follows.
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Step 2: ‚Sε(FY0 , FXÕ

0q)
P≠æ Sε(FY0 , FXÕ

0q) for q œ S.

Let us define In,ε = {–1,n, ..., –Jn,n} := {[nÁ]/n, ([nÁ] + 1)/n, ..., [n(1 ≠ Á)]/n} and

remark that
‚Sε(FY0 , FXÕ

0q) = min
αœIn,ε

R
1
–, ‚FY0 , ‚FXÕ

0q

2
. (35)

As a result,

--- ‚Sε

1
FY0 , FXÕ

0q

2
≠ Sε

1
‚FY0 , ‚FXÕ

0q

2---

Æ max
i=1,...,Jn≠1

sup
αœ[αi,n,αi+1,n)

---R
1
–, ‚FY0 , ‚FXÕ

0q

2
≠ R

1
–i,n, ‚FY0 , ‚FXÕ

0q

2---

Æ 2

n
max

i=1,...,Jn≠1

c‚FY0
+ R(–i,n, ‚FY0 , ‚FXÕ

0q)c‚FXÕ

0
q

s 1
αni

‚F ≠1
XÕ

0q(t)dt

Æ 2

n
s 1

αJn≠1,n

‚F ≠1
XÕ

0q(t)dt

C
c‚FY0

+

A
max

αœ[ε,1≠ε]
R(–, ‚FY0 , ‚FXÕ

0q)

B
c‚FXÕ

0
q

D
,

where we have used (33) in the second inequality. By definition of ‚FY0 and cF ,

c‚FY0
=

--- ‚F ≠1
Y (Á) ≠ Y

--- ‚
--- ‚F ≠1

Y (1 ≠ Á) ≠ Y
--- .

By convergence of Y and empirical quantiles, c‚FY0
= OP (1). Similarly, c‚FXÕ

0
q

= OP (1).

Also,

-----

⁄ 1

αJn≠1,n

‚F ≠1
XÕ

0q(t)dt ≠
⁄ 1

1≠ε
F ≠1

XÕq(t)dt

----- Æ
-----

⁄ 1

αJn≠1,n

‚F ≠1
XÕ

0q(t) ≠ F ≠1
XÕq(t)dt

----- +

-----

⁄ 1≠ε

αJn≠1,n

F ≠1
XÕq(t)dt

-----

Æ W1( ‚FXÕ

0q, FXÕq) + o(1),

where the last term tends to 0 since –Jn≠1,n æ 1 ≠ Á. We proved in Step 1 that

W1( ‚FXÕ

0q, FXÕq) = oP (1). Since
s 1

1≠ε F ≠1
XÕq(t)dt > 0, we have 1/

s 1
αJn≠1,n

‚F ≠1
XÕ

0q(t)dt =

OP (1). Finally, by the same reasoning as in Step 1,

max
αœ[ε,1≠ε]

R(–, ‚FY0 , ‚FXÕ

0q)
P≠æ max

αœ[ε,1≠ε]
R(–, FY , FXÕq).

Hence, at the end of the day,

‚Sε

1
FY0 , FXÕ

0q

2
≠ Sε

1
‚FY0 , ‚FXÕ

0q

2
= OP

3
1

n

4
.

The result follows by the first step.
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Step 3: Convergence of the set ‚Bε.

We showed in the proof of Proposition 1 that Sε(FY0 , FXÕ

0q) > 0 for all q œ S. Then, let

pε(q) = 1/Sε(FY0 , FXÕ

0q) and ‚pε(q) = 1/ ‚Sε(FY0 , FXÕ

0q). By Step 2 and the continuous

mapping theorem, for all q œ S,

‚pε(q)
P≠æ pε(q).

Now, (35) implies that

‚pε(q) = max
αœIn,ε

1/R
1
–, ‚FY0 , ‚FXÕ

0q

2
. (36)

Note that for any (FY , FX), q ‘æ 1/R(FY0 , FXÕ

0q) is convex (see the proof of Point

1 in Proposition 1). Then, (36) implies that ‚pε is also convex. As a result, by the

convexity lemma of Pollard (1991),

sup
qœS

|‚pε(q) ≠ pε(q)|
P≠æ 0. (37)

By construction, ‚pε (resp. pε) is the gauge function of the set ‚Bε (resp. Bε). The

gauge function of a nonempty, compact and convex set H containing the origin is

defined as the support function of its polar set (see, e.g., Corollary 3.2.5 p149 in

Hiriart-Urruty and Lemaréchal, 2012). Thus, using Theorem 3.3.6 p155 in Hiriart-

Urruty and Lemaréchal (2012) and denoting respectively by ‚B¶
ε and B¶

ε the polar sets

of ‚Bε and Bε, we obtain

dH

1
‚B¶

ε , B¶
ε

2
= sup

qœS
|‚pε(q) ≠ pε(q)| .

Thus, by (37), dH

1
‚B¶

ε , B¶
ε

2
P≠æ 0. The result follows because convergence of polar sets

for the Hausdorff distance implies convergence of the sets themselves, see Theorem

7.2 in Wijsman (1966).

C.9 Proof of Theorem 3

Before establishing the validity of the confidence regions and confidence intervals, we

show the weak convergence of Fn := n1/2
1

‚R(–, FY0 , FXÕ

0q) ≠ R(–, FY0 , FXÕ

0q)
2
, seen as

a process indexed by either – œ [Á, 1 ≠ Á], for a fixed q œ S, or (q, –) œ S ◊ [Á, 1 ≠ Á].
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1. Weak convergence of Fn

We first show the weak convergence of Fn to F as a process indexed by (q, –) œ
S ◊ [Á, 1 ≠ Á], under Assumption 4 . We then prove the weak convergence of Fn as a

process indexed by – œ [Á, 1 ≠ Á] only, but under the weaker Assumption 3.

First, remark that R(–, FY0 , FXÕ

0q) = ◊1(q, –)/◊2(q, –), where

◊1(q, –) =
⁄ 1

α
F ≠1

Y0
(t)dt,

◊2(q, –) =
⁄ 1

α
F ≠1

XÕ

0q(t)dt,

and we suppress the dependence of ◊1 and ◊2 in FY0 and FXÕ

0q for simplicity. Moreover,

by Assumption 3, FY0 and FX0 are continuous. Then, using e.g. Lemma 21.1 in

Van der Vaart (2000), we obtain

◊1(q, –) =E [(Y ≠ E(Y ))1 {FY (Y ) Ø –}] ,

◊2(q, –) =E [(X Õq ≠ E(X Õq))1 {FXÕq(X
Õq) Ø –}] .

Similarly, ‚R(–, FY0 , FXÕ

0q) = ‚◊1(q, –)/‚◊2(q, –), where

‚◊1(q, –) =
1

n

nÿ

i=1

1
Yi ≠ Y

2
1

Ó
‚FY (Yi) > –

Ô
, (38)

‚◊2(q, –) =
1

n

nÿ

i=1

1
X Õ

iq ≠ X Õq
2
1

Ó
‚FXÕq(X

Õ
iq) > –

Ô
. (39)

The map (U, V ) ‘æ U/V , from ¸Œ(S ◊ [Á, 1 ≠ Á])2 to ¸Œ(S ◊ [Á, 1 ≠ Á]), is Hadamard

differentiable at any (U, V ) such that inf(q,α)œS◊[ε,1≠ε] V (q, –) > 0. Now, ◊2(·, –) is

continuous (see the proof of Proposition 1). ◊2(q, ·) is also continuous. Thus,

inf
(q,α)œS◊[ε,1≠ε]

◊2(q, –) = min
(q,α)œS◊[ε,1≠ε]

◊2(q, –) > 0.

Hence, by the functional delta method, Fn converges weakly as soon as

n1/2
1

‚◊1(q, –) ≠ ◊1(q, –), ‚◊2(q, –) ≠ ◊2(q, –)
2

converges weakly. By independence of the two samples, it suffices to show the weak

convergence of each component. We focus on the second hereafter, as the proof is

similar (and actually simpler) for the first. To this end, remark first that

n1/2
1

‚◊2(q, –) ≠ ◊2(q, –)
2

= Gngq,α + Rn(q, –),
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where Gn denotes the empirical process associated to (X1, ..., Xn) and

gq,α(x) =
Ë
F ≠1

XÕq(–) ≠ E(X Õq)
È
1 {FXÕq(x

Õq) Æ –} ≠ (1 ≠ –)xÕq

+ (xÕq ≠ E(X Õq))1 {FXÕq(x
Õq) > –} ,

Rn(q, –) =
1

n1/2

nÿ

i=1

Ó1
X Õ

iq ≠ X Õq
2 Ë
1 {FXÕq(X

Õ
iq) Æ –} ≠ 1

Ó
‚FXÕq(X

Õ
iq) Æ –

ÔÈ

≠
Ë
F ≠1

XÕq(–) ≠ E(X Õq)
È

(1 {FXÕq(X
Õ
iq) Æ –} ≠ –)

J

+
n1/2

1
X Õq ≠ E(X Õq)

2

n

nÿ

i=1

(1 {FXÕq(X
Õ
iq) Æ –} ≠ –) .

We first prove that the class G = {gq,α : (q, –) œ S ◊ [Á, 1 ≠ Á]} is Donsker. The class

I0 = {x ‘æ 1 {xÕq Æ u} : (q, u) œ S ◊ R} is Donsker by Problem 2.6.14 and Theorem

2.6.8 in Van der Vaart and Wellner (1996). Then, I1 = {x ‘æ 1 {FXÕq(x
Õq) Æ –} :

(q, –) œ S ◊ [Á, 1≠Á]} µ I0 is also Donsker (see, e.g., Theorem 2.10.1 in Van der Vaart

and Wellner, 1996). Similarly, I2 = {x ‘æ 1 {FXÕq(x
Õq) > –} : (q, –) œ S ◊[Á, 1≠Á]} is

Donsker. I2 also has a finite integral entropy and an envelope of 1. Since {x ‘æ xÕq :

q œ S} also has a finite integral entropy with envelope x ‘æ ÎxÎ, and E[ÎXÎ2] < Œ,

the class I3 = {x ‘æ (xÕq)1 {FXÕq(x
Õq) > –} : (q, –) œ S ◊ [Á, 1 ≠ Á]} is also Donsker

(see Example 19.19 in Van der Vaart, 2000). Because {x ‘æ (1 ≠ –)xÕq : (q, –) œ
S ◊ [Á, 1≠Á]} is also Donsker and sums of Donsker classes are also Donsker, we finally

get that G is Donsker.

Next, we consider the remainder term Rn(q, –). Let Ii(q, –) = 1 {FXÕq(X
Õ
iq) Æ –}

and ‚Ii(q, –) = 1

Ó
‚FXÕq(X

Õ
iq) Æ –

Ô
. We have Rn(q, –) = R1n + R2n + R3n, with

R1n(q, –) =
1

n1/2

nÿ

i=1

(Ii(q, –) ≠ ‚Ii(q, –))
Ë1

X Õ
iq ≠ X Õq

2
≠

1
F ≠1

XÕq(–) ≠ E(X Õq)
2È

,

R2n(q, –) =

1
F ≠1

XÕq(–) ≠ E(X Õq)
2

n1/2

nÿ

i=1

Ë
– ≠ ‚Ii(q, –)

È
,

R3n(q, –) =
n1/2

1
X Õq ≠ E(X Õq)

2

n

nÿ

i=1

(Ii(q, –) ≠ –) .

We now prove that for all k œ {1, 2, 3},

sup
(q,α)œS◊[ε,1≠ε]

Rkn(q, –) = op(1). (40)
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Consider R2n first. By definition of the empirical cdf., we have, for all (q, –),

-----

nÿ

i=1

1
‚Ii(q, –) ≠ –

2----- = Án–Ë ≠ n– < 1. (41)

As a result,

sup
(q,α)œS◊[ε,1≠ε]

|R2n(q, –)| Æ
F ≠1

ÎXÎ(1 ≠ Á) + E(ÎXÎ)

n1/2
◊ sup

(q,α)œS◊[ε,1≠ε]

-----

nÿ

i=1

1
‚Ii(q, –) ≠ –

2-----

Æ
F ≠1

ÎXÎ(1 ≠ Á) + E(ÎXÎ)

n1/2
,

where the first inequality follows from the triangle and Cauchy-Schwarz inequalities

and |F ≠1
XÕq(Á)| ‚ |F ≠1

XÕq(1 ≠ Á)| Æ F ≠1
ÎXÎ(1 ≠ Á). Hence, (40) holds for k = 2.

Next, consider R3n. We have

sup
(q,α)œS◊[ε,1≠ε]

|R3n(q, –)| Æ n1/2ÎX ≠ E(X)Î ◊ sup
(q,α)œS◊[ε,1≠ε]

-----
1

n

nÿ

i=1

(Ii(q, –) ≠ –)

----- .

The first term is an Op(1). Recall that the class I1 is is Donsker; hence it is also

Glivenko-Cantelli. Therefore, the second term is an op(1). Therefore, (40) holds for

k = 3.

Finally, consider R1n. We first decompose it further into R11n + R12n, with

R11n(q, –) =
≠n1/2(X Õq ≠ E(X Õq))

n

nÿ

i=1

[Ii(q, –) ≠ ‚Ii(q, –)],

R12n(q, –) =
1

n1/2

nÿ

i=1

(Ii(q, –) ≠ ‚Ii(q, –))
1
X Õ

iq ≠ F ≠1
XÕq(–)

2
.

That R11n is uniformly negligible follows by writing Ii(q, –) ≠ ‚Ii(q, –) = Ii(q, –) ≠ – +

– ≠ ‚Ii(q, –), reasoning as for R3n and using (41). For R12n, remark that by definition

of Ii(q, –) and ‚Ii(q, –),

|R12n| Æ
--- ‚F ≠1

XÕq(–) ≠ F ≠1
XÕq(–)

--- ◊
-----

1

n1/2

nÿ

i=1

(Ii(q, –) ≠ ‚Ii(q, –))

----- .

By (41) and the fact that I1 is a Donsker class,

sup
(q,α)œS◊[ε,1≠ε]

-----
1

n1/2

nÿ

i=1

(Ii(q, –) ≠ ‚Ii(q, –))

----- = Op(1).
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Thus, the result holds as long as

sup
(q,α)œS◊[ε,1≠ε]

--- ‚F ≠1
XÕq(–) ≠ F ≠1

XÕq(–)
--- = op(1). (42)

To prove this, note first that the class {x ‘æ 1 {xÕq Æ –} : (q, –) œ S ◊ [Á, 1 ≠ Á]} is

Glivenko-Cantelli (as it is Donsker). Hence,

sup
(q,α)œS◊[ε,1≠ε]

---FXÕq(–) ≠ ‚FXÕq(–)
--- = op(1). (43)

Now, let Uq = FXÕq(X
Õq) and Uq,1 < ... < Uq,n denote the corresponding order statis-

tic. Remark that ‚F ≠1
XÕq(–) = F ≠1

XÕq(Uq,ÁnαË). Also, note that inf(q,α)œS◊[ε,1≠ε] Uq,ÁnαË < ÁÕ

implies that for some q0 œ S, ‚FXÕq0(F ≠1
XÕq0

(ÁÕ)) Ø Án–Ë/n and thus

sup
(q,α)œS◊[ε,1≠ε]

---FXÕq(–) ≠ ‚FXÕq(–)
--- > Á ≠ ÁÕ.

In view of (43), this occurs with probability approaching zero. The same is true for

the event sup(q,α)œS◊[ε,1≠ε] Uq,ÁnαË > 1 ≠ ÁÕ. Hence, with probability approaching one,

ÁÕ Æ inf
(q,α)œS◊[ε,1≠ε]

Uq,ÁnαË Æ sup
(q,α)œS◊[ε,1≠ε]

Uq,ÁnαË Æ 1 ≠ ÁÕ. (44)

Moreover, under this event,

--- ‚F ≠1
XÕq(–) ≠ F ≠1

XÕq(–)
--- =

---F ≠1
XÕq(Uq,ÁnαË) ≠ F ≠1

XÕq(–)
---

<m
1
|Uq,ÁnαË ≠ –|

2

Æm
1
|FXÕq((X

Õq)ÁnαË) ≠ ‚FXÕq((X
Õq)ÁnαË)|

+
--- ‚FXÕq((X

Õq)ÁnαË) ≠ –
---
2

<m

A
sup
qœS

ÎFXÕq ≠ ‚FXÕqÎŒ +
1

n

B
.

Using (43) and the continuity of m finally yields (42).

Finally, let us prove the weak convergence of Fn as a process indexed by – œ [Á, 1 ≠ Á]

only, but under the weaker Assumption 3. It suffices to remark that all steps above

still hold, except (42). Now, given that q is fixed, we only need to establish the weaker

sup
αœ[ε,1≠ε]

--- ‚F ≠1
XÕq(–) ≠ F ≠1

XÕq(–)
--- = op(1). (45)
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Because F ≠1
XÕq is continuous on [Á, 1 ≠ Á] (as the inverse of FXÕq is strictly increasing

on its support by Assumption 3), it is uniformly continuous on [Á, 1 ≠ Á]. Now, note

that --- ‚F ≠1
XÕq(–) ≠ F ≠1

XÕq(–)
--- =

---F ≠1
XÕq(Uq,ÁnαË) ≠ F ≠1

XÕq(–)
--- .

Moreover, supαœ[ε,1≠ε]

---Uq,ÁnαË ≠ –
--- = op(1). This implies that (45) holds.

2. Asymptotic validity of the confidence region

Let us define ÿ(G) = infαœ[ε,1≠ε] G(–). By what precedes,

‚Sε(FY0 , FXÕ

0q) = ÿ
Ë

‚R(·, FY0 , FXÕ

0q)
È

.

Moreover, by Theorem 2.1 of Cárcamo et al. (2020), ÿ is Hadamard directionally

differentiable. Then, by the functional delta method for Hadamard directionally

differentiable functions (see, e.g., Proposition 2.1 in Cárcamo et al., 2020), we have

n1/2
1

‚Sε(FY0 , FXÕ

0q) ≠ Sε(FY0 , FXÕ

0q)
2

d≠æ ÿÕ
R(·,FY0

,FXÕ

0
q)(F),

where, in view of Corollary 2.3 in Cárcamo et al. (2020), ÿÕ
f (h) = inf{h(x) : x œ

argminαœ[ε,1≠ε]f(–)} for any continuous functions f and h.

Note that for all (G1, G2) in ¸Œ([Á, 1 ≠ Á]), |ÿ(G1) ≠ ÿ(G2)| Æ ÎG1 ≠ G2ÎŒ. Thus, ÿ

is Lipschitz as a function from ¸Œ([Á, 1 ≠ Á]) to R. Then, by Theorem 3.2 in Hong

and Li (2018), the numerical derivative ÿÕ
G,n : h ‘æ (ÿ(G + ”nh) ≠ ÿ(G))/”n is also

Lipschitz, uniformly in ”n. Then, by Lemma 3.1 and Theorem 3.3 in Hong and Li

(2018), Assumption 4 in Fang and Santos (2019) holds. By Theorem 3.2 in Fang

and Santos (2019), the numerical bootstrap based on (16) is valid: conditional on the

data and with probability approaching one,

minαœ[ε,1≠ε]( ‚R(–, FY0 , FXÕ

0q) + ”nZ
ú
n,q) ≠ ‚Sε(FY0 , FXÕ

0q)

”n

d≠æ H,

where H is the cdf of ÿÕ
R(·,FY0

,FXÕ

0
q)(F).

Now, let us show that ‚cα,ε
P≠æ cα,ε. Note that ≠ÿÕ

R(·,FY0
,FXÕ

0
q) is convex. Then, by

Theorem 11.1 in Davydov et al. (1998), its cdf H is continuous and strictly increasing

in a neighborhood of every point of its support except perhaps at r := inf{r œ R :
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H(r) > 0}. By Problem 11.3 in Davydov et al. (1998), we also have that H(r) > 0

for any r œ R. Thus, H is continuous and strictly increasing on R. Since ≠cα,ε is the

quantile of order 1 ≠ – of ≠ÿÕ
R(·,FY0

,FXÕ

0
q)(F), it follows from Lemma 21.2 in Van der

Vaart (2000) that ‚cα,ε
P≠æ cα,ε.

Finally, fix — œ Bε, so that — = ⁄q with ⁄ œ [0, Sε(FY0 , FXÕ

0q)]. By definition, — œ
CR1≠α(—0) if and only if

n1/2
1

‚Sε(FY0 , FXÕ

0q) ≠ ⁄
2

≠ ‚cα,ε Ø 0. (46)

Suppose first that ⁄ < Sε(FY0 , FXÕ

0q). Since ‚Sε(FY0 , FXÕ

0q) is consistent for Sε(FY0 , FXÕ

0q)

and ‚cα,ε = Op(1), (46) holds with probability approaching one and lim infnæŒ P (— œ
CR1≠α(—0)) = 1. Now, suppose that ⁄ = Sε(FY0 , FXÕ

0q). Then, by what precedes,

n1/2
1

‚Sε(FY0 , FXÕ

0q) ≠ ⁄
2

≠ ‚cα,ε
d≠æ ÿÕ

R(·,FY0
,FXÕ

0
q)(F) ≠ cα,ε.

Moreover, by continuity of the cdf of ÿÕ
R(·,FY0

,FXÕ

0
q)(F) at cα,ε,

P (ÿÕ
R(·,FY0

,FXÕ

0
q)(F) ≠ cα,ε Ø 0) = 1 ≠ –.

Thus, lim infnæŒ P (— œ CR1≠α(—0)) = 1 ≠ –. The result follows.

3. Asymptotic validity of the confidence interval

First, remark that for any e œ R
p,

‡(e, FY0 , FX0) = sup
qœS

inf
αœ[ε,1≠ε]

Ë
R(–, FY0 , FXÕ

0q) ◊ qÕe
È

.

Let us define Ÿ(G) := supqœS infαœ[ε,1≠ε] G(q, –) and Ge(q, –) := R(–, FY0 , FXÕ

0q) ◊ qÕe.

By Lemma A.1 in Firpo et al. (2021), Ÿ is Hadamard directionally differentiable.

Moreover, by Step 1, the process (q, –) ‘æ Fn(q, –) ◊ qÕe converges weakly to a Gaus-

sian process. Then, as above,

n1/2 (‚‡(e, FY0 , FX0) ≠ ‡(e, FY0 , FX0))
d≠æ ŸÕ

Ge
(F),

where the expression of ŸÕ is given by (3.10) in Firpo et al. (2021).

The proof of the validity of the numerical bootstrap based on (20) follows the same

steps as for the validity of the numerical bootstrap for the confidence region, as the
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function Ÿ : ¸Œ(S ◊ [Á, 1 ≠ Á]) æ R is also Lipschitz as a composition of two Lipschitz

functions. Then, by continuity of the cdf of ŸÕ
Ge

(F) at its quantile cs
α,ε(e) (for e = ±ek),

we have Âcα,ε(e)
P≠æ cs

α,ε(e) for such e.

Finally, let —k œ Bk. First assume that —k Æ 0. Because 0 œ CI1≠α(—0,k), —k ”œ
CI1≠α(—0,k) only if

—k < ≠‚‡ε(≠ek, FY0 , FX0) + n≠1/2Âcα,ε(≠ek).

In turn, this event implies that En holds, with

En :=
Ó
n1/2 (≠‚‡ε(≠ek, FY0 , FX0) + ‡ε(≠ek, FY0 , FX0)) > ≠Âcα,ε(≠ek)

Ô
.

Hence, supβkœBkflR≠ Pr(—k ”œ CI1≠α(—0,k)) Æ Pr (En). Reasoning similarly for —k Ø 0,

we obtain

sup
βkœBk

Pr(—k ”œ CI1≠α(—0,k)) Æ max
Ë
Pr (En) , Pr

1
En

2È
,

where we let En :=
Ó
n1/2 (‚‡ε(ek, FY0 , FX0) ≠ ‡ε(ek, FY0 , FX0)) < Âcα,ε(ek)

Ô
. By what

precedes, we have Pr(En) æ – and Pr(En) æ –. The result follows.
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