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1 Introduction

Over the past two decades, the economics literature has increasingly utilized network analysis

to understand decision-making.1 Surprisingly, however, the importance of spatial proximity

in the determination and intensity of network exchange remains under-examined. Indeed,

most papers from the network economics literature (Jackson, 2008) assume that the existence

and intensity of dyadic contacts do not depend on agents’ location.2

In this paper, we develop a new theory of social-tie formation where individuals care

about the geographical location of other individuals. In our model, a population of students,

embedded in a network and residing in di↵erent locations, entertains social interactions with

each other. Each student decides the number of visits (social interactions) to every other

agent in the network and the value of each interaction depends on the social network of

the visited agents. We define the value of such interactions as the social capital of the

agent (Putnam, 2000). Social capital is thus defined in a recursive fashion: it increases

with interactions with highly social individuals. When deciding how much to interact with

others, students face the following trade-o↵. Each student can increase her social capital by

interacting with highly social students. However, social interactions requires costly travel

to the other students. We characterize the equilibrium in terms of social interactions and

social capital. We show that the equilibrium frequencies of interactions are lower than the

e�cient ones. We demonstrate that a policy that subsidizes transportation costs can restore

the first best but the subsidy should be higher for trips to students who have higher social

capital and for trips from individuals whose social capital increases more with additional

interactions.

We then structurally estimate this model using data on patterns of social interactions

among high school students in the US recorded in the National Longitudinal Survey of Ado-

lescent Health (Add Health). This survey contains information on friendship nominations,

the strength of the interactions between friends, and also allows us to calculate the Euclidean

distance between the homes of the respondents. Because residential decisions are taken by

parents, this spatial distance is pre-determined to the friendship decisions of the children.

Our main empirical challenges are due to the fact that there is some discrepancy between

1For recent overviews, see Jackson (2008), Ioannides (2013), Jackson and Zenou (2015), Bramoullé,
Rogers, and Galeotti (2016) and Jackson, Rogers, and Zenou (2017).

2Exceptions include Johnson and Gilles (2000) and Jackson and Rogers (2005).
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the theory and the data in terms of measuring the intensity of social interactions and that

the interaction value o↵ered by a friend (social capital) is unobserved to the econometrician.

We address these challenges by having small networks (and conducting di↵erent robustness

checks) and by applying an indirect inference estimation method to simulate unobserved so-

cial capital. The main idea of this method is to simulate data from the model, which requires

solving for the unobserved equilibrium social capital conditional on structural parameters

and unobservables, in order to find the parameters for which the simulated data best match

the observed data.3

The estimation results highlight the importance of the e↵ects discussed in our theory. We

find that transportation costs (and hence geographic distance), social distance, and combined

levels of socio-demographic characteristics are all important factors in determining the in-

tensity of social interactions. With the estimated model, we compute the planner’s first best

solution for the frequency of social interactions and compare it with the observed equilibrium

level. Compared to the socially optimal level, our results show that students interact with

each other far less and accumulate less social capital. We find that these ine�ciencies can be

explained by the geographical distance between students. With the estimated model, we also

simulate the level of social interactions after di↵erent policy interventions. By subsidizing

social interactions or transportation costs, the policymaker can indeed improve the intensity

of social interactions. At the same given cost, we find that subsidizing social interactions is

more e↵ective than subsidizing transportation costs because it leads to higher total welfare.

1.1 Related literature

We contribute to the literature on network formation (Jackson, 2008) by showing the im-

portance of geographical distance in the formation of friendship links. There already exist

models of endogenous networks with explicit geographical distance (see e.g., Johnson and

Gilles (2000) and Jackson and Rogers (2005)). However, these studies consider a frame-

work where network formation is modeled on a link-by-link basis by extending Jackson and

Wolinsky (1996). Thus, these models are usually not tractable and the authors can nei-

ther characterize all the equilibria nor derive some comparative statics results and policy

implications (see Jackson (2008) for a discussion of these issues). Our model is di↵erent; in

3Fu and Gregory (2019) develop an equilibrium model of post-disaster neighborhood rebuilding choices
with externalities and estimate the model using indirect inference to implement policy simulations.
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particular, we have a unique equilibrium. We can also derive comparative statics exercises,

explicitly determine the first best equilibrium and implement some policies. There is another

strand of the literature (Brueckner and Largey (2008), Helsley and Strange (2007), Zenou

(2013), Mossay and Picard (2011, 2019), Helsley and Zenou (2014), Sato and Zenou (2015),

Picard and Zenou (2018)) that studies the role of social networks in cities but take the net-

work as given. In the current paper, link formation depends on the location of individuals

in the geographical space.

There is also a small empirical literature that studies the relevance of geographical lo-

cation for social interactions in networks (see Ioannides, 2013, for a survey). In fact, it

is extremely di�cult to find detailed data on social contacts as a function of geographical

distance between agents together with information on relevant socio-economic characteris-

tics. Some evidence can be found in Marmaros and Sacerdote (2006). Using data on email

communication between Dartmouth college students, this paper shows that being in the

same freshman dorm increases the volume of interactions by a factor of three.4 Büchel and

von Ehrlich (2020) measure social connectedness between postcode areas in Switzerland us-

ing mobile phone communication patterns between residents in di↵erent areas. They find

that distance as measured by travel time is detrimental to private mobile phone interactions

by exploiting an exogenous change in travel time.5 Bailey et al. (2018b) and Bailey et al.

(2020) reach a similar conclusion by using anonymized and aggregated data from Facebook

to explore the spatial structure of social networks in the New York metropolitan area.

The vast literature in the computer science literature and statistical mechanics looking

at the role of distance in social interaction uses primarily mobile phone data or online social

networks data and is mainly concerned about describing the shape of the statistical relation-

ship between link probability and distance (see, e.g., Liben-Nowell et al. (2005); Lambiotte

et al. (2008); Goldenberg and Levy (2009); Krings et al. (2009) and the excellent reviews of

4See also Fafchamps and Gubert (2007) who show that geographic proximity is a strong correlate of
risk-sharing networks and Rosenthal and Strange (2008), Arzaghi and Henderson (2008), Bisztray, Koren,
and Szeidl (2018) and List, Momeni, and Zenou (2019) who find that knowledge and productivity spillovers
are important but decay sharply with distance.

5Another strand of related literature uses geographic proximity as a proxy for social interactions. Most
notably, Bayer, Ross, and Topa (2008) assume that agents living in the same census block exchange in-
formation about jobs. Their finding that residing in the same block raises the probability of sharing work
location by 33% is thus interpreted as a referral e↵ect. Hellerstein, McInerney, and Neumark (2011); Heller-
stein, Kutzbach, and Neumark (2014) and Schmutte (2015) build on the same assumption using matched
employer-employee data with residential information. Using mobile phone data on one entire city in China,
Barwick et al. (2019) show that geographical distance is important in spreading information about jobs.
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Barthélemy (2011) and Kaltenbrunner et al. (2012)).

To the best of our knowledge, this paper is the first to propose a theory for the relationship

between geographical distance and social interactions and to test it using the precise geometry

of individual social contacts and the geographical distance between them. It is also the

first that empirical establishes the degree of ine�ciency of social interactions and, by using

counterfactual exercises, determines whether it is more e�cient to subsidize transportation

costs or social interactions.

The rest of the paper unfolds as follows. Section 2 develops the theoretical model and

determines the equilibrium while Section 3 studies its e�ciency properties and the policy

implications of the model. In Section 4, we describe our data and how we construct our

di↵erent variables. Section 5 is devoted to the empirical strategy. In Section 6, we provide

our main empirical results and discuss some robustness checks. In Section 7, we test the

di↵erent predictions of the model and determine the level of ine�ciencies of social interactions

and social capital and how they are a↵ected by the size of the network. We also simulate

two policies and determine which one leads to the highest social welfare. Finally, Section

8 concludes the paper and discusses our policy results. All proofs in the theoretical model

can be found in Appendix A. In Appendix B, we solve for the social capital fixed point

and show under which condition it is unique. In Appendix C, we perform some robustness

checks. In Section D, we carry out Monte Carlo simulation experiments while we explain

our calibration in the policy exercises in Appendix E.

2 The model

2.1 Notations and definitions

Consider a set of N � 2 homogeneous individuals embedded in a social network. As in

our dataset (see Section 4 below), these are students at a given school, so that all social

interactions only take place within the school. We consider one network (within a school)

of N students who reside in di↵erent locations. Each student i lives with her parent at a

given geographical location i.6 Thus, we denote by dij the geographical distance between

two students i and j belonging to the same social network. Each student visits every other

6For the sake of the exposition, we denote by the same letter i both an individual and her residential
location.
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student in the network and benefits from socially interacting with them. The utility from

social interactions for student i is given by

Si =
X

j 6=i

v(nij)sj, (1)

where nij is the number of interactions that student i initiates with student j who o↵ers an

interaction value sj.7 For the sake of tractability, we assume that8

v(nij) = nij �
1

2
n
2

ij. (2)

This expression assumes decreasing returns to the frequency of interactions with a given

student; it even assumes negative returns (saturation) above nij = 1. Observe that, in (1),

we assume that there are decreasing returns in v (nij) but not in sj. This is mainly for

analytical tractability because we need to calculate a fixed point on social interactions and

social capital (see equation (7) below).

The interaction value o↵ered by student j is assumed to be equal to

sj = 1 +
↵

N

X

k 6=j

njksk, (3)

where N is the number of students in the network. The first constant term (normalized to

1) represents the idiosyncratic interaction value that student j provides to her visitors. The

second term, (↵/N)
P

k 6=j njksk, reflects the value of her social network. It increases with

the number (njk) and value (sk) of her interaction with each of her network partners. We

refer to sj as the social capital of the student who reside in location j. The parameter ↵ > 0

measures the importance of others’ social capital in an agent’s social capital formation. The

higher is ↵, the higher is the impact of the social network of “friends of friends”. We divide

↵ by N to control for network size.

7Here, as in Cabrales, Calvó-Armengol, and Zenou (2011), individuals do not explicitly choose with whom
to link with but decide a level of social interactions at each location in the city.

8Observe that in (2), for student i, the curvature in v comes from her interactions with j and not from
all her interactions. Since student i has only a limited time for interactions, more interactions with student
j could lower her utility from interactions with the other students in the network. Observe also that in (2),
we assume that v(nij) only depends on nij , the number of interactions that student i initiates with student
j, and not on nji. In other words, we assume that if student i initiates the interaction with j by commuting
to j and bearing this commuting cost, student i will get all the benefits of this interaction while j will not.
We assume these two simplifications to keep the model tractable.
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Each student i incurs a cost c(dij) of visiting another student residing at j, where dij is

the geographical distance between i and j. We consider continuous, increasing cost function

with c(0) = 0, c(dij) > 0, and c
0(dij) > 0, 8dij > 0. The total social interaction cost of

student i is given by

Ci =
X

j 6=i

nijc(dij),

which increases with the frequency of social interactions.

We now examine the question of how social capital is distributed across space where

students are exogenously located.

2.2 Social capital and space

Each student i chooses the profile of interactions nij that maximizes her utility

Ui = Si � Ci =
X

j 6=i

v(nij)sj �
X

j 6=i

nijc(dij).

Note that her utility depends on the profile of other student’s social capital levels (sj, j 6= i).

It also depends on her own social capital si, since sj is a function of si (see (3)). We assume

that each student takes the social capital levels of all other students as given and is not

strategic with respect to the e↵ect of her own social interactions on her utility.

Define the access cost measure as

gj ⌘
X

k 6=j

c(djk), (4)

which is the total traveling cost of social interactions for student j.

Proposition 1 Assume c(d) < N and ↵ < 1. Then, for all i, j, there exists a unique

equilibrium
�
n
⇤
ij, s

⇤
j

�
such that

n
⇤
ij = 1� c(dij)

s
⇤
j

> 0 (5)

and

s
⇤
j = s0 �

↵/N

1 + ↵/N
gj > 1. (6)
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where

s0 =
1 + ↵/N � (↵/N)2

P
j gj

(1 + ↵/N) (1� ↵ (N � 1) /N)
. (7)

Under the conditions c(d) < N and ↵ < 1, the optimal frequency of interactions n
⇤
ij is

always strictly positive and social capital s⇤j is always larger than one. Intuitively, travel

costs should not be too high to entice agents to interact. Also, the importance of others’

social capital in an agent’s social capital formation should not be too high to avoid that each

individual’s social capital reinforces each others’ social capital and ultimately blows up to

infinity.

Consider, now, (5). For student i, n⇤
ij, the optimal number of interactions with a student

residing in j, increases with student j’s social capital and decreases with the geographical

distance between i and j. Hence, there is complementarity between the frequency, n⇤
ij, and

the quality of social interactions, sj.

Let us now discuss the properties of the equilibrium social capital s⇤j defined in (6).9

First, lower travel costs increase social capital for all agents. Indeed, a downward shift in

the travel cost function c(·) reduces the access cost measure gj, which has a positive e↵ect

on both terms in (6), since higher access cost increases s0. As a result, travel costs can be

seen as a barrier to social capital formation. Improvements in transportation infrastructure

should therefore enhance social capital.

Second, a rise in the importance of peers’ social links in the creation of own social capital

↵, has the following e↵ects. By using the proof of Proposition 1, we can di↵erentiate each

side of (A.4) with respect to ↵ to obtain

ds⇤j
d↵

=
1

N

X

k 6=j

s
⇤
k +

↵

N

X

k 6=j

ds⇤k
d↵

� 1

N
gj.

Thus, an agent’s social capital increases with higher ↵ because she places greater value on

the social capital of her interaction partners (first term), because her partners themselves

have higher social capital (second term) and finally because she is physically closer to her

partners and thus has higher incentives to meet them (third term). By di↵erentiating (6)

9Once we know the comparative statics results with respect to s⇤j , then it is straightforward to deduce
those of n⇤

ij .
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with respect to ↵, we obtain the total e↵ect as a function of exogenous variables:

ds⇤j
d↵

=
ds0
d↵

� 1

N (1� ↵/N)2
gj.

This expression is always positive for low enough travel costs c(dij), since the terms in gj

are in this case close to zero. Otherwise, geographically distance agents may get lower social

capital.

We summarize these findings in the following proposition:

Proposition 2 Lower travel costs increase social capital for all agents. An increase in ↵,

the importance of peers’ social links, increases each agent’s social capital for small enough

travel cost.

We now study the optimal levels of social interaction and capital.

3 E�cient social interactions

We now study the planner’s allocation of interaction frequency for each individual i. The

planner chooses the profiles of social interactions nij and social capital sj that maximize the

aggregate utility

W =
X

i

Ui =
X

i

(Si � Ci)

subject to the social capital constraint

si  1 +
↵

N

X

k 6=i

niksk. (8)

This inequality allows us to define and interpret the (positive) sign of the Kuhn-Tucker

multiplier �i (which measures the welfare value of a marginal increase of the social capital

of agent i) of the social capital formation constraint. The interpretation of this inequality

is that the planner cannot give more social capital to a student than what her interactions

with her partners can give. Conversely, the planner can erase some of the social capital of

an individual but it has no incentives to do so, since welfare increases with social capital.
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Lemma 3 The e�cient frequency of interactions no
ij and level of social capital soj satisfy the

following necessary conditions:

v
0 �
n
o
ij

�
s
o
j � c(dij) +

↵

N
�is

o
j = 0, (9)

X

i

h
v
�
n
o
ij

�
+

↵

N
�in

o
ij

i
� �j = 0. (10)

Equations (9) and (10) together with the constraint (8) solve for n
o
ij, s

o
j , and �i.

Condition (9) captures the main externality at work in the process of social interaction.

When the planner chooses the interaction frequency nij, she considers both the benefit and

cost experienced by agent i and the fact that an increase in i’s social capital increases j’s

social capital. In the decentralized equilibrium, this last e↵ect is not considered by agent i.

One can indeed see that condition (9) is equal to the first order condition of the individual’s

choice of interactions if �i = 0. The weight that the planner puts on raising another agent’s

social capital increases with the importance of interactions, ↵, and with the social benefit of

relaxing the social capital constraint, �i. Then, because �i > 0 and v
00
> 0, the equilibrium

number of interactions nij is smaller than the ones chosen by the planner. In other words,

there are too few interactions in equilibrium.

The second condition (10) can be interpreted as follows. When the planner increases the

social capital of agent j, she raises the utility of all agents who interact with this agent (first

term in brackets) and indirectly increases the social capital of these agents (second term in

brackets). In the e�cient allocation, this combined e↵ect should be equal to �j, the welfare

value of a marginal increase of the social capital of an agent at j.

Proposition 4 The equilibrium frequency of interactions and level of social capital are lower

than the e�cient ones, that is, n⇤
ij  n

o
ij and s

⇤
i  s

o
i .

Intuitively, the planner internalizes the e↵ect that each agent has on others’ social capital

when she entertains more intense social interactions. As a result, the planner imposes to

the agents to increase their frequency of social interactions above the equilibrium level. This

welfare result confirms Brueckner and Largey’s (2008) and extends their analysis to the case

where agents are distributed across space.
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Can the e�cient allocation of social interactions be restored with a subsidy �ij on social

interactions (for students i and j) or with a subsidy ⌧ ij on travel costs ? Let

⌧
o
ij =

↵

N
�
o
i s

o
j and �

o
ij =

s
o
j

Nc(dij)
↵�o

i s
o
j
� 1

. (11)

Proposition 5 The first-best solutions no
ij and s

o
j can be restored by either setting a subsidy

on travel costs ⌧ ij = ⌧
o
ij or a subsidy on social interactions �ij = �

o
ij. The subsidy ⌧

o
ij on

travel costs should be higher for recipient students who have higher social capital and for trips

to students whose social capital increases more with additional interactions. The (positive)

subsidy �
o
ij on social interactions increases for recipient students with more social capital,

from initiator students who are closer and who have higher welfare value of a marginal social

capital increase.

The optimal subsidies ⌧ oij and �
o
ij have no direct relation to distance between students,

since it is very unlikely that ⌧
o
ij and �

o
ij reduce to a simple function of the geographical

distance dij between students i and j. This result contrasts with Helsley and Zenou (2014),

who advocate that the planner should subsidize the most central agents. Their model, which

has only two locations, however, imperfectly captures the full picture of spatial interactions.

In the present model, we observe that the planner does not subsidize the agents with high

social capital but only subsidizes the trips of these agents.

Note that the subsidies ⌧ oij and �
o
ij defined in (11) are not uniform. This suggests that

decentralization is going to be di�cult to implement, since subsidies depend on both the

originator and recipient of each social interaction. Consequently, in the counterfactual (sub-

sidy) policies in Section 7.3, we will investigate the e↵ect of subsidies that are uniform across

individuals and, thus, easier to implement.

4 Data

In this section, we describe our data and how they fit with our theoretical framework. First,

we explain the data source and highlight the key features of the data that are relevant to

spatial interactions. Second, we describe how the data measures social interaction intensity

among individuals. Third, we discuss the geographic space and the residential distance

among students. Fourth, we explain how we construct networks from friendship nominations.
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Fifth, we describe the final sample after deleting missing variables/observations. In each part,

we discuss the issues related to the discrepancy between the theoretical model and the data

and how we address them.

4.1 Data source

We use a dataset on friendship networks from the National Longitudinal Survey of Adolescent

Health (Add Health) to test our theoretical findings and run some counterfactual policies.10

The Add Health dataset has been designed to study the impact of the social environment

(i.e., friends, family, neighborhood and school) on adolescents’ behavior in the United States.

It is a school-based survey that contains extensive information on a representative sample

of students who were in grades 7–12 in 1995. More than 100 schools were sampled. Three

features of the Add Health data are unique and key to our analysis: (i) the nomination-

based friendship information, which allows us to reconstruct the precise geometry of social

contacts, (ii) the detailed information about the intensity of social interactions between each

of two friends in the network; and (iii) the geo-coded information on residential locations,

which allows us to measure the geographical distance between students.

4.2 Construction of nij, the social-interaction intensity

All students who were present at school in the interview day were asked to identify their best

school friends from a school roster (up to five males and five females).11 For each individual

i, the friendship nomination file also contains detailed information on the frequency and

nature of interaction with each nominated friend j. The precise questions are as follows:

• Did you go to {NAME}’s house during the past seven days?

10This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and
designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North
Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National
Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies
and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in
the original design. Information on how to obtain the Add Health data files is available on the Add Health
website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for
this analysis.

11The limit in the number of nominations is not binding (even by gender). Less than 1% of the students
in our sample show a list of ten best friends.

12



• Did you meet {NAME} after school to hang out or go somewhere during the past seven

days?

• Did you spend time with {NAME} during the past weekend?

• Did you talk to {NAME} about a problem during the past seven days?

• Did you talk to {NAME} on the telephone during the past seven days?

Students can answer these questions with a yes or a no; thus, these answers are coded by

one (for yes) and zero (for no). From their answers, we are able to measure the intensity

of social interactions nij between students i and j by summing all these items, so that the

maximum value of the social interaction intensity is five and the minimum is zero.

4.3 Geographical space

A random sample of students in each school (about 20,000 students) is also interviewed at

home where a longer list of questions are asked both to the child and to his/her parents.

Most notably for this study, the geographical locations of their residential location are also

recorded. Latitude and longitude coordinates are calculated for each home address and then

translated into X� and Y�coordinates in an artificial space. We use this information to

derive the spatial distance dij between any two students i and j by computing the Euclidean

distance between their homes. The maximum geographical distance between two students in

a network is about 47 kilometers. The average distance is 6.75 kilometers, and its standard

deviation is 6.71 kilometers.

4.4 Discrepancy between theory and data

There are some discrepancies between our theoretical model and the Add Health data. First,

recall that the theoretical model assumes that each student visits and thus socially interacts

with every other student in the network. That is, nij > 0 is always positive (see Proposition

1). By contrast, in the Add Health dataset, students can only answer the social-interaction

questionnaires for their nominated friends (see Section 4.2). Indeed, if student i does not

nominate student j as a friend, then clearly i will not be asked about how many times she

interacted with j. In addition, students in the Add Health dataset may have zero interactions

13



with their (nominated) friends. The latter issue is a missing-data problem because social

interaction between some pairs of students are unobserved in the data. The former is related

to the sparsity of networks, a common problem in network data.

Finally, the measurement of social interactions is di↵erent in the model and the data.

Indeed, in the model, nij takes continuous values. By contrast, the social-interaction intensity

in the Add Health data takes a discrete value, which is equal to {0, 1, 2, 3, 4, 5}, because there
are five di↵erent survey questions about students’ social interactions and students can answer

only by yes or no (Section 4.2). In the next subsections, we explain how we construct our

networks and how we tackle these three di↵erent issues.

4.5 Construction of networks

In Add Health, 12,761 students have geo-coded data (and other socioeconomic characteris-

tics). Information on nominated friends, types of interactions and geographical location is

only available for 4,449 students. This large reduction in sample size is common in the Add

Health when mapping friendships and it is mainly due to the network construction procedure

—roughly 20 percent of the students do not nominate any friend and another 20 percent

cannot be correctly linked.

Using the friendship nomination data and the corresponding social interaction responses,

we construct a 4,449 by 4,449 adjacency matrix of directed friendship network and another

4,449 by 4,449 adjacency matrix of directed social interaction intensity. Each element in the

former matrix is a binary indicator of whether two students are friends or not, while each

element in the latter takes one of the values in {0, 1, 2, 3, 4, 5}.
Because the students in the data are geographically dispersed all around the United

States, we cannot assume that they all know each other. Hence, we partition the data

into small connected components. A connected component of a network is a maximal set

of nodes such that each pair of nodes is connected by a path. We obtain a total of 1,120

directed network components, that is, networks for which nij is not necessary equal to nji.

Then, we focus on network component sizes between four and ten members and define each

component as a network. We do this for the following two reasons. First, the upper and

lower tails of the distribution of networks by network size are commonly trimmed since

the strength of peer e↵ects may be too di↵erent in too small or too large networks (see

Calvó-Armengol, Patacchini, and Zenou, 2009). Second, and most importantly, to reduce
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the discrepancy between the theoretical model, which assumes that all individuals interact

with each other (i.e., nij > 0), and the data, for which many students are not friends with

each other (i.e., nij = 0) (see Section 4.4), we keep the sample size of the networks (i.e.,

connected components) relatively small (4 to 10 students), so that students are more likely

to be friends with each other. To be more precise, for each school, we remove both very

small networks that have less than 4 students and larger networks that have more than 10

students. By doing so, the number of students reduces from 4,449 to 739.

In Appendix C, we provide di↵erent robustness checks of our estimation results by using

larger network size (up to 50 students) and di↵erent definitions of the network. In particular,

as an alternative definition, we choose the school instead of the component to define the

network.

4.6 Final sample

Our final sample consists of 739 individuals distributed over 139 networks. Table 1 describes

our data and details our sample selection procedure. We report the characteristics of four

di↵erent samples, which correspond to the three steps of our selection procedure. In column

(1), we consider the original sample of students who have valid geo-coded information. In

columns (2)–(3), we further restrict the sample to those with friendship information and

intensity of interactions. Finally, in column (4), we report our sample where we only keep

students in networks of 4–10 agents.

Table 1 also shows that the di↵erences in means between these di↵erent samples are

almost never statistically significant, which strongly suggests no specific bias in the selection

of the sample. Among the adolescents selected in our sample of students, 53% are female and

18% are blacks. Slightly more than 70% live in a household with two married parents. The

average parental education is high school graduate. The performance at school, as measured

by the grade point average or GPA, exhibits a mean of 2.86, meaning slightly less than a

grade of “B.” The average family income is 48,410 in 1994 dollars, although 10% of parents

chose not to report such information. The average number of social interactions is 1.05.

[Insert Table 1 here]

In Table 2, we document the number of social interactions. On average, there are 2,111
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social interactions, which are mainly between white students; there are fewer inter-ethnic

interactions. Further, on average, each pair has 2.849 social interactions; white pairs socially

interact more with each other than black pairs do.

[Insert Table 2 here]

5 Empirical strategy

5.1 Incorporating agents’ heterogeneity

To bring the model to the data, we introduce agents’ heterogeneity. We assume that the

benefits of the intensity of interactions between individuals at i and j also depend on their

social distances, that is, on their distances in terms of socio-demographic characteristics:

v (nij) = (n0 + ✓ij)nij �
1

2
(nij)

2
,

where ✓ij denotes the social distance between individuals i and j and n0 a constant that

captures the baseline level of social interactions. We further assume linear travel cost such

that c (dij) = c⇥ dij where c > 0 is a constant.

In the model, we consider one social network of N students at school who reside in

di↵erent residential locations. In the data, we have R = 139 networks (r = 1, ..., R). Since

networks are defined as connected components that are independent from each other, we can

use our theoretical results by adding the subscript r. In other words, all the results of our

theoretical model are valid for each of the R = 139 networks.

Consequently, the optimal frequency of interaction can be written as follows

n
⇤
ij,r = n0 �

cdij,r

s
⇤
j,r

+ ✓ij,r, (12)

and the social capital is equal to

s
⇤
j,r = 1 +

↵

Nr

NrX

k=1,k 6=j

n
⇤
jk,rs

⇤
k,r. (13)

We allow the social distance to depend on observed (pair-level) individual characteristics
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xij,r and on unobserved factors "ij,r. For simplicity, we assume that "ij,r is independent and

identically distributed across pairs and networks with mean zero and variance �
2

", but the

i.i.d. assumption within a network can be relaxed.

To capture homophily, that is, the tendency of individuals to associate and bond with

similar others (McPherson, Smith-Lovin, and Cook, 2001; Currarini, Jackson, and Pin, 2009;

Graham, 2017), we employ the following undirectional specification:

✓ij,r =
MX

m=1

�m|xi,m,r � xj,m,r|+
MX

m=1

�M+m(xi,m,r + xj,m,r) + "ij,r, (14)

where negative values in the vector (�
1
, . . . , �M) capture homophily e↵ects (associated with

smaller socio-economic distance |xi,m,r � xj,m,r|), and (�M+1
, . . . , �

2M) measures the e↵ect

of the combined level of xi and xj, where M is the number of individual-level covariates.

Indeed, under homophily behavior, individuals with similar characteristics (same race, same

gender, etc.) will tend to interact more than less similar individuals (thus �m should be

negative under homophily). Similar specifications have been used in the literature; see, for

example, Fafchamps and Gubert (2007). Note that having an undirectional specification on

for ✓ij,r does not necessarily mean that nij,r and nji,r are the same. Because of the presence

of social capital s⇤j,r in equation (12), the social interaction intensity can be asymmetric

between ij and ji. The Add Health data also exhibits asymmetry between nij,r and nji,r.

By plugging the value of n⇤
ij,r from (12) into (13), in Appendix B, we solve for the social

capital fixed point and show under which condition it is unique. The social capital fixed

point is given by (see equation (B.17) in Appendix B):

s⇤r =


Ir �

↵

Nr
(N0,r +⇥r)

��1✓
Ir �

↵

Nr
cDr

◆
1r, (15)

where sr= (si,r) is a (Nr ⇥ 1) vector; 1r is the (Nr ⇥ 1) vector of 1; N0,r is an (Nr ⇥ Nr)

matrix in which the o↵-diagonal elements are n0 and the diagonal elements are all zero;

⇥r = (✓ij,r) = (xT

ij,r� + "ij,r) is an (Nr ⇥Nr) matrix; Dr= (dij,r) is an (Nr ⇥Nr) matrix

(see (B.16) in Appendix B).
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5.2 Estimation strategy

Indirect inference For each network r, our dataset provides us with xij,r, the agents’

characteristics, n⇤
ij,r, the intensity of social interactions between agents i and j, dij,r, the

geographical distance between agents i and j, and Nr, the number of agents in the network.

Using this information, we will recover the parameters ↵, � (that is, all �ms and all �Ms), c,

n0, �" and the equilibrium social capital, s⇤j,r. For that, we employ the indirect inference (I-I)

estimation method, proposed by Gourieroux, Monfort, and Renault (1993), which recovers

the true parameters from the data by attempting to closely match simulated and observed

levels of social interactions.12 The estimator is indirect in the sense that, rather than directly

estimating the structural model, it estimates an auxiliary model with (computationally)

easier methods such as the ordinary least squares (OLS). We run the auxiliary model with

the observed data and the simulated ones. The estimates for the structural parameters

are the ones that best match the two sets of auxiliary parameters, based on an injectivity

assumption (i.e., one-to-one mapping between the structural parameters and the auxiliary

parameters).

Structural model For the sake of exposition, we denote the vector of structural pa-

rameters by µ ⌘ (n0,↵, c, �, �") and we group the unobserved information into the vector

Er ⌘ ("ij,r) and the observed information into the vector Yr ⌘ (Xr,Dr, Nr) where Xr and

Dr capture the individuals characteristics xi,r and the distances dij,r, respectively. The

structural model (12) and (15) can now be written as the following system of equations:

n
⇤
ij,r(Yr, Er;µ) = n0 �

cdij,r

s
⇤
j(Yr, Er;µ)

+ x
T

ij� + "ij,r, (16)

s⇤(Yr, Er;µ) =

Ir �

↵

Nr
(N0,r +⇥r)

��1✓
Ir �

↵

Nr
cDr

◆
1r. (17)

As explained in Section 4.2, the observed n
obs
ij,r in the data takes one of the six integer

values {0, 1, 2, 3, 4, 5} while n
⇤
ij,r in the theoretical model can take all values in the set of

all non-negative real numbers. Hence, to fill the gap between n
⇤
ij,r and n

obs
ij,r, we apply the

following mapping to calculate the final nsim
ij,r , which we will be the counterpart to n

obs
ij,r in

12Indirect inference was introduced by Smith (1993) and Gourieroux, Monfort, and Renault (1993) and
later extended by Gallant and Tauchen (1996). For overviews on indirect inference, see Gourieroux and
Monfort (1996) and Smith (2008).
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the I-I procedure.

n
sim
ij,r =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0, if �1 < n
⇤
ij,r < 1;

1, if 1 < n
⇤
ij,r  2;

2, if 2 < n
⇤
ij,r  3;

3, if 3 < n
⇤
ij,r  4;

4, if 4 < n
⇤
ij,r  5;

5, if n⇤
ij,r � 5.

(18)

More precisely, we set the social interaction intensity between two students as the closest

integer value that is lower than the simulated intensity. Then, if the value is less than zero,

we make it zero. If the value is greater than five, we set it as five.

Auxiliary model The main advantage of the I-I method is that researchers can use a

simple model to match the simulated data and the observed ones. Specifically, we use

simple linear regression equations as auxiliary models. We propose a first auxiliary model

equation that expresses the relationship between social interaction intensities, individual

characteristics, and distance between interaction partners as follows:

nij,r = �
10
+ x

T

ij,r�11
+ �

12
dij,r + ✏1,ij,r. (19)

We propose a second auxiliary model equation expressing a similar relationship with respect

to indirect interactions. Let us denote by Nr= (nij,r) the (Nr ⇥Nr) matrix of social inter-

action intensities for network r. We further define the matrix of second degree interaction

as the square matrix N2

r ⌘ Nr Nr. We denote by [N2

r]ij the ith row and jth column element

of this matrix. The second auxiliary equation can then be written as:

[N2

r]ij = �
20
+ x

T

ij,r�21
+ �

22
dij,r + ✏2,ij,r. (20)

We denote by � the vector of the above auxiliary model coe�cients.
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Algorithm We draw T sets of simulation errors, E t ⌘ ("tij,r), t = 1, . . . , T , for all pairs i and

j and all networks r. These sets of errors are fixed for the entire estimation process.13 First,

we compute social capital str and predict the intensity of social interactions bnt
ij,r for each set

of errors using equations (16) and (17). To match the data, we constrain bnt
ij,r to lie between

zero and five (included). This process yields the first degree interaction matrix bNr(E t
r,Yr;µ)

and the second degree interaction matrix as the square of the latter. Let Y, E t, N and

bN(E t
,Y;µ) collect the observed data, the non-observed data, the observed interactions and

the predicted interactions in all networks. We then run OLS regressions on the auxiliary

model (19) and (20) separately with the observed and simulated interaction values. As a

result, we obtain a set of the OLS estimates b�(N,Y) with the observed interactions and a set

of estimates b�[bN(E t
,Y;µ),Y], t = 1, . . . , T with the simulated interactions. Finally, since

OLS estimates using the simulated data are functions of the structural parameter vector

µ, we choose µ that leads the closest di↵erence between b�(N,Y) and b�[bN(E t
,Y;µ),Y].

Formally, the I-I estimator bµ
II
is constructed such that

bµ
II
= argmin

µ

�����

�����b�(N,Y)� 1

T

TX

t=1

b�[bN(E t
,Y;µ),Y]

�����

�����, (21)

where the norm || · || is defined by a (positive-definite) weight matrix, A, with dimension

equal to the number of the auxiliary model parameters. Gourieroux, Monfort, and Renault

(1993) show that the e�cient weight matrix is given by the inverse of the variance of the

moment conditions in (21), evaluated at the true parameter value µ
0
. Hence, we use

A =
h�
1 +

1

T

�
var(b�(N,Y))

i�1

(22)

as our weight matrix. We estimate A using a bootstrap (e.g., Ackerberg and Gowrisankaran,

2006). Given the complex dependence structure of dyadic observations within each network,

we also use a bootstrap to calculate the standard errors of our estimated structural parame-

ters, where we resample networks instead of individuals to address clustering at the network

level.
13Gourieroux, Monfort, and Renault (1993) show that the I-I estimator is consistent for a fixed number of

simulation draws.
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5.3 The advantages of indirect inference in filling the gap between

theory and data

In Section 4.4, we highlighted the discrepancy between the model and data; in particular,

the fact that nij was a continuous variable while being discrete in the data and that nij

could be equal to zero and mismeasured in the data. The Indirect Inference (II) method,

which incorporates a simulation procedure, can help us deal with these limitations. First,

when we run the simulations and after we calculate the social capital fixed points and the

corresponding social interaction intensity matrix N, we need to restrict and discretize the

values of nij so that they belong to {0, 1, 2, 3, 4, 5}. See (18).

Second, for the unobserved social interactions of students pairs who are not friends, we

allow for any integer value of social interactions to be between zero and five. Then, we do

not include these pairs when we estimate the auxiliary model of the dyadic regressions. In

other words, in the auxiliary models, when we compare the observed values in the data and

the simulated ones, we only use the pairs of students who are friends. Note that by only

focusing on the small-sized networks (4 to 10 students), we minimize the inclusion of these

non-friends pairs. In Table C1 in C, we do a robustness check (“Pairs with positive social

interactions”) where we run the auxiliary regressions by only using the pairs of students who

are friends and who have positive social interactions.

5.4 Identification

Our model consists of four main parameters: the baseline social interaction intensity n0,

the social capital accumulation parameter ↵, the transportation cost c, and the e↵ect of

social distance �. Understanding the separate identification of each of these parameters is

challenging because our model is nonlinear and our error terms are not additively separable,

which is more complicated than a typical model of network externalities, such as the linear-

in-means network model (Manski, 1993). Although matching the OLS estimates of the

auxiliary model between the observed and simulated data yields reasonable estimates of the

structural parameters, it is important to discuss the identification of our model.

To illustrate the separate identification of these four parameters, let us focus on the

sources of identification. First, consider �. In the first equation (19) of the auxiliary model,

it is straightforward to assume that there is a one-to-one relationship between �
11

and �,
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as equation (19) closely mimics equation (16) in xij term. The intercept, or the baseline

intensity level, n0, is similarly identified from its one-to-one relationship with �
10
. Next,

the cost parameter c is identified given that both equations (19) and (20) contain the term

dij,r. Given that the cost parameter is a coe�cient on dij,r/s
⇤
j in equation (16), having �

22

in addition to �
12

helps the identification of c.

The most challenging (structural) parameter to identify is ↵ in (17). To obtain ↵, consider

the social capital equation (13). Social capital is recursively defined, and hence, it is a

function of not only the first degree network connections (or social interactions) but also of

higher-degree indirect connections. Therefore, we use the additional equation (20), which

uses [N2

r]ij, the number of second-degree interactions between i and j as a dependent variable,

to identify the importance of others’ social capital in an agent’s social capital formation. The

overall fit of two auxiliary equations, measured by R
2 will help the identification of the social

capital parameter ↵. Since the identification is based on a rather heuristic consideration, we

run Monte Carlo simulations to evaluate whether the parameter values are precisely identified

and estimated using our proposed empirical method. Appendix D shows the details about

the Monte Carlo simulations and results, which confirms that our method can capture the

true parameter values precisely.

6 Empirical results

6.1 Main results

Table 3 reports the estimation results of the key structural parameters and other parameters

in the undirectional specification. We also include all socio-demographic characteristics that

are related to the intensity of social interactions and social capital. We display the estimates

related to social distances and combined levels in two di↵erent columns for the sake of the

exposition. Note that those two columns of estimates are from the estimation of the same

model.

[Insert Table 3 here]

Let us start with the socio-demographic characteristics of the students. Students’ pref-

erences exhibit homophily in their own characteristics if the coe�cient �m is negative and

significantly di↵erent from zero. Table 3 shows that this is the case for most individual
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characteristics: female, ethnicity, GPA, and religion practice. The estimates are all negative

and significant, which supports homophily behavior. When it comes to family background,

we find strong homophily behavior in family size, having two parents, family income, and

whether they refuse to answer family income. The degree of homophily is the largest in

gender.

The estimated coe�cients on the (xi + xj) variables exhibit mixed signs. Indeed, the

intensity of social interactions is increasing if two students are older (i.e., higher grade), if

they are female, and non-black students, if they are more physically developed or practicing

religion, or if they have two parents with higher education and more family income. By

contrast, the intensity of social interactions is decreasing if the students have a higher GPA

or if they are from larger families.

Turning our attention to the structural parameters of the model, we see that they are

all statistically significant and have reasonable values. Indeed, the estimated baseline level

of social interactions n0 is approximately 1.59. The estimated cost of transportation c is

0.21. After multiplying this cost to the average pairwise distance (equal to 6.71 kilometers),

the average estimated transportation cost is roughly 1.41. Finally, ↵, which measures the

importance of others’ social capital on an agent’s social capital formation, has an estimated

value of 0.13. This means that there are positive externalities from peers’ social capital.

This estimated value of ↵ is in line with standard estimation of network models with positive

externalities in education (see e.g., Calvó-Armengol, Patacchini, and Zenou, 2009; Boucher

et al., 2022).14

6.2 Robustness checks

We conduct di↵erent robustness checks. The detailed results can be found in Appendix C.

6.2.1 Di↵erent sizes of network components and di↵erent types of friendship

pairs

In our main specification, to reduce the gap between the model and the data, we only

considered network components of size 4-10. Also, in the auxiliary model of the dyadic

regressions, we did not include the pairs of students who were not friends (that is, we only

14For an overview of this literature, see Sacerdote (2011).
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included friendship pairs). In Section C.1, as a robustness check, we increase the size of the

network up to 20, 30, 40, and 50 students. Furthermore, we run the auxiliary regressions by

only using the pairs of students who are friends and who have positive social interactions

(that is, we include friendship pairs with positive social interactions). The results can be

found in columns (1)–(5) of Table C1. We can see that our estimation results are very similar

to the one obtained in Table 3.

6.2.2 Networks as schools

So far, we only measured networks by connected components. In Section C.2, we have

another definition in which each network is a school; that is, we only consider schools in

which there is one connected-component network of a given size. The results can be found in

columns (6)� (10) in Table C1. The results are almost identical to those based on network

components, regardless of school size.

7 Policy analysis

7.1 Welfare

We now use the estimated parameters of the model provided in Table 3, that is, ↵, c and

n0, to calculate the welfare loss and to perform some simulations. By extending Lemma 3 to

agents’ heterogeneity and linear travel cost, we get the following conditions for the optimal

choice of interaction and social capital:

n
o
ij,r = n0 �

cdij,r

s
o
j,r

+
↵

Nr
�i,r s

o
j,r + ✓ij,r, (23)

�j,r =
NrX

i=1,i 6=j

⇢
(n0 + ✓ij,r)n

o
ij,r �

1

2

�
n
o
ij,r

�2
+

↵

Nr
�i,r n

o
ij,r

�
, (24)

s
o
j,r = 1 +

↵

Nr

NX

k=1,k 6=j

n
o
jk,rs

o
k,r. (25)

From the previous estimations of the equilibrium model, we have the estimated values of

n0, ↵, c and ✓ij,r (Table 3). From the data, we know dij,r. By plugging these values into

(23), (24) and (25), we can solve numerically these equations and determine the interaction
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frequency n
o
ij,r, for each pair i, j, soj,r for all j, �i,r for all i, and ultimately the first best

welfare level W o
r for each network r. For each network r, we have 2Nr+Lr unknowns, where

Lr is the number of links in network r, and we have 2Nr + Lr equations since there are

Lr equations for (23), Nr equations for (24) and Nr equations for (25). We then compare

the observed equilibrium values of n⇤
ij,r and s

⇤
j,r with the social optimum values n

o
ij,r and

s
o
j,r (using equations (17) and (25) evaluated at our parameter estimates). According to

Proposition 4, we should find that students socially interact too little compared to the social

optimal outcome, such that, no
ij,r > n

⇤
ij,r, 8i, j, and s

o
i,r > s

⇤
i,r, 8i.

We numerically solve the optimal level of social interactions and social capital with the I-I

parameter estimates displayed in column (2) in Table 3 by running a total of 100 simulations.

Table 4 displays the results. Note that, in this table, we first take the average of social

interactions in each network and, then, take the average again over all networks. We find

that, on average, each pair interacts 0.76 fewer times than what is socially optimal. The

di↵erence between the socially optimal and the observed levels of social interactions varies

from �2.69 to 3.47 across networks. Although there are a few networks where the observed

level is larger than the optimal level, many social interactions fall short of the optimum.

Students also have less social capital than the optimal one; they have, on average, 34% less

social capital.

[Insert Table 4 here]

Network size and social interactions We would now like to find which variables are

closely associated with the discrepancy between the optimal level and the observed level.15

For that, we regress the di↵erences no
r�n

⇤
r and s

o
r�s

⇤
r on the network size, network measures,

and average characteristics (e.g., average family income) of students in each network r:

n
o
r � n

⇤
r = �

0
+ �

1
Nr + �

2
(Nr)

2 + �
3
dr + �zzr + �xxr + ✏r, (26)

s
o
r � s

⇤
r = �0 + �1Nr + �2 (Nr)

2 + �3dr + �zzr + �xxr + ⇣r. (27)

Tables 5 and 6 display the results. Consider, first, social interactions (Table 5) and let us

15In this subsection and the next one, we do not use any structural estimation methods. We just document
some interesting correlations.
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examine if the di↵erence between the optimal and the observed levels of social interactions,

(no
r � n

⇤
r), is increasing or decreasing with network size Nr. Although the coe�cients on the

network size and its square are insignificant in column (5), we have:

@(no
r � n

⇤
r)

@Nr
= �

1
+ 2�

2
Nr = 2.261� 2(0.106)Nr = 0 (28)

Solving this equation leads to: Nr =
2.261

2(0.106) = 10.67. This means that the di↵erence between

the optimal and the observed level of social interactions is increasing until the network

size reaches (approximately) 10 students and then decreases. As a result, there is a non-

monotonic relationship between n
o
r�n

⇤
r andNr where an increase in the network size increases

n
o
r�n

⇤
r up to Nr = 10 and, above this size, an increase in the network size decreases no

r�n
⇤
r.

Thus, Nr = 10 is the size of the network that maximizes these ine�ciencies. Given that the

median size of the networks is Nmed
r = 5, in terms of magnitude, an increase by one person

in the network from N
med
r = 5, raises these ine�ciencies by 2.261� 2(0.106)Nmed

r = 1.201.

[Insert Tables 5 and 6 here]

The average geographic distance is significantly associated with the ine�ciency. A one-

kilometer increase in the average pairwise distance lead to a 0.113 decrease in the ine�ciency.

Only a few average characteristics of the students are associated with the optimal-observed

di↵erence in social interactions. In particular, networks that consist of students with a higher

average grade (and hence age), physical development level, or family income are more likely

to have high ine�ciencies in terms of social interactions.

Let us now turn to the ine�ciencies in terms of social capital (Table 6). We find that

the network population is not strongly associated with the ine�ciency in social capital, but

the average geographic distance is substantially related to the ine�ciency.

Although these regressions do not have a formal identification strategy, the results, partly

based on the structural estimation of the model (that determine no
r�n

⇤
r and s

o
r�s

⇤
r), provide

some interesting explanations on what drives the size of ine�ciency of the intensity of social

interactions and social capital accumulation.

Network size and average welfare Another interesting exercise, for which we do

not have a theory, is to determine the optimal network, i.e., the one that maximizes total
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welfare.16 For that, without any policy, we compare the average welfare (to avoid size e↵ects,

the welfare is not defined as the sum of utilities but as the average utility) in each of the 139

networks. Remember that the welfare in network r is given by:

W
⇤
r =

NrX

i=1

NrX

j=1,j 6=i

✓
(n0 + ✓ij,r)n

⇤
ij,r �

1

2

�
n
⇤
ij,r

�2
◆
s
⇤
j,r � n

⇤
ij,rcdij,r

�
(29)

As a result, the average welfare per network is:

AW
⇤
r =

W
⇤
r

Nr

We would like know which network size Nr yields the largest AW ⇤
r .

For that, we run the following regression:

AW
⇤
r = �0 + �1Nr + �2 (Nr)

2 + �zzr + �xxr + ✏r

to investigate the relationship between average welfare and network size. In addition, as

controls, we include the average geographical distance and network measures, such as mean

and standard deviation of the degree distribution, average eigenvector centrality, clustering

coe�cient, and diameter.17 We include the network measures (such as average degree and

average eigenvector centrality of a network) to see how the shape of a network is associated

with the welfare.

Table 7 reports the results. We can first calculate the network size that maximizes the

average welfare per network AW
⇤
r . Using column (5), we have:

@AW
⇤
r

@Nr
= �1 + 2�2Nr = �2.006 + 2(0.082)Nr = 0 (30)

This means the network that comprises (approximately) 12 students is the one that minimizes

the average welfare per network. Although the coe�cients are insignificant, this is consistent

16Determining the optimal network is a very di�cult exercise; see König, Tessone, and Zenou (2014),
Belhaj, Bervoets, and Deröıan (2016), and Chen, Zenou, and Zhou (2022) for such attempts when the
network is given. Jackson and Wolinsky (1996) provide a similar exercise for endogenous network formation.
Because this exercise is complicated, only extreme structures emerge such as the complete network, the star
network or nested split graphs. This is why we do it here by numerical simulations based on the estimated
parameters.

17We compute the clustering coe�cient as the ratio of the number of triangle loops to the number of
connected triples.
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with our previous calculation on the size of networks that maximizes the ine�ciency in social

interactions, which is approximately 11 students.

[Insert Table 7 here]

In Table 7, we also find that the average pairwise geographic distance is an important

factor for designing an optimal network. The longer is the distance between two students,

the lower is the average welfare. In addition, from the changes in R
2 across columns (1) and

(2), from 0.007 to 0.507, we find that the average geographic distance explains a significant

proportion of the average welfare in a network.

7.2 Counterfactual analysis

Next, we modify the geographic distribution of students in a way that we reduce the extent

to the geographical segregation of students from di↵erent ethnic groups. For example, if a

white student in a network lives relatively far from black students in the network, we switch

the residential location of the white student with that of a black one in the same network.

Then, we recalculate the social interaction intensity and social capital in the network. W

7.3 Policies

We have seen in Proposition 5 that the social optimal allocation can be restored if social

interactions are not subsidized while commuting trips are subsidized as a function of the

locations of the destination and origin partners. Because the latter policy requires detailed

information about every interaction pair, it is unlikely to be implemented. In this section, we

consider the more realistic case of uniform subsidies on social interactions and/or travel costs

that only target each individual irrespective of their personal characteristics but not a pair of

individuals. We evaluate their impact on the frequency of interactions, nij by running a total

of 100 policy simulations. We provide the average, the sample standard deviations, and/or

95% confidence intervals for each policy question from these 100 simulations. Which policy

is more e↵ective at moving the observed interactions/social capital closer to the optimal

levels?

Assume that each individual receives a common subsidy � for each interaction made with
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a friend and a (percentage) subsidy ⌧ on her transport cost c. The total amount of each

subsidy received by an individual i is therefore given by
P

j �nij for social interactions and
P

j nij⌧cdij for transportation costs.

Note that the government (or the planner) is here introduced as an agent that can set

subsidies on social-interaction e↵orts before the individuals decide upon their e↵orts. The

assumption that the government can pre-commit itself to such subsidies and thus can act in

this leadership role is fairly natural. As a result, this subsidy will a↵ect the levels of social

interaction e↵orts of all individuals.18

For each individual residing in i and interacting with someone in j, when subsidies are

included, the equilibrium conditions lead to the following level of social interactions

n
⇤
ij =

✓
n0 �

cdij

s
⇤
j

+ ✓ij

◆
+

�

s
⇤
j

+
⌧cdij

s
⇤
j

,

while the social capital is still given by

s
⇤
j = 1 +

↵

N

X

l 6=j

n
⇤
jls

⇤
l .

Holding social capital constant, quite naturally, the subsidies increase the number of social

interactions. Subsidies can entice interactions with new partners as the number of interac-

tions to a partner may rise from zero to a positive value in the presence of the subsidy. The

total welfare is now defined as:

W =
X

i

X

j 6=i

✓
(n0 + ✓ij)n

⇤
ij �

1

2

�
n
⇤
ij

�2
◆
s
⇤
j � n

⇤
ijcdij +

X

i

X

j 6=i

n
⇤
ij(� + ⌧cdij).

We now implement two uniform-subsidy policies (first, we subsidize social interactions

and then transportation costs) whose aim is to find the subsidy that achieves the same

welfare level as the level obtained at the first best.
18This is is similar to the standard policy of firms’ subsidies on R&D e↵orts; see e.g., Spencer and Brander

(1983) and König, Liu, and Zenou (2019).
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7.3.1 Subsidizing social interactions

We consider a uniform subsidy �r for each network. We use the following discrete version

of the equilibrium identities:

n
�
ij,r = n0 +

�r � cdij,r

s
�
j,r

+ ✓ij,r (31)

and

s
�
j,r = 1 +

↵

Nr

NrX

k=1

n
�
jk,r s

�
k,r (32)

where the superscript � denotes the subsidy policy outcome. For the estimation, the total

welfare per network is equal to

W
�
r =

NrX

i=1

NrX

j=1,j 6=i

✓
(n0 + ✓ij,r)n

�
ij,r �

1

2

�
n
�
ij,r

�2
◆
s
�
j,r � (cdij,r � �r)n

�
ij,r

�
. (33)

In this exercise, we determine the subsidy �
⇤
r that gives network r the same aggregate welfare

W
�
r as its first best level W o

r . From the estimated value of the equilibrium model, we have

↵, c and n0; from the data we have dij,r and Nr. We then numerically solve equations (31)

and (32) and find the subsidy such that W �
r = W

o
r . See Appendix E for technical details.

The first three columns in Table 8 display the results. On average, a subsidy level of

2.896 (units of utility) for each social interaction is required for a network to achieve the

first-best aggregate level of social interactions and social capital.

[Insert Table 8 here]

7.3.2 Subsidizing transportation costs

In the case of subsidies on transport cost, we consider the following equilibrium conditions:

n
⌧
ij,r = n0 �

(1� ⌧ r)cdij,r
s
⌧
j,r

+ ✓ij,r, (34)

s
⌧
j,r = 1 +

↵

Nr

NrX

k=1,k 6=j

n
⌧
jk,r s

⌧
k,r. (35)
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The total welfare per network is defined as:

W
⌧
r =

NrX

i=1

NrX

j=1,j 6=i

✓
(n0 + ✓ij,r)n

⌧
ij,r �

1

2

�
n
⌧
ij,r

�2
◆
s
⌧
j,r � n

⌧
ij,r(1� ⌧ r)cdij,r

�
. (36)

As for the social interaction subsidy, we find the subsidy ⌧
⇤
r that gives the same aggregate

utility W
⌧
r in network r as the first best W 0

r . From the estimated value of the equilibrium

model, we have ↵, c and n0,r, and from the data dij,r and br. We can then numerically solve

equations (34) and (35) and find the subsidy such that W ⌧
r = W

0

r .

The last three columns in Table 8 display the results. On average, a subsidy level of

⌧ = 0.729 (72.9%) is required for a network to achieve the first best aggregate level of

social interactions and social capital. From this result, we can also infer that a decrease in a

geographical distance between two students with di↵erent socioeconomic backgrounds would

increase their levels of social interactions and social capital.

7.3.3 Comparing the two policies

In the two above exercises, subsidy policies are given at no social cost by the planner. It is

then interesting to compare these two policies at the same given cost. The question is then as

follows: Given that the planner has a budget of B to spend, which policy should she choose?

In order to distribute a total amount of subsidy B to each network, we consider three di↵erent

schemes. First, we distribute the same amount Br = B/R for each network r (uniform

subsidy), where R is the total number of networks (R = 139 in our dataset). The second

scheme gives an amount proportional to network population Nr. Hence, Br =
NrP
r0 Nr0

B. The

last subsidy scheme provides an amount proportional to the number of pairs Nr(Nr � 1),

i.e., Br =
Nr(Nr�1)P
r0 N

0
r(Nr0�1)

B.

We also need to set the total budget B to a level that is comparable to the subsidy budget

spent in the two above exercises. We consider two ways of setting this budget. First, we

choose the amount of budget that corresponds to the average social interaction subsidy level

that achieves the first best level of social interactions:

B := B
� = �̄

o
n̄
o

RX

r=1

Nr(Nr � 1), (37)

where �̄o is the average optimal social interaction subsidy level, as obtained in Table 8, that
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is, �̄o = 2.896, and n̄
o is the average optimal social interaction level, as obtained in Table 4,

that is, n̄o = 3.608.

Second, we use the amount of budget that corresponds to the average transportation

subsidy level to achieve the first best level of social interactions:

B := B
⌧ = ⌧̄

o
c n̄

o
RX

r=1

Nr(Nr � 1), (38)

where ⌧̄
o is the average transportation subsidy rate, that is, ⌧̄ o = 0.729 (Table 8).

We proceed as follows. First, we consider the social-interaction subsidy policy. We observe

dij,r and Nr in the data and have estimated ↵, c and n0. Then, we solve simultaneously

equations (31), (32) and (37). We get the di↵erent endogenous variables, in particular, the

di↵erent subsidies �r. Then, for each value of �r, we calculate the total welfare W �
r given by

(33). Second, we consider the transportation subsidy policy. We observe dij,r and Nr in the

data and have estimated ↵, c and n0. Then, we solve simultaneously equations (34), (35),

and again (37). We obtain the endogenous variables, in particular, the di↵erent subsidies

⌧ r. Then, for each value of ⌧ r, we calculate the total welfare W
⌧
r given by (36). We finally

repeat these two steps with the budget B⌧ given by (38).

Our key question is then about which subsidy on travel costs or social interactions yields

the highest welfare in each network for either budget B
� or B

⌧ . That is, we examine

whether W
⌧
r T W

�
r . Table 9 shows the results of this analysis by counting the number of

networks for which the total welfare is higher under one policy versus the other. In this

table, we find that, under the social-interaction subsidy policy, the total welfare is higher

for most networks, regardless of the amount of budget we assign (panels A and B) and the

type of subsidy scheme (uniform, proportional to Nr and proportional to Nr(Nr � 1); rows

(1), (2) and (3)).19 As a result, if a planner has a given amount of money to spend, she

should subsidize social interactions and not transportation costs because it yields greater

improvements of total welfare.

[Insert Table 9 here]
19We also try di↵erent values of the total amount to be spent to check whether there are non-linear e↵ects,

but the results remain the same regardless of the value of the budget.
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8 Concluding remarks

In this paper, we presented a behavioral microfoundation for the relationship between ge-

ographical distance and social interactions. We characterized the equilibrium in terms of

optimal level of social interactions and social capital for a general distribution of individuals

in the geographical space. An important prediction of the model was that the level of so-

cial interactions was inversely related to the geographical distance. Travel costs and spatial

dispersion of agents were barriers to the development of social capital formation. Social

capital tended to be more concentrated than agents themselves. Because of the externalities

that agents exerted on each other, we demonstrated that the equilibrium levels of social

interactions and social capital were lower than the e�cient ones.

When we estimated the model using data on adolescents in the United States, we found

that, indeed, geographical distance was an hinder to social interactions. Moreover, we de-

termined the exact ine�ciencies of the market equilibrium. Interestingly, and surprisingly,

we found that there is was non-monotonic relationship between the ine�ciencies in terms of

social interactions and the network size. In our empirical context, these ine�ciencies were

the largest when the network is composed of ten students. We then performed two di↵er-

ent subsidy policies. Our results suggested that the individuals interacted at optimal levels

when either social interactions or transportation costs were subsidized. However, subsidies

on social interactions were more e↵ective than subsidies on transportation costs.

Our analysis thus suggests that encouraging social interactions in cities are likely to

enhance social welfare. In the real-world, there are di↵erent ways governments can subsidize

social interactions. One natural way is social mixing such as the Moving to Opportunity

(MTO) programs in the United States where the local government subsidizes housing to

allow families to move from poor to richer neighborhoods (see e.g., Katz, Kling, and Liebman

(2001), Kling, Liebman, and Katz (2007) and Chetty, Hendren, and Katz (2016)). These

programs allow people from di↵erent neighborhoods to interact with each other. Other

policies that enhance social interactions are those that improve physical environment such as

zoning laws and public housing rules (Glaeser and Sacerdote (2000)). For example, Glaeser

and Sacerdote (2000) find that individuals in large apartment buildings are more likely

to socialize with their neighbors than those living in smaller apartment buildings. Using

Facebook data from the United States, Bailey et al. (2018a) document that, at the county
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level, friendship networks are a mechanism that can propagate house price shocks through

the economy via housing price expectations.

This paper is a first stab at a complex problem. We hope that most research will be

conducted in the future on the interaction between the social and the geographical space.
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Appendix

A Proofs

Proof of Proposition 1: The equilibrium number of interactions n
⇤
ij of student i with a

student located at j, is found by di↵erentiating Ui with respect to nij taking sj as given. We

obtain:

v
0 (nij) sj � c(dij) = 0, j = 1, ..., N. (A.1)

Using (2), this is equivalent to (1� nij) sj = c(dij). Thus, the equilibrium number of inter-

actions is equal to:

n
⇤
ij = 1� c(dij)

sj
, j = 1, ..., N. (A.2)

For simplicity, we assume away corner solutions and assume global interactions, so that

students agents interact with every other student in the network, that is,

n
⇤
ij > 0 , sj > c(dij), 8i, j.

A su�cient condition for this inequality to hold is

min
j

sj > c(d), (A.3)

where d is the maximum distance between two agents in the network.

By plugging (A.2) into (3) and using (4), we obtain the equilibrium level of social capital

s
⇤
j . It is given by

s
⇤
j = 1 +

↵

N

X

k 6=j

s
⇤
k �

↵

N
gj. (A.4)

To solve for the fixed point solution of this equation, we sum over j on both sides and simplify

as
X

j

s
⇤
j =

1

1� ↵
�
N�1

N

�
"
N � ↵

N

X

j

gj

#
, (A.5)

since ↵
N

P
j

P
k 6=j s

⇤
k = ↵

N

P
k 6=j

P
j s

⇤
j = ↵(N�1)

N

P
j s

⇤
j . Inserting (A.5) into (A.4) yields the
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following closed-form solution for the equilibrium social capital:

s
⇤
j = s0 �

↵/N

1 + ↵/N
gj. (A.6)

Let us show that the global interaction condition (A.3) is satisfied if c(d) < N and ↵ < 1.

Indeed, using gj < (N � 1) c(d) and ↵ < 1, the global interaction condition minj sj > c(d)

is satisfied if

c(d) < N
1� ↵ (1� 2/N) + ↵

2 (1� 1/N)2

1� ↵ + 2↵/N

It can be shown that the ratio in the right-hand side (RHS) is larger than one. So, a su�cient

condition for global interaction is that c(d) < N .

Proof of Proposition 2: We demonstrate that the importance of peers’ social links,

increases each agent’s social capital for small enough travel cost. We need to compute

ds0
d↵

=
f (↵)� ↵ (2� ↵) 1

N

P
l gl

N
�
1� ↵

N

�2 �
1� ↵ + ↵

N

�2

where f (↵) =
�
1 + ↵

N

�2
+N

h
1� 2

�
↵
N

�
�
�
↵
N

�2i
. It can be shown that f 0(↵) = �2 (N + ↵) N�1

N2 <

0 so that f(↵) � f(0) = 1+N � 3. So, when travel costs c(·) tend to zero, gl and
P

l gl also

tend to zero while ds0/d↵ is bounded above zero. So, ds⇤j/d↵ > 0 for small enough travel

costs c(dij).

Proof of Lemma 3: The government chooses the profiles nij and sj that maximize the

Lagrangian function

L =
X

i

X

j 6=i

[(v (nij) sj � nijc(dij))]�
X

i

�i

 
si � 1� ↵

N

X

j 6=i

nijsj

!

where �i � 0 is the Kuhn-Tucker multiplier of the social capital constraint. Thus, �i

measures the welfare value of a marginal increase of the social capital of agent i.

We can write the Lagrangian function as

L =
X

i

X

j 6=i

[v (nij) sj � nijc(dij) + (↵/N)�inijsj]�
X

i

�i (si � 1)

Note that
P

i �i (si � 1) evaluates to the same value as
P

i

P
j 6=i �j (sj � 1) / (N � 1). Sub-
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stituting the latter for the former, we re-write the Lagrangian function as

L =
X

i

X

j 6=i

v (nij) sj � nijc(dij) + (↵/N)�inijsj � �j (sj � 1) / (N � 1) (A.7)

First order conditions with respect to nij and sj yield

v
0 (nij) sj � c(dij) + (↵/N)�isj = 0

X

i 6=j

⇥
v (nij) + (↵/N)�inij � �j/ (N � 1)

⇤
= 0

The last equality is equivalent to

X

i 6=j

[v (nij) + (↵/N)�inij]� �j = 0

This gives (9) and (10).

Proof of Proposition 4: Condition (9) yields

v
0 (nij) =

c(dij)

sj
� ↵

N
�i, (A.8)

which gives

n
o
ij = 1� c(dij)

s
o
j

+
↵

N
�
o
i , (A.9)

under our specification of utility function v. With social capital held fixed at j at the

equilibrium level (s⇤j = s
o
j), this expression is larger than the equilibrium number of visits

n
⇤
ij because �

o
i � 0. The question thus becomes how social capital changes in this e�cient

allocation.

By inserting (7) in the binding condition (8), we obtain

s
o
i = 1 +

↵

N

X

l 6=i

s
o
l �

↵

N
gi +

⇣
↵

N

⌘2
�
o
i

X

l 6=i

s
o
l . (A.10)

Observe that, for �o
i = 0, (A.9) and (A.10) are identical to the equilibrium conditions and

therefore yield the equilibrium values n⇤
ij and s

⇤
i . The RHS of (A.9) and (A.10) are increasing

functions of �o
i and/or soi . From (A.10), we see that an increase in �

o
i above zero raises soi .
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From (A.9), the joint increase in �
o
i and s

o
i raises n

o
ij. So, we conclude that n

o
ij � n

⇤
ij and

s
o
i � s

⇤
i .

Proof of Proposition 5: If we include the subsidies ⌧ ij and �ij, the utility becomes

Ui = Si � Ci

=
X

j

{v (nij) (sj + �ij)� nij [c(dij)� ⌧ ij]}

This implies the following equilibrium number of social interactions:

n
⇤
ij = 1� c(dij)� ⌧ ij

sj + �ij
.

The social capital level is then given by the following fixed point

s
⇤
j = 1 +

↵

N

X

k 6=j

n
⇤
jks

⇤
k

= 1 +
↵

N

X

k 6=j

✓
1� c(djk)� ⌧ jk

s
⇤
k + �jk

◆
s
⇤
k. (A.11)

The frequency of social interactions and the level of social capital are the same in equi-

librium and in the first best if and only if

n
⇤
ij = n

o
ij () c(dij)� ⌧ ij

s
⇤
j + �ij

=
c(dij)

s
o
j

� ↵

N
�
o
i , (A.12)

and s
⇤
j = s

o
j given by (A.11) and (A.10).

The first best can be decentralized with the subsidies �ij = 0 and ⌧ ij = (↵/N)�o
i s

o
j .

Indeed, in this case, we find:

n
⇤
ij = 1� c(dij)/s

o
j + (↵/N)�o

i = n
o
ij.

Given that n⇤
ij = n

o
ij, it is straightforward to see that s⇤j = s

o
j .

The first best can also be decentralized with the subsidies ⌧ ij = 0 and

�ij =
s
o
j

Nc(dij)
↵�o

i s
o
j
� 1

(A.13)
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This gives the interaction frequency

n
⇤
ij = 1� c(dij)

s
⇤
j +

1

1
soj

� ↵
N

�o
i

c(dij)

� s
o
j

and the social capital fixed point

s
⇤
j = 1 +

↵

N

X

k 6=j

s
⇤
k �

↵

N

X

k 6=j

c(djk)

s
⇤
k +

1

1
so
k
� ↵

N

�o
j

c(djk)

� s
o
k

s
⇤
k

Yet, the solution s
⇤
j = s

o
k is a fixed point of the latter expression as it gives the fixed point

for the following first best social capital formation

s
o
j = 1 +

↵

N

X

k 6=j

s
o
k �

↵

N

X

k 6=j

c(djk) +
⇣
↵

N

⌘2X

k 6=j

�
o
js

o
k

Importantly, the subsidy ⌧ ij and �ij are not uniform ones. This suggests that decentral-

ization would be di�cult to implement.

How to interpret �ij? Suppose that the denominator is positive, so that the subsidy is a

positive transfer for holding a social partner. We have:

�ij =
s
o
j

Nc(dij)
↵�o

i s
o
j
� 1

> 0

Hence, we need to subsidize more partnership with recipient individuals j with more social

capital and initiator individuals i with higher welfare value of a marginal increase of the

social capital and smaller distances.

Suppose the above denominator is negative so that �ij is a tax.

tax=� �ij =
s
o
j

1� Nc(dij)
↵�o

i s
o
j

> 0

Hence, we need to tax less partnership from initiator individuals i with higher welfare value

of a marginal increase of the social capital and smaller distances.
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B Social capital fixed point

The fixed point in social capital can be computed by rewriting equation (12) as nij,rsj,r =

(n0 + ✓ij,r) sj,r � cdij,r, so that (13) becomes

sj,r = 1 +
↵

Nr

NrX

k=1,k 6=j

[(n0 + ✓jk,r) sk,r]�
↵

Nr
c

NrX

k=1,k 6=j

djk,r, (B.14)

where the last term is gj,r =
NrX

k=1,k 6=j

c(djk,r) = c

NrX

k=1,k 6=j

djk,r, the linear-cost equivalent of the

access cost measure defined in (4) in the model. The system of linear equations (B.14) can

be written in vector-matrix form as

sr = 1r +
↵

Nr
(N0,r +⇥r) sr �

↵

Nr
cDr1r, (B.15)

where sr= (si,r) is a (Nr ⇥ 1) vector; 1r is the (Nr ⇥ 1) vector of 1; N0,r is an (Nr ⇥ Nr)

matrix in which the o↵-diagonal elements are n0 and the diagonal elements are all zero;

⇥r = (✓ij,r) = (xT

ij,r� + "ij,r) is an (Nr ⇥Nr) matrix; Dr= (dij,r) is an (Nr ⇥Nr) matrix.

Namely,

Dr =

0

BBBBBBBB@

d11,r ... d1i,r ... d1Nr,r

...
. . .

...
. . .

...

di1,r ... dii,r ... diNr,r

...
. . .

...
. . .

...

dNr1,r ... dNri,r ... dNrNr,r

1

CCCCCCCCA

and ⇥r =

0

BBBBBBBB@

✓11,r ... ✓1i,r ... ✓1Nr,r

...
. . .

...
. . .

...

✓i1,r ... ✓ii,r ... ✓iNr,r

...
. . .

...
. . .

...

✓Nr1,r ... ✓Nri,r ... ✓NrNr,r

1

CCCCCCCCA

.

(B.16)

Solving the system of linear equations (B.14) leads to

s⇤r =


Ir �

↵

Nr
(N0,r +⇥r)

��1✓
Ir �

↵

Nr
cDr

◆
1r, (B.17)

where Ir is the (Nr ⇥Nr) identity matrix. The matrix Ir � ↵ (N0,r +⇥r) is invertible if

↵ <
1

⇢(N0,r+⇥r)
, where ⇢ (N0,r +⇥r) is the spectral radius of the matrix N0+⇥r. When this

condition is satisfied, there is a unique solution to the system of linear equations (B.14).
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C Robustness checks

C.1 Di↵erent sizes of network components

C.1.1 Friendship pairs

We first check the robustness of our estimation results when we increase the size of the

network components. For that, we expand the data to include all connected components

within a school of size 20, 30, 40, and 50. When doing so, the numbers of students and

networks increase from 739 and 139, respectively in the our benchmark case (networks of

size 4 to 10), to 877 and 149 (networks of size 4 to 20), to 961 and 152 (networks of size 4

to 30), to 1,032 and 154 (networks of size 4 to 40), and to 1,212 and 158 (networks of size

4 to 50). Columns (1)–(5) in the upper left quadrant of Table C1 display the results.20 We

find that all the structural parameter estimates are almost identical regardless of component

size.

C.1.2 Pairs with positive social interactions

In Section 5.3, for our main estimation results in Table 3, we did not include the pairs of stu-

dents who were not friends when we estimated the auxiliary model of the dyadic regressions.

Here, as a robustness check, we do not include the pairs of students who are not friends

and the pairs of students who are friends but report having no social interactions with each

other. In other words, in this robustness check (“Pairs with positive social interactions”),

we run the auxiliary regressions by only using the pairs of students who are friends and who

have positive social interactions. Columns (1)–(5) in the lower left quadrant of Table C1

display the results. We can see that our estimation results are not sensitive to this choice of

di↵erent types of pairs.

C.2 Networks as schools

In our main specification (Table 3) and in our robustness checks (Section C.1), we defined

networks as connected components of a certain size in each school. However, there may

be more than one connected component in a school if there are many disconnected cliques.

20Note that column (1) in the upper left quadrant of Table C1 corresponds to our main results displayed
in Table 3.
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Consequently, in this robustness check, we propose another definition in which each network

is a school. In other words, we only consider schools in which there is one connected-

component network of a given size while, in our main specification, we included schools that

had many connected-component networks of a given size.

As in our main specification, consider networks of size 4�10. When networks are defined

as schools, they need to satisfy two conditions: (i) the school has to have one (connected)

component and (ii) this component has to be of size 4�10. Column (6) in Table C1 displays

the results of this estimation by di↵erentiating between friendship pairs (right upper panel)

and pairs with positive social interactions (right lower panel). Quite naturally, we observe

that the numbers of students and networks decrease from 739 and 139 (column (1)) to 76

and 9 (column (6)), respectively. When we look at the estimated coe�cients of the main

variables, we see that they remain roughly the same. Then, as above, in columns (7)� (10),

we increase the size of the networks up to 50 students and we observe that the results are

almost identical to those based on network components, regardless of school size.
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D Monte Carlo simulations

We carry out Monte Carlo simulation experiments to demonstrate that our structural estima-

tion method can precisely capture the value of parameters in a complicated data generating

process of social interactions among students. Each experiment is concerned with estimating

the parameters in the model that we discussed in Section 6. That is,

n
⇤
ij,r = n0 �

cdij,r

s
⇤
j,r

+ ✓ij,r, (D.18)

and

s
⇤
j,r = 1 +

↵

Nr

NrX

k=1

n
⇤
jk,rs

⇤
k,r, (D.19)

where

✓ij,r = �
1
|xi,r � xj,r|+ �

2
(xi,r + xj,r) + "ij,r, (D.20)

We set the values of structural parameters as the ones we have estimated in our structural

estimation. That is, n0 = 1.5, ↵ = 0.12, and c = 0.2. We assign �0.3 for the parameter �
1

to assume homophily and 0.2 for �
2
to have positive the e↵ect of combined levels on social

interactions. The data generating processes for xi and " are the uniform distribution from

the interval of (0, 5) and the normal distribution with mean zero and standard deviation

�" = 1.3.

We generate R = 50, 100, and 150 networks, which correspond to connected components

as in our empirical setup. Each network has four to ten individuals. Using the social

interaction and social capital fixed points, that is, equations (16) and (17), we generate n⇤
ij,r

for all networks and all pairs.

We generate H = 100 sets of generated sample of R networks. For each set of generated

data, we run the I-I estimation method. Each hth estimation requires the estimation of the

weight matrix A in equation (22) using a bootstrap method and the generation of additional

T = 100 sets of simulation errors. Although the dimension of the parameter vector is smaller

than that in the empirical analysis, this Monte Carlo simulation is also computationally

heavy. Hence, to facilitate the computation, we reduce the size of the bootstrap sample for

the weight matrix estimation from 3,000 in the empirical analysis to 100.

The results of the Monte Carlo simulations are displayed in Table C2. We report the
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Table C2: Monte Carlo simulation results

Number of networks (R)
50 networks 100 networks 150 networks

n0 Average 1.5269 1.5264 1.5275
(True value= 1.5) Bias 0.0269 0.0264 0.0275

RMSE 0.0448 0.042 0.0388
↵ Average 0.1204 0.1208 0.1205
(True value= 0.12) Bias 0.0004 0.0008 0.0005

RMSE 0.0026 0.0023 0.0026
c Average 0.2006 0.1994 0.20005
(True value= 0.2) Bias 0.0006 0.0006 0.00005

RMSE 0.0045 0.005 0.0041
�
1

Average -0.2987 -0.2991 -0.2995
(True value= �0.3) Bias 0.0013 0.0009 0.0005

RMSE 0.0053 0.0065 0.0063
�
2

Average 0.2022 0.2027 0.2024
(True value= 0.2) Bias 0.0022 0.0027 0.0024

RMSE 0.0052 0.0053 0.0043
�" Average 1.3150 1.3100 1.3134
(True value= 1.3) Bias 0.0150 0.0100 0.0134

RMSE 0.0298 0.0218 0.0283

Note: A total of 100 simulations for each experiment.

averages of the estimate, bias, and the Root Mean Squared Error (RMSE) for each method.

In general, regardless of the number of networks, our structural estimation method that

employs indirect inference captures accurately the value of true parameters in the data

generating process. In particular, we succeed to estimate the most important structural

parameters, ↵ and c, very precisely.
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E Calibration in the policy exercises

Consider equations (31) and (35) in Section 7 and denote them as follows:

nij,r = n0 + ✓ij,r �
�r � (1� ⌧ r) cdij,r

sj,r
, (E.1)

and

sj,r = 1 +
↵

Nr

NrX

k=1,k 6=j

njk,rsk,r,

where we implement together the two policies. The first equation can be written as

nij,rsj,r = (n0 + ✓ij,r) sj,r + �r � (1� ⌧ r) cdij,r,

so that the second equation becomes

sj,r = 1 +
↵

Nr

NrX

k=1,k 6=j

[(n0 + ✓jk,r) sk,r]�
↵

Nr

NrX

k=1

[�r � (1� ⌧ r) cdjk,r] . (E.2)

Denote by sr= (s1,r, ..., sn,r)
T the (Nr ⇥ 1) vector of social capital. Thus, in vector-matrix

form, (E.2) can be written as:

sr = 1r + ↵ (N0,r +⇥r) sr + ↵�rNr1r � ↵ (1� ⌧ r) cDr1r.

Solving this equation leads to:

sr = [Ir � ↵ (N0,r +⇥r)]
�1 [(1 + ↵�rNr)1r � ↵ (1� ⌧ r) cDr1r] ,

or, equivalently,

sr = [Ir � ↵ (N0,r +⇥r)]
�1 [(1 + ↵�rNr) Ir � ↵ (1� ⌧ r) cDr]1r. (E.3)

The matrix Ir�↵ (N0 +⇥r) is invertible if ↵ <
1

⇢(N0,r+⇥r)
, where ⇢ (N0,r +⇥r) is the spectral

radius of the matrix N0,r + ⇥r. Consequently, we could solve the model using (E.1) and
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(E.3). Observe that nij,r > 0 if (1 + ✓ij,r) sj,r > (1� ⌧ r) cdij,r, 8i, j. A su�cient condition is

sj,r > max
i

(1� ⌧ r) cdij,r � �r

(1 + ✓ij,r)
.
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Table 2: Number of social interactions per pair

Pair types
Black–Black Black–White White–White All

Number of total social interactions 294 74 1,743 2,111
Number of friendship pairs 109 36 596 741
Average social interactions per pair 2.697 2.056 2.924 2.849

Note: The statistics are computed using the network-level average social interactions from 139 networks.
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Table 3: Structural estimation results

Undirected model with directed nij

n0 1.5895***
(0.0197)

↵ 0.1286***
(0.0010)

c 0.2099***
(0.0019)

� |xi � xj| (xi + xj)
Female -0.9979*** 0.1929***

(0.0109) (0.0064)
Black -0.6653*** -0.0764***

(0.0139) (0.0026)
Grade 0.2889*** 0.0846***

(0.0071) (0.0008)
GPA -0.1106*** -0.0705***

(0.0011) (0.0018)
Physical development 0.0046*** 0.0640***

(0.0001) (0.0024)
Religious practice -0.1187*** 0.0332***

(0.0016) (0.0006)
Family size -0.0670*** -0.0153***

(0.0013) (0.0004)
Two parents -0.0075*** 0.0305***

(0.0004) (0.0004)
Parental education -0.0457*** 0.0144***

(0.0008) (0.0002)
Family income -0.0016*** 0.0016***

(0.00002) (0.00005)
Family income refused -0.1214*** 0.1348***

(0.0020) (0.0022)

�" 1.3501***
(0.0070)

Number of networks 139
Number of pupils 739
Number of directed pairs 3,512
Objective function 4,967.5

Note: We estimate parameters (n0,↵, c,�
T)T from equations (12)–(14). We try many

starting values to ascertain that a global minimum is attained. Bootstrap standard errors
(clustered by networks) in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Social interactions and social capital: Optimal level vs. observed level

Social interactions Social capital
Optimal Observed Average Minimum Maximum Optimal Observed Average Minimum Maximum
level level di↵erence di↵erence di↵erence level level di↵erence di↵erence di↵erence
(SD) (SD) [95% CI] (SD) (SD) [95% CI]
3.612 2.847 0.760 0.616 0.889 1.632 1.078 0.554 0.524 0.577
(0.050) - (0.050) [0.676, 0.837] (0.011) - (0.011) [0.536, 0.572]

Note: The statistics are computed using the network-level average social interactions and social capital from 139 networks over 100

simulations. Standard deviations over 100 simulations are in parentheses, and 95% confidence interval (CI) for the di↵erences are in

brackets. Note that these statistics di↵er from pair-level averages.

The observed level of social capital is augmented using equation (15).
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Table 5: Di↵erence between optimal level and observed level of social interactions

Optimal�Observed (social interactions)
(1) (2) (3) (4) (5)

Network population 0.554* 0.431 0.491 2.659* 2.261
(0.322) (0.287) (0.306) (1.414) (1.438)

Network population squared -0.031 -0.024 -0.027 -0.124* -0.106
(0.023) (0.021) (0.022) (0.065) (0.066)

Avg. geographic distance -0.111*** -0.112*** -0.113*** -0.113***
(0.014) (0.014) (0.014) (0.016)

Avg. degree centrality 0.047 -0.970** -1.051**
(0.402) (0.452) (0.490)

Std.dev. of degree centrality -0.257 -0.910 -0.591
(0.409) (0.965) (0.993)

Avg. eigenvector centrality 17.524 14.708
(14.567) (15.321)

Clustering coe�cient 1.424 1.640*
(0.875) (0.917)

Diameter -0.269 -0.183
(0.265) (0.283)

Female fraction 0.596
(0.398)

Black fraction -0.101
(0.247)

Avg. student grade 0.102**
(0.051)

Avg. GPA -0.228
(0.166)

Avg. level of physical development 0.277*
(0.160)

Avg. level of religion practice 0.044
(0.104)

Avg. family size 0.099
(0.100)

Fraction of students with two parents -0.246
(0.372)

Avg. level of parent education 0.076
(0.150)

Avg. family income 0.004*
(0.002)

Fraction family income refused 0.729
(0.509)

Constant -1.221 -0.100 -0.198 -13.213 -13.135
(1.039) (0.916) (0.969) (11.186) (11.849)

Observations 139 139 139 139 139
R-squared 0.063 0.327 0.329 0.351 0.454

Note: The outcome variable is the average di↵erence between optimal level and observed level of social interactions

(no � n⇤
) over 100 simulations for each network.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 6: Di↵erence between optimal level and observed level of social capital

Optimal�Observed (social capital)
(1) (2) (3) (4) (5)

Network population 0.194** 0.165** 0.189*** -0.010 -0.005
(0.077) (0.064) (0.066) (0.292) (0.124)

Network population squared -0.009 -0.007 -0.008 0.002 0.002
(0.006) (0.005) (0.005) (0.014) (0.006)

Avg. geographic distance -0.026*** -0.026*** -0.026*** -0.027***
(0.002) (0.002) (0.002) (0.002)

Avg. degree centrality -0.064 -0.028 -0.068
(0.056) (0.094) (0.047)

Std.dev. of degree centrality -0.030 -0.302 -0.154
(0.076) (0.302) (0.100)

Avg. eigenvector centrality -3.345 -2.812**
(3.140) (1.361)

Clustering coe�cient -0.088 -0.030
(0.168) (0.078)

Diameter -0.085 -0.052
(0.097) (0.034)

Female fraction 0.146***
(0.029)

Black fraction -0.082***
(0.017)

Avg. student grade 0.070***
(0.004)

Avg. GPA -0.060***
(0.012)

Avg. level of physical development 0.060
(0.011)

Avg. level of religion practice 0.017**
(0.007)

Avg. family size -0.015
(0.009)

Fraction of students with two parents -0.043*
(0.023)

Avg. level of parent education 0.026*
(0.014)

Avg. family income 0.001***
(0.000)

Fraction family income refused 0.154***
(0.035)

Constant -0.206 0.054 0.101 2.691 1.429
(0.225) (0.184) (0.195) (2.411) (1.067)

Observations 139 139 139 139 139
R-squared 0.295 0.565 0.570 0.578 0.938

Note: The outcome variable is the di↵erence between optimal level and observed level of social capital (so � s⇤) over
100 simulations for each network.

The observed level of social capital is augmented using equation (15).

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Optimal network design: average welfare and number of students

(1) (2) (3) (4) (5)
Welfare Welfare Welfare Welfare Welfare

Network population 0.831 0.274 -1.030 -0.864 -2.006
(1.170) (0.821) (0.776) (2.914) (3.144)

Network population squared -0.053 -0.018 0.053 0.035 0.082
(0.085) (0.060) (0.057) (0.135) (0.152)

Avg. geographic distance -0.506*** -0.473*** -0.483*** -0.469***
(0.051) (0.045) (0.046) (0.047)

Avg. degree centrality 5.088*** 9.926*** 9.421***
(1.924) (1.272) (1.440)

Std.dev. of degree centrality 0.232 3.072 5.513**
(0.872) (2.402) (2.332)

Avg. eigenvector centrality 26.283 24.638
(32.059) (30.964)

Clustering coe�cient -6.586*** -5.234**
(2.088) (2.282)

Diameter 1.048 1.731**
(0.764) (0.738)

Controls No No No No Yes
Observations 139 139 139 139 139
R-squared 0.007 0.507 0.612 0.661 0.757

Note: The outcome variable is the simulated average welfare (AWr), averaged over 100 simulations for each

network.

Control variables include the averages of the social distances and the combined levels used in structural esti-

mation. See Tables 5 and 6.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 8: Policy levels for optimal outcomes

(1) Subsidizing social interactions: � (2) Subsidizing transportation costs: ⌧
Average Minimum Maximum Average Minimum Maximum
(SD) [95% CI] (SD) [95% CI]
1.916 1.516 4.189 0.728 0.633 0.817
(0.379) [1.614, 2.689] (0.037) [0.665, 0.779]

Note: The subsidy level for each network is computed for students in each network to obtain the optimal level of

social interactions and social capital in (23)–(25).

We report the average results over 100 simulations.
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Table 9: Comparison of two policies

Panel A: Budget corresponding to the average (optimal) social interaction subsidy level

Number of networks with higher Di↵erence in
welfare for each policy average welfare

[95% CI] [95% CI]
Subsidy schemes Policy: � Policy: ⌧ Policy �� Policy ⌧
(1) Uniform subsidy amount 135 4 35.84
for each network [133, 136] [3, 6] [35.39, 36.28]

(2) Subsidy proportional 135 4 36.24
to Nr [133, 136] [3, 6] [35.87, 36.61]

(3) Subsidy proportional 135 4 36.61
to Nr(Nr � 1) [134, 136] [3, 5] [36.28, 36.97]

Panel B: Budget corresponding to the average (optimal) transportation subsidy level

Number of networks with higher Di↵erence in
welfare for each policy average welfare

[95% CI] [95% CI]
Subsidy schemes Policy: � Policy: ⌧ Policy �� Policy ⌧
(1) Uniform subsidy amount 135 4 16.49
for each network [133, 136] [3, 6] [16.29, 16.69]

(2) Subsidy proportional 135 4 16.74
to Nr [133, 136] [3, 6] [16.57, 16.89]

(3) Subsidy proportional 135 4 16.93
to Nr(Nr � 1) [133, 136] [3, 6] [16.78, 17.10]

The median number of networks over 100 simulations, which lead to higher welfare for each policy is reported, along

with the 95% confidence interval among 139 networks. The term ‘Policy �� Policy ⌧ ’ indicates the average welfare

after the social interaction subsidy policy (policy �) minus the average welfare after the transportation subsidy policy

(policy ⌧).
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