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ABSTRACT
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The Impact of Climate Change on 
Mortality in the United States:
Benefits and Costs of Adaptation1

This paper reviews and extends the recent empirical literature on the impact of climate 

change on mortality and adaptation in the United States. The analysis produces several 

new facts. First, the reductions in the impact of extreme heat on mortality risk previously 

documented up to 2004 have continued up to 2019, consistent with continued investments 

in health-protecting adaptations to high temperatures. The second part of the paper 

examines the private and external costs of electricity generation and consumption related to 

high temperatures, a commonly-used proxy for measuring the consumption of adaptation 

services. Extreme temperatures increase electricity demand in the residential sector (relative 

to moderate temperatures), but not in the commercial, industrial, and transportation end-

use sectors. The additional electricity demand in response to high temperatures results in 

significant external costs due to the release of local and global pollutants caused by the 

combustion of fossil fuels in order to produce electricity. These external costs, documented 

for the first time in this paper, are one order of magnitude larger than the private cost of 

adaptation associated with electricity consumption.
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Introduction 

The last seven years have been the warmest years ever experienced, as defined by the global average 

temperature. The year 2021 was a banner year for extreme weather events, where among others, we 

witnessed hurricane Ida, historical summer floods in Europe and China, and one of the most severe heat 

waves ever in the Pacific Northwest, where the village of Lytton, BC burned to the ground after recording 

a temperature of 49.6 C. The accumulation of such destructive events and the pronounced rising trend in 

global average temperature underscore how climate change is already affecting the well-being of an 

increasingly large share of the world’s population. 

A sizable empirical literature in economics has focused on documenting and understanding how extreme 

temperature and climate change will impact human health, and on determining the effectiveness of various 

adaptation measures (Deschenes and Greenstone (2011), Barreca et al. (2016), Carleton et al. (2020)).2 This 

line of research provides key information for policymakers who need to align the costs of investments in 

climate change mitigation with the social benefits of avoiding climate change. Human health is expected to 

be one of the largest impact margins of climate change. For example, Hsiang et al. (2017) estimates that 

70% of the end-of-century costs of climate change in the United States will be due to monetized value of 

the excess mortality attributable to climate change.  

Such projections ignore the private and external cost of adaptative measures that attempt to mitigate the 

health impact of high temperatures through greater usage of cooling technologies, which require additional 

electricity consumption. In parts of the world where cooling demand is expected to increase, the addition 

of those costs would only further magnify estimates of the total costs of climate change on human health. 

For example, Deschenes and Greenstone (2011) find that the private cost of energy demand in response 

higher temperatures under the Hadley 3 A1FI climate change scenario is about half of the monetized 

valuation of the increase in mortality under the same scenario. 

Despite important progress in the literature, several gaps remain and motivate additional and new research. 

In particular, many of the empirical estimates of the impact of extreme temperature on mortality rates and 

electricity consumption exclude the most recent decade, which is problematic since the 2010s is the hottest 

decade on record. Additionally, while there is good empirical evidence on the private costs of climate 

change adaptation due to increased electricity demand in response to high temperatures, little is known 

about the external costs of such adaptation. Electricity generation in the United States and in most other 

countries continues to rely heavily on natural gas and coal, and a nascent literature has quantified the 

                                                           
2 See also Heutel et al. (2021) and Mullins and White (2020). 
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impacts of fossil-fueled generation on emissions of air pollutants associated with negative effects on health 

(Deschenes, Greenstone, and Shapiro (2017), Jarvis, Deschenes, and Jha. (2022)). 

This paper aims to makes three contributions to this important literature by expanding the temporal scope 

and the set of outcomes relevant to the temperature-adaptation-mortality nexus in the United States. First, 

I compile and analyze a new data set on monthly mortality rates at the U.S. county level for the periods 

1960-1988 and 2000-2019. Combined with daily weather data appropriately aggregated to the monthly 

level, I produce a much-needed update of the estimate of the temperature-mortality relationship to include 

the most recent years. Second, I update the empirical estimates of the temperature-residential electricity 

consumption relationship to cover the period 1960-2019 and to other end-use sectors. Electricity demand 

in response to high temperatures is the primary observable proxy for demand for adaptation services through 

cooling technologies considered in the previous literature (e.g., Rode et al. 2021). This longer sample allows 

testing for changes in the relationship over time, and also provide estimates of the effect of temperature 

fluctuations on electricity consumption in end-use sectors other than residential. Finally, I use monthly data 

on output and emissions from fossil-fuel power plants in the U.S. to provide the first empirical estimates of 

the effect of temperature fluctuations on emissions from power plants. I also link plant-specific estimates 

of the economic damages from power plant emissions to calculate the magnitude of the external costs 

associated with temperature shocks.  

To this end, I use panel data regressions to estimate the relationship between the key outcomes (monthly 

mortality rates, annual electricity consumption, and monthly emissions from power plants) and daily 

average temperatures, aggregated to relevant location-time scale using the temperature binning approach 

first presented in Deschenes and Greenstone (2011), while also controlling for precipitation, location fixed 

effects, and time fixed effects. Up to the choice of the width of the temperature bins, this simple approach 

allows for arbitrary nonlinearity in the estimated relationships between the outcomes and temperature. 

The empirical analysis is implemented with detailed and comprehensive publicly-available data on 

mortality rates from the National Center for Health Statistics and the Centers for Disease Control, electricity 

consumption by end-use sector from the Energy Information Administration, electricity production and 

emissions of pollutants from the US Environmental Protection Agency Clean Air Markets Division, and 

daily weather records from the Global Historical Climatology Network.  

The empirical analysis produces several important new results. First, I show that the reductions in the impact 

of extreme heat on mortality risk documented in Barreca et al. (2016) have continued up to 2019. 

Remarkably, the estimate of the relative effect of a day with average temperature exceeding 90 F (32 C) 

has declined by 75% between 2000 and 2019, while average temperature between 80-89 F (27.7-31.7 C) 
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no longer predict statistically significant increases in mortality rates.3 This is an important result since 

exposure to days in these temperature ranges is expected to increase in the future. In contrast, exposure to 

colder temperatures (i.e., less than 30 F (-1.1 C)) continues to cause sizable increases in mortality risk. 

By estimating the temperature-mortality relationship for 1960-1988 and 2000-2019 separately, I can also 

calculate predicted annual heat-related mortality for each U.S. county under both sets of estimates for a 

counterfactual scenario where the temperature-mortality relationship for 1960-1988 is applied to a daily 

average temperature distribution for 2000-2019. The result, which I label “gains from adaptation” indicate 

substantial gains in adaptation to heat over time, but little in terms of adaptation to cold temperature.  

Second, I estimate the relationship between annual electricity consumption and daily temperatures in the 

U.S. residential sector. Each day of average temperature in excess of 90 F (32 C) increases annual 

electricity consumption by 0.4 to 0.5% relative to the reference temperature. The relative effect of colder 

temperatures is also statistically significant, but smaller. While the estimates of the temperature-electricity 

demand relationship are less precise due to the more aggregated nature of the data (state-level instead of 

county-level), I find no clear evidence of a temporal change in the estimated relationship between the 1960-

1988 and 2000-2019 periods. The patterns documented for the effect of temperature variation on electricity 

consumption in the residential sector are not observed in other end-use sectors. In particular, I find that 

electricity demand in the commercial, industrial, and transportation sectors is mostly independent of daily 

temperature shocks. 

Third, I estimate the relationship between economic damages due to power plant emissions and daily 

temperatures for all large fossil power plants in the U.S. Fossil power plants (i.e., coal and natural gas) 

currently account for 60% of all electricity produced in the United States, and these plants emit pollutants 

that can cause economic damages, mostly through detrimental impacts on human health. Applying 

estimates of the damages to power plant emissions data results in the familiar “V” relationship where 

extreme temperatures cause increases in economic damages (or increases in emissions) relative to 

temperatures in the center of the distribution. The external economic damages due to power plant emissions 

attributable to high temperatures are one order of magnitude larger than the private cost of the additional 

electricity expenditures attributable to high temperatures. These represent the first (and admittedly simple) 

estimates of the external costs of adaptation through increased electricity demand. 

Overall, the empirical results presented in this paper highlight some of the challenges inherent to climate 

change adaptation aiming to protect human health. On the one hand, it is now evident that the mortality 

                                                           
3 Throughout this paper, daily average temperatures are defined as the simple average of the recorded minimum and 

maximum temperature for each day. 
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risks associated with extreme high temperatures have declined over a long period of time and are small 

relative to the risks associated with extreme cold temperatures. Further, other research has shown important 

cross-sectional differences in vulnerability to heat shocks, where locations with higher exposure to extreme 

heat face lower mortality risks than locations with lower exposure (e.g., Barreca et al. (2015), Heutel et al. 

(2021)). It therefore appears that the U.S. population can deploy an effective set of private investments, 

public health campaigns, medical interventions, and behavioral changes to self-protect in response exposure 

to extreme heat. On the other hand, these adaptations are costly and measuring these costs is often difficult 

due to data constraints or lack of data altogether. Further these costs may be composed of private and 

external costs, which themselves can be even harder to quantify. There are a few studies that attempt to 

estimate the private cost of adaptation to high temperatures through increased electricity consumption (e.g., 

Deschenes and Greenstone (2011), Auffhammer (2018)). In the case of electricity consumption, I find that 

the external component of the cost is large relative to the private component, so previous studies may have 

dramatically underestimated the cost of climate change adaptation.  

 

I. Data Sources and Summary Statistics 

Four main data types are required for the empirical analysis presented in this paper and all are taken from 

publicly-available sources. The key variables are a county-level crude mortality rate, state-level electricity 

consumption, power plant emissions of local and global pollutants, and county-level economic damages 

from power plant emissions. 

Mortality rates. County-level mortality rates for the periods of 1960-1988 and 2000-2019 are obtained by 

combining data on monthly all-cause and all-age mortality counts with annual population estimates. For 

1960-1988, the mortality counts are taken from the annual Multiple Cause of Death (MCOD) files produced 

by the National Center for Health Statistics. The publicly-available files contain information on the month 

of death and the county of residence of the deceased up to 1988. To best of my knowledge, publicly-

available mortality count data with information on county of residence of the deceased are not available 

from 1989 to 1999. For the 2000-2019 period, monthly-level mortality count data are available at the county 

level though the Center for Disease Control Wonder online database, which reports these data in a tabular 

form.4 Annual population at the county level are taken from the National Cancer Institute SEER database5 

                                                           
4 https://wonder.cdc.gov/mcd.html, accessed 3/27/21. 
5 https://seer.cancer.gov/popdata/ , accessed 2/5/2021. 

https://wonder.cdc.gov/mcd.html
https://seer.cancer.gov/popdata/
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for the years 1968 to 2019. For the pre-1968 period, I linearly interpolate annual county-level population 

using data from the 1960 Census of Population up to 1968. This produces a sample of 2,924 to 3,074 

counties in the continental United States with valid observations on monthly crude mortality rate, defined 

as deaths from all causes and all ages divided by total population. The counties included in the sample 

represent 95-99% of the US population over the 1960-1988 and 2000-2019 periods. 

Electricity consumption data. State-level data on annual consumption of electricity in million kwh by end-

use sector (residential, commercial, industrial, and transportation) are taken from the Energy Information 

Administration’s State Energy Data System (SEDS). The data are available at the state-level (the smallest 

geographical unit available) for the period 1960-2019.6 Data on electricity prices by state, year, and end-

use sector are also taken from SEDS.   

Emissions from power plants and related economic damages. Electricity generating unit-level data on 

emissions of nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon dioxide (CO2) for fossil fuel-fired 

units are taken from Continuous Emissions Monitoring System (CEMS) of the EPA’s Clean Air Markets 

Division.7 The daily-unit level data are then aggregated to the plant and month level over the period 2000-

2018. The sample contains emissions of pollutants for 1,279 plants per year on average. 

I then use information on the marginal damage caused by emissions of NOx and SO2 by the power plants 

in the sample from the Air Pollution Emissions Experiments and Policy (APEEP, AP3) model (Muller and 

Mendelsohn (2006), (2009); Holland et al. (2020)). The AP3 model provides marginal economic damages 

in dollars per ton of emission for the power plants in the sample and is based on an exhaustive list of 

potential damages, including monetized reduction in yields of agricultural commodities and timber, 

depreciation of physical materials, lost recreation services, and monetized reductions in human health (by 

far the largest component of the damages). An important feature of AP3 is that it provides a “source-

receptor” matrix that links emissions at individual power plants (the sources) to damages at all counties 

potentially impacted (the receptors), using a calibrated atmospheric air transport model. I will use this 

feature to present an analysis of the spatial distribution of the damages caused by the added electricity 

demand on extreme temperature days. 

                                                           
6 https://www.eia.gov/state/seds/ , accessed 3/1/2021. 
7 https://ampd.epa.gov/ampd/ 

https://www.eia.gov/state/seds/
https://ampd.epa.gov/ampd/
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To proceed, I compute the economic damage associated with emissions of NOx, SO2, and CO2 from the 

power plants in the sample. Specifically, let 𝐸𝑝𝑖𝑚𝑦
𝑁𝑂𝑥 , 𝐸𝑝𝑖𝑚𝑦

𝑆𝑂2 , 𝐸𝑝𝑖𝑚𝑦
𝐶𝑂2  and denote the monthly NOx, SO2, and 

CO2 emissions from power plant p, in county i, in month m, and year y. These data are obtained from the 

EPA-AQMD database. The marginal damages per ton in receptor county j, resulting from emissions of 

plant p in source county i are denoted by 𝑀𝐷𝑗𝑝𝑖
𝑁𝑂𝑥 and 𝑀𝐷𝑗𝑝𝑖

𝑆𝑂2, and taken directly from the AP3 model. The 

marginal damage of an additional ton of CO2 emission is assumed to be $50, roughly in line with the current 

estimates of the social cost of carbon for 2020 based on a 3% discount rate (Interagency Working Group 

on Social Cost of Greenhouse Gases, 2021). Assuming a linear relationship, we can then estimate the total 

damage attributable to individual power plant emissions at a given point in time as:  

(1)   𝑇𝐷𝑝𝑖𝑚𝑦 = (𝐸𝑝𝑖𝑚𝑦
𝑁𝑂𝑥 × ∑ 𝑀𝐷𝑗𝑝𝑖

𝑁𝑂𝑥

𝑗

) + (𝐸𝑝𝑖𝑚𝑦
𝑆𝑂2 × ∑ 𝑀𝐷𝑗𝑝𝑖

𝑆𝑂2

𝑗

) + (𝐸𝑝𝑖𝑚𝑦
𝐶𝑂2 × 50) 

Where the summation over j is over all counties in the sample.8 The variable 𝑇𝐷𝑝𝑖𝑚𝑦 provides a simple 

dollar denominated metric of the (estimated) external cost of emissions from power plant activities. In the 

analysis below, I also break down estimates for “local” externalities (NOx and SO2), and for the global 

externality (CO2). 

Weather data. The construction of the ‘binned’ temperature variables used in the analysis requires daily 

average temperature data at the county or sub-county level. To this end, I draw from the Global Historical 

Climatology Network-Daily (GHCN-Daily) weather station level data produced by the National Climatic 

Data Center. These data are then processed following the approach in Barreca et al. (2016) to assign daily 

weather records to each county in the continental US using an inverse-distance weighted average of all the 

weather station measurements from the stations located within a fixed 300km radius of each county’s 

centroid. By construction, weather stations located closer to a county’s centroid are given more weight in 

computing the average. Based on this approach, I obtain a complete record of daily maximum and minimum 

temperatures as well as the total daily precipitation for the counties in the sample. 

Summary Statistics. Figure 1 shows the unconditional distribution of daily average temperature in the 

sample. Each bar corresponds to one of ten ranges (or ‘bins’) of daily average temperature (in F degrees), 

with the endpoints being less than 10 F and greater than 90 F.9 The height of each bar represents the 

average number of days per year (across all counties and years, and weighted by county population) in each 

                                                           
8 Emissions from individual power plants typically cause damages in counties that are within a few hundred kilometers 

of the plant. Thus 𝑀𝐷𝑗𝑝𝑖
𝑁𝑂𝑥 or 𝑀𝐷𝑗𝑝𝑖

𝑆𝑂2 can be equal or very close to 0 for many counties. 
9 The 10 daily average temperatures bins in C rounded to the closest integer are: <-12, -12 to -7, -7 to -2, -1 to 4, 4-

9, 10-15, 16-21, 21-26, 27-32, >32.  
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temperature bin. The modal temperature bin is 70-79 F, with 69.4 days on average per year across all 

counties. However, the econometric models estimated below rely on monthly within county variation in the 

realized daily temperatures. Figure 2 below illustrates this variation for the month of July, in the county of 

Dallas, TX, where the city of Dallas is located. The dark blue bars represent the daily average temperature 

distribution in July in Dallas county over 1960-2019, while the pink (pale blue) bars represent the realized 

daily average temperature distribution 2019 (2018), correspond to the years on record with the most (least) 

90 F days during the month of July. It is evident that July is hot month in Dallas county, with virtually no 

days of temperature with an average below 70 F. On average, there are 3.9 days of >90 F average 

temperature in July in Dallas county, which is more than most other counties in the U.S. This fixed climatic 

difference will be captured by the county-month fixed effects in the analysis below. Importantly for 

econometric identification, there is a large degree of within county-month variation in realized 

temperatures. For example, comparing July 2018 and July 2019, we observe 14 days above 90 F in 2019 

and a single day in 2018. 

Table 1 reports summary statistics for the other variables used in the empirical analysis. When applicable, 

the sample means and standard deviations (in parentheses) are reported separately for the 1960-1988 and 

2000-2019 samples. The annual crude mortality (total deaths per 1,000 population) dropped from 9.05 to 

8.23 between the two periods.  Aggregate consumption of electricity in the residential sector increased since 

the 1960s, from 544 to 1,356 (billion kwh) in 2000-2019. This strong growth in consumption is also evident 

when looking at residential electricity consumption per person, which increased from 2,487 kwh to 4,467 

kwh, a jump of 80% between the two periods. The next two rows report statistics on annual expenditures 

in the residential sector ($2019). Total expenditures averaged $172.3 billion since the 2000s. On a per 

person basis, real electricity expenditures in the residential sector more than doubled from $275 per year to 

$566 during the sample period. Another striking pattern in the large reduction in across state variability in 

residential electricity expenditures over time, as shown by the estimated standard deviations. The remaining 

rows in Table 1 present sample means for the power plants in the sample, which are observed only from 

2000 to 2018. The aggregate annual emission of NOx amounts to 2.61 million tons per year, while SO2 and 

especially CO2 emissions are larger, at 6.12 and 2,195 million tons per year, respectively. The last row 

reports the average marginal damage per ton of NOx and SO2 emitted, for all power plants in the sample, 

and across all counties where the estimated damages are experienced is $51,322 ($2019). This reflects an 

average marginal damage per county of $4.37 per ton of NOx emitted and $12.52 per ton of SO2 emitted. 
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II. Empirical Approach  

The empirical analysis below reports estimates of temperature response functions relating outcomes that 

vary at the location-by-time level to transformations of daily weather data to the same spatial and temporal 

scales, following the methodology in Deschenes and Greenstone (2011). These models are identified by 

presumed random temporal variation in weather distributions at the county (or state) level, as illustrated in 

Figure 2. Specifically, I estimate log-linear models of the form:  

(2)   𝑙𝑜𝑔(𝑌𝑖𝑚𝑦) = ∑ 𝛽𝑗

𝑗

𝑇𝑀𝐸𝐴𝑁𝑖𝑚𝑦𝑗 + 𝑋𝑖𝑚𝑦𝛾 + 𝛿𝑖𝑚 + 𝜃𝑠𝑦 + 𝑢𝑖𝑚𝑦 

where 𝑙𝑜𝑔(𝑌𝑖𝑚𝑦) is the natural log of the outcome variable in location i, month m, and year y (e.g., county 

mortality rate or state electricity consumption). The preferred models for log mortality rates and log power 

plant emissions also includes county-by-month fixed effects (im) and state-by-year fixed effects (sy). The 

county-by-month fixed effects control for all year-invariant cross-sectional differences in the determinants 

of the outcomes across counties and months of the year, thus accounting for spatial differences in the 

seasonality of the outcomes. Such seasonality reflects a host of factors, including climatic differences. The 

state-by-year fixed effects account for all factors common to a state within a year (e.g., local economic 

activity and state-level health or environmental policy changes, such as changes to state Medicaid programs 

or emission regulation for power plants) that predict the outcome of interest. Naturally, these fixed effects 

also control for time-varying changes in determinants of the outcomes that are common across state (e.g., 

the introduction of new technologies or national-level policies). This level of spatially and temporally 

granular control afforded by the county-by-month and state-by-year fixed effects, which effectively control 

for state-specific unobserved shocks, is made possible by the novel county-level (or plant-level) data used 

in this paper.  

The independent variables of primary interest are the realized binned daily average temperature variables 

in each county-month-year (𝑇𝑀𝐸𝐴𝑁𝑖𝑚𝑦𝑗), which correspond to the number of days in a location-month-

year where the daily average temperature is in one of 10 ‘bins’, as depicted in Figure 1. As is required with 

this specification, one of the bins is the reference temperature (60–69 F in this paper), and so the reported 

 estimates correspond to the impact of an additional of temperature in bin j relative to the reference 

temperature.10 An additional feature implied by this functional form is that the marginal effect of 

temperature on the outcomes can vary across the entire temperature distribution in a flexible way, albeit 

with the restriction that it is constant within the 10 °F intervals underlying the temperature bins. Natural, 

                                                           
10This normalization is necessary since the number of days in a given month is constant. 
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and presumed exogenous, variation in the realized temperature distribution across years for each county-

month pair underpins the identification of the parameters of the temperature-response function (j). 

Importantly, the econometric specification also accounts for shocks at the state-year level. Any remaining 

confounder that could bias the temperature-response function would need to vary with a higher level of 

interaction (e.g., a shock common to both mortality rates and realized temperature in a given county-year-

month). The vector of other control variables (Ximy) includes a quadratic term in total monthly precipitation. 

It is important to note that other aspects of daily weather such as humidity and wind speed could also 

influence the outcomes, both individually and interactively with realized temperature. Unfortunately, these 

data are not available at the required spatial and time scale going back to 1960 and therefore are omitted in 

the rest of the analysis. In the case of the temperature-mortality relationship, the evidence in Barreca (2012) 

indicates that omitting humidity leads to estimates of temperature impacts that are overstated for cold 

temperatures, but does not alter the estimates of high temperatures on mortality risks. 

 

III. Results 

(A) Temperature and Mortality Risk.  

Figure 3 presents estimates of the temperature-mortality relationship (the estimates of the βj parameters 

from equation 1 are shown by the yellow circles). Each βj parameter corresponds to the effect of an 

additional day of temperature in bin j on log monthly mortality rates, relative to a day of temperature in the 

reference category (60-69 F). The shaded area around the point estimates correspond to the 95% 

confidence intervals with standard errors clustered at the county level. Panel (a) uses the data for 1960-

1988, panel (b) uses the data for 2000-2019, and panel (c) plots the difference between the 2000-2019 and 

1960-1988 estimates. 

The estimates in these figures confirm that three findings from the previous literature also hold with county-

level data and up to the recent period of 2000-2019. First, it is evident that mortality risk (as represented by 

the log monthly mortality rate) is highest at the extremes of the daily average temperature distribution. For 

example, in Panel (a) the point estimates imply that an additional day of temperature with an average above 

90 F increases the mortality rate by 1% (0.0098 in log units) relative to the reference temperature of 60-

69 F (Figure 3(a)).11 Second, the sharp decline in the relative mortality impact of high temperatures 

                                                           
11 Many papers have documented substantial heterogeneity in the responses to extreme temperatures across different 

regions of the country or climatic zones. See e.g., Barreca et al. (2015, 2016) and Heutel (2020). 
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documented in Barreca et al. (2016) is also apparent up to 2019 (Figures 3(b) and 3(c)).12 In particular, the 

impact of extreme high temperatures on log monthly mortality rates has declined from 0.0098 to 0.0016 

between the earlier and later period, which corresponds to a decline of roughly 84%. Third, the estimated 

impact of relatively cold temperatures (i.e., daily average temperatures less than 30 F) has remained 

essentially unchanged when comparing the 1960-1988 to the 2000-2019 periods (Figure 3(c)). If anything, 

the estimated effect of very cold temperatures (<10 F) on mortality risk is larger in the 2000-2019 sample, 

a result the previous literature has not emphasized before. The stark difference in the temporal evolution of 

“cold-related” vs. “heat-related” mortality over time points to important benefits for heat adaptation and to 

large remaining adaptation gaps for cold-related mortality. 

To put these divergent trends in temperature-related mortality risks in perspective, I compute predicted 

counterfactual mortality counts using the fitted regression models evaluated at assumed baseline 

distributions of daily average temperature. I define the baseline “hottest” and “coldest” years over 2000-

2019 as the years where the average number of days with daily average temperature exceeding 80 F across 

all U.S. counties is the largest (2011) and smallest (2004). 13 I then use the estimated temperature-mortality 

relationship over 2000-2019 to compute predicted mortality counts for each county using the realized daily 

average temperature distribution of each county in 2011 (baseline hottest year) and 2004 (baseline coldest 

year) as follows: 14 

(3)   �̂�𝑐 = 𝑃𝑂𝑃𝑐 × 𝐷𝑅𝐴𝑇𝐸𝑐 × ∑ ∑  �̂�𝑘
2000−19(𝑇𝑀𝐸𝐴𝑁𝑐𝑚𝑘

2011 − 𝑇𝑀𝐸𝐴𝑁𝑐𝑚𝑘
2004)

𝑘

12

𝑚=1

 

Where POPc and DRATEc are the average total population and annual mortality rates in county c over 2000-

2019, and where 𝑇𝑀𝐸𝐴𝑁𝑐𝑚𝑘 represents daily average temperature bins as defined earlier. The index m 

corresponds to months of the year (January =1, December =12), and k corresponds to selected ranges (bins) 

of the daily average temperature distribution for this illustrative calculation. Therefore, the variable �̂�𝑐 

represents the predicted annual mortality for each county due to temperatures in range k, evaluated for a 

hot baseline year (2011), relative to the predicted annual mortality in the same county and temperature 

range, but in a cold baseline year (2004). I consider 4 daily average temperature bins for this exercise: <10 

F, 10-19 F, 80-89 F and >90 F. 

                                                           
12 The data in Barecca et al. (2016) are the state-year-month level and stops in 2004. 
13 Naturally, there are many other possible metrics to select those baseline years. 
14 These calculations ignore the potential “re-transformation” bias due to exponentiating the fitted values from a log-

linear regression. 
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As such, �̂�𝑐 highlights the importance of these specific temperature ranges (corresponding to the extremes 

of the temperature distribution) as drivers of annual mortality irrespective of the choice of the “reference” 

temperature bin since the differences in binned temperature variables in 2011 and 2004 sum to zero. A 

similar approach can be used to quantify the “gains” from the adaptation that underlies the sharp decline in 

the temperature-mortality relationship between 1960-1988 and 2000-2019 documented in Figure 3. To this 

end, I replace  �̂�𝑘
2000−19 in equation (3) by �̂�𝑘

1960−88 −  �̂�𝑘
2000−19, the difference in the relative impact of 

temperature in range k on log monthly mortality rates between the two time periods. 

Table 2 reports a series of estimates of predicted annual temperature-related mortality and of the estimated 

gains from adaptation to cold and high temperatures. Panel A shows that in the baseline hot year (2011), 

764 deaths occurred in the United States due to high temperatures (defined as days with average temperature 

above 80 F (26.7 C), as represented by the two highest bins in the temperature-mortality relationship), 

relative to the predicted cold-related mortality in the baseline cold year (2004). Using the same metric, 

2,744 annual deaths are attributable to cold temperatures (days with average temperature below 20 F (-6.7 

C), the two lowest temperature bins in the model) in the chosen baseline cold year, relative to the baseline 

hot year. The finding of higher levels of cold-related mortality compared to heat-related mortality primarily 

reflects the result in Figure 2(b) that the marginal effects of cold temperatures on mortality risk exceed the 

marginal effects of high temperatures. Other papers have also shown a higher impact of low temperatures 

as opposed to high temperatures on US-wide annual mortality counts (e.g., Deschenes and Moretti 2009). 

Next, I report the estimates of �̂�𝑐 across the terciles of its distribution, as shown in the right side of Panel 

A. Specifically, the estimates of predicted cold and heat-related mortality are reported by terciles each 

containing roughly 1,000 counties. The burden of mortality related to extreme temperatures is not 

distributed evenly across counties, with the lowest tercile experiencing reductions in cold and heat-related 

mortality due to a reduced exposure to the relevant temperatures. Virtually all the “excess” temperature-

related mortality occurs in the upper tercile, the group of counties where the exposure to cold days and hot 

days increased the most between the 2011 and 2004 baseline years.15 

Panel B in Table 1 completes the exercise by reporting the estimated gains from adaptation, which 

correspond to the change in predicted cold and heat-related mortality driven by the change in the 

temperature-mortality relationship between the 1960-1988 and 2000-2019 periods and documented in 

Figure 2(c). The entries in the table correspond to annual “avoided deaths” and so positive numbers denote 

a benefit from adaptation. The patterns are the reverse of those observed in Panel A. There is a remarkably 

                                                           
15 For example, the average difference in the number of days with average temperature between 80-89 F in the 2011 

and 2004 distribution across all counties is +1.5, and +0.27 for days >90 F.  
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large reduction in heat-related mortality, with 8,256 avoided deaths due to the reduction in the marginal 

effect of temperature on mortality risks for temperatures above 80 F (most notably the mortality risk due 

to >90 F days). In contrast, the marginal effect of cold temperature on mortality rates slightly increased 

between the two periods of analysis, which resulted in a small counterfactual increase in cold-related 

mortality (203 additional deaths in the colder baseline year (2004) compared to the hotter baseline year 

(2011)). This implies that economic and technological progress (including advances in medicine and public 

health), and all behavioral adjustments to mitigate the impact of extreme temperature on mortality risks 

since the 1960s did not on net lead to improved resilience to cold temperature exposures, in sharp contrast 

with the elevated resilience to extreme heat. In addition, the estimated gains from adaptation across terciles 

of counties further highlight a large degree of inequality in the gains from adaptation across different 

counties in the U.S. 

(B) Temperature and Electricity Demand 

One of the primary drivers of the reduction in heat-related mortality in the United States is the diffusion 

and utilization of residential air conditioning (A/C) that began in the early 1960s (Barreca et al. 2016). 

Naturally, increased utilization of A/C or other cooling technologies requires increased electricity demand, 

which is often interpreted as a proxy for the demand for adaptation services. Several papers have 

documented how extreme temperatures drive increases in total energy demand or electricity demand 

(Deschenes and Greenstone 2011, Aroonruengsawat and Auffhammer, Rode et al. 2021). This section 

briefly revisits this relationship and adds to the literature by considering more recent data, by assessing the 

evolution of the temperature-electricity relationship over time, and by analyzing demand data from other 

end-use sectors beside the residential sector. 

Figure 4(a) presents the estimated relationship between daily average temperatures and log annual 

electricity consumption (in million kwh) using data for 1960-1988. The econometric specification is similar 

to equation (2), except that the electricity demand data provided by the Energy Information Administration 

is recorded at the state-year level, and so the daily average temperature bin variables are correspondingly 

defined at the same spatial and temporal scale. Further, the regression model includes controls for state and 

year fixed effects, state-specific linear time trends, and quadratic in annual precipitation and state 

population. The interpretation of the estimated curve is the same as for Figure 3, with the reference 

temperature being 60-69 F. 

Figure 4(a) shows a flat V-shaped relationship between daily average temperatures and log annual 

electricity demand in the residential sector, with higher responses at lower and higher temperatures. For 

example, one additional day with average temperature above 90 F is predicted to increase log residential 
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demand by 0.004 log points, or roughly 0.4%. The estimated effect of the highest temperature on electricity 

demand during the 1960-1988 is highly imprecise, as shown by the wide confidence interval that includes 

zero. Panel (b) in Figure 4 replicates the analysis, but for the period 2000-2019. The overall shape of the 

relationship is similar, but the precision of the estimates is notably stronger. The temperature profile of 

demand appears to be increasing almost linearly from 70 F onwards while it is flatter for the colder 

temperature range. This has important implications for anticipating how climate change will alter electricity 

demand in the U.S. residential sector. See Rode et al. (2021) for a recent global analysis. 

Figure 4(c) reports the corresponding temperature-log electricity demand relationship, but now estimated 

with the combined consumption from the transportation, industrial, and commercial sectors (the other three 

end-use sectors in the EIA data). To the best of my knowledge, this relationship has not been examined in 

previous research. The results document a strikingly different picture, with a generally flat profile and eight 

out of nine estimated coefficients being statistically indistinguishable from a null effect at the 5% 

significance level (the one exception being 80-89 F). Overall, the evidence in Figure 4, point to a distinct 

and economically important relationship between very high temperature days and annual residential 

electricity demand as opposed to other end-use sectors. Further, these patterns are consistent with increased 

A/C usage (or usage of other electricity-dependent cooling technologies) in the residential sector on high 

temperature days, as opposed to an overall increase in the sensitivity of demand to extreme temperatures 

across the entire support of the temperature distribution. 

I then use the estimated electricity demand-temperature relationship for 2000-2019 in Figure 4(b) to 

quantify the amounts of excess electricity consumed in response to hot or cold days using the same approach 

described earlier for annual mortality in Table 2. In order to facilitate comparisons with other outcomes, I 

convert demand in kwh to expenditures by using the average price of electricity in the residential sector 

over 2000-19 ($2019). The results are reported in Panel C of Table 2 and are economically small. The 

estimates indicate that the predicted residential electricity demand in the baseline cold year relative to the 

baseline hot year led to an additional electricity expenditure of $32 million ($2019) in the residential sector. 

Heat-related electricity expenditures are more than an order of magnitude larger, amounting to $357 

million. Almost all of that added demand originates in counties in the upper tercile of the distribution.16  

To interpret the magnitude of these estimates, it is useful to compare them to aggregate annual electricity 

expenditures in the residential sector, which averaged $171 billion per year since 2000. Thus the “excess” 

heat-related electricity consumption in the residential sector amounts to 0.2% of its total annual 

                                                           
16 Predicted electricity consumption due to extreme temperature for the entire end-use sector in the U.S. (residential, 

commercial, industrial, and transportation) is similar in magnitude as the entries reported in Panel C of Table 2 for the 

residential sector alone. 
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expenditures. These additional electricity expenditures are only one of the many private costs of adapting 

to extreme temperature borne by U.S. households. The estimates reported here suggest that while those 

expenditures may be economically important for some households, the aggregate amounts are relatively 

small. The next section of this paper turns to a quantification of the external costs of adapting to warming 

temperatures through greater consumption of fossil-fuel generated electricity. 

(C) Temperature and Economic Damages from Power Plant Emissions 

Electricity is a vital input in for both economic activity and human welfare. Countless health technologies 

and other technologies that increase comfort, productivity, and wellbeing require electricity as in input. At 

the same time, it is also well-understood that electricity generation produces emissions of global and local 

pollutants that can cause large amounts of economic and health damages. This section reports simple 

empirical estimates of the economic damage associated with emissions from power plants generated in 

response to extreme temperatures.  

Figure 5 presents the estimated relationship between daily average temperatures and log total monthly 

economic damages from power plant emissions across all U.S. counties impacted (in million $2019) using 

data for 2000-2018. The analysis is made possible by combining monthly power plant emission data from 

the EPA-AQMD data and the marginal damage per ton of emissions from the AP3 model. The regression 

specification follows from equation (1), and includes plant fixed effects (which is isomorphic to county 

fixed effects in this setting), state-by-year fixed effects and county-by-month fixed effects. Like in previous 

figures, the reference temperature category is 60-69 F. 

The estimated relationship between daily average temperatures and economic damages due to power plant 

emissions follows the typical “V” or “U” shape documented for the other outcomes. Relative to the 

reference temperature, one additional day with average temperature above 90 F is predicted to increase 

log monthly damages by 0.014 log points (~1.4%), while the corresponding estimate for days with average 

temperature below 10 F is 0.018 log points (~1.8%). The 95% confidence interval shown with the gray 

shade highlights the high degree of statistical precision of these estimates. While not shown here, the 

proportionate responses of the “local” pollutants (NOx and SO2) and of the “global” pollutant (CO2) to 

temperature shocks are similar. Overall, Figure 5 indicates that extreme temperature days cause sizable 

increases in economic damages due to power plant emissions. Moving forward, the predicted increased 

frequency of extreme temperatures will continue to cause important external damages if the source fuel mix 

in power plants remains the same as was observed over 2000-2018.  

Panel D in Table 2 takes the empirical estimates from Figure 5 and uses them to compute the magnitude of 

the economic damages from fossil-fueled electricity generation attributable to hot (>80 F) and cold (<20 
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F) days using the 2011 and 2004 county-specific distributions of daily average temperatures as explained 

in equation (3). Panel D point to a stunning difference between the estimates of the external and the private 

cost of adaptation through added electricity consumption. The predicted external economic damages in the 

baseline cold year (2004) relative to the baseline hot year (2011) amounts to $1.0 billion per year, more 

than 30 times larger than the private cost of additional residential electricity consumption ($32 million). 

The magnitude of the external economic damages due to power plant emissions in the baseline hot year 

relative to the cold year is even more remarkable: The total across all US counties is $7.9 billion, eight 

times larger than the external costs due to lower temperatures, and one order of magnitude larger than the 

private cost counterpart from additional residential electricity consumption ($357 million, Panel C, Table 

2). 

Focusing on the local externalities due to NOx and SO2 emissions alone reduces this estimate from $7.9 to 

$5.4 billion, underscoring the importance of local pollutants emitted by the power sector as the leading 

source of the external economic damages of extreme temperature adaptation. The analysis across terciles 

of counties further highlights the large degree of inequality of these impacts across the U.S. 

 

Conclusion: 

This short paper has revisited and expanded on the rapidly growing economic literature on the health 

impacts of extreme temperature and the costs of health adaptation to rising temperatures in the United 

States. While more research remains on the agenda, there are three new contributions that are worth 

highlighting: First, the reduction in the impact of high temperature on mortality risks documented in Barreca 

et al. (2016) has further continued in the 2000s and 2019s, consistent with an increase in the quantity or in 

the effectiveness of heat adaptation. No such pattern is observed for the mortality risk associated with colder 

temperatures, which has remained virtually constant since the 1960s. The relative effect of a day of 

temperature with an average below 30 F (-1.1 C) is now three times larger than the relative effect of a 90 

F (32 C) average temperature day. This striking difference may be indicative of a sizable wedge between 

the costs of adapting to cold relative to the costs of adapting to heat in order to preserve health. 

Second, I re-examine the temperature-electricity demand relationship using data from 1960 to 2019. Unlike 

the patterns for mortality risks, I do not observe a significant change in the estimated effect of high (or low) 

temperatures on residential electricity demand over time. In addition, electricity demand in other the end-

use sectors such as commercial, industrial, and transportation is essentially uncorrelated with temperature 

fluctuations. 
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Finally, I provide a first (and admittedly simple) attempt at quantifying the external costs of adapting to 

extreme heat by estimating the relationship between temperatures and the economic damages due to the 

emissions of local and global pollutants produced by the electricity generation sector. The magnitude of the 

external economic damages due to power plant emissions in response to heat are an order of magnitude 

larger than the private cost counterpart in the U.S. residential sector. These external costs have not been 

analyzed before, and so estimates of the social costs of climate change adaptation that ignore them may be 

severely underestimated.  

Adaptation to extreme heat in the United States has produced substantial health benefits, but much remains 

unknown about the costs of adaptation. More research needs to empirically inform the private and external 

costs of climate change adaptation. A key challenge is that these economic costs are often difficult to 

measure and available data is scarce. The importance of this question, and its inherent challenges, are further 

magnified when considering that future demand for air-conditioning and other electricity-powered cooling 

technologies will be concentrated in low- and middle-income countries in the tropics where 40% of the 

world’s population reside (Biardeau et al. 2020). More attention needs to be devoted to increasing 

opportunities and finding solutions to protect human health from extreme heat while at the same minimizing 

the damages from the local and global externalities caused by the electricity generation necessary for 

meeting the increased cooling demand that climate change will bring.  



18 
 

REFERENCES: 

Aroonruengsawat, A., & Auffhammer, M. (2011). Impacts of Climate Change on Residential Electricity 

Consumption. University of Chicago Press. 

Auffhammer, M. (2018). Climate adaptive response estimation: Short and long run impacts of climate 

change on residential electricity and natural gas consumption using big data (No. w24397). National 

Bureau of Economic Research. 

Biardeau, L. T., Davis, L. W., Gertler, P., & Wolfram, C. (2020). Heat exposure and global air 

conditioning. Nature Sustainability, 3(1), 25-28. 

Barreca, A., Clay, K., Deschenes, O., Greenstone, M., & Shapiro, J. S. (2015). Convergence in adaptation 

to climate change: Evidence from high temperatures and mortality, 1900-2004. American Economic 

Review Papers & Proceedings, 105(5), 247-51. 

Barreca, A., Clay, K., Deschenes, O., Greenstone, M., & Shapiro, J. (2016). Adapting to climate change: 

The remarkable decline in the US temperature-mortality relationship over the twentieth century. Journal 

of Political Economy, 124(1), 105-159. 

Deschenes, O., & Moretti, E. (2009). Extreme weather events, mortality, and migration. The Review of 

Economics and Statistics, 91(4), 659-681. 

Deschenes, O., & Greenstone, M. (2011). Climate change, mortality, and adaptation: Evidence from 

annual fluctuations in weather in the US. American Economic Journal: Applied Economics, 3(4), 152-85. 

Deschenes, O. (2014). Temperature, human health, and adaptation: A review of the empirical literature. 

Energy Economics, 46, 606-619. 

Deschenes, O., Greenstone, M., & Shapiro, J. S. (2017). Defensive investments and the demand for air 

quality: Evidence from the NOx budget program. American Economic Review, 107(10), 2958-89. 

Heutel, G., Miller, N. H., & Molitor, D. (2021). Adaptation and the mortality effects of temperature 

across US climate regions. Review of Economics and Statistics, 103(4), 740-753. 

Holland, S. P., Mansur, E. T., Muller, N. Z., & Yates, A. J. (2020). Decompositions and policy 

consequences of an extraordinary decline in air pollution from electricity generation. American Economic 

Journal: Economic Policy, 12(4), 244-74. 

Interagency Working Group on Social Cost of Greenhouse Gases (2021). Technical Support Document: 

Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates under Executive Order 13990, 

https://www.whitehouse.gov/wp-

content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf  

Jarvis, S., Deschenes, O., and Jha, A. (2022) The Private and External Costs of Germany’s Nuclear 

Phase-Out. Journal of the European Economic Association, Forthcoming 

Muller, N. Z., & Mendelsohn, R. (2006). The Air Pollution Emission Experiments and Policy Analysis 

Model (APEEP) Technical Appendix. Yale University: New Haven, CT, USA. 

Muller, N. Z., & Mendelsohn, R. (2009). Efficient pollution regulation: getting the prices right. American 

Economic Review, 99(5), 1714-39. 

https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf


19 
 

Mullins, J. T., & White, C. (2020). Can access to health care mitigate the effects of temperature on 

mortality?. Journal of Public Economics, 191, 104259. 

Rode, A., Carleton, T., et al. (2021). Estimating a social cost of carbon for global energy consumption. 

Nature, 598(7880), 308-314. 

 

  



20 
 

Figure 1:  Annual Distribution of Daily Average Temperatures, 1960-2019 

 

Notes: Figure 1 shows the annual distribution of daily average temperatures (F), represented by the 

average number of days per year in each temperature bin by county in the sample between 1960 and 2019. 
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Figure 2: Realized Distribution of Daily Average Temperatures in the Month of July, Dallas County, 

Texas 

 

Notes: Figure 2 shows the distribution of daily average temperatures in July in Dallas County, Texas (F) 

between 1960 and 2019. The dark blue bars represent the 1960-2019 average, while the red (pale blue) bars 

correspond to the realization of the temperature bin variables in 2018 and 2019, respectively.  
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Figure 3: Estimated Temperature-Log Mortality Rate Relationship in the United States 

(a) 1960-1988 

  

(b) 2000-2019 
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Figure 3: Estimated Temperature-Log Mortality Rate Relationship in the United States (ctd) 

(c) Difference between 2000-19 and 1960-1988 estimates 

 

Notes: Figure 3 plots the estimated temperature-log mortality rate relationship for the sample counties over 

1960-2019. Panel (a) corresponds to estimates for the 1960-1988 period, panel (b) to the 2000-2019 period, 

and panel (c) to the difference between the two sets of estimates. The yellow circles correspond to the point 

estimates from fitting equation (2) and the shaded area shows the 95% confidence intervals.  All estimates 

are in log monthly mortality rate units and relative to the reference temperature bin of 60-69 F.  
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Figure 4: Estimated Temperature-Log Electricity Consumption Relationship, 1960-2019 

(a) Residential sector, 1960-1988 

 

(b) Residential sector, 2000-2019 
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(c) Commercial, industrial, and transportation sectors, 2000-2019 

 

Notes: Figure 4 plots the estimated temperature-log electricity consumption relationship for the sample of 

states over 1960-2019. Panel (a) corresponds to estimates for residential sector over the 1960-1988 period, 

panel (b) to the 2000-2019 period (residential sector), and panel (c) to the estimates for the commercial, 

industrial, and transportation sectors over 2000-2019. The yellow circles correspond to the point estimates 

and the shaded area shows the 95% confidence intervals. All estimates are in log annual electricity 

consumption units and relative to the reference temperature bin of 60-69 F. 
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Figure 5: Estimated Relationship between Temperature and Economic Damages from Power Plant 

Emissions, 2000-2018 

 

Notes: Figure 5 plots the estimated temperature-log economic damage relationship for the sample counties 

over 2000-2018. Economic damages from power plant emissions ($2019) are constructed using monthly 

emission of NOx, SO2, and CO2 from the EPA-AQMD data, combined with estimates of marginal damages 

per ton of emissions from the AP3 model. Marginal damage per ton of CO2 emissions assumed to be $50. 

Shaded area shows the 95% confidence intervals.  Estimates are in log monthly economic damage units and 

relative to the reference temperature bin of 60-69 F.  
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Table 1: Summary Statistics 

 

Notes: Table 1 reports the sample average of the main dependent variables in the analysis for the 1960-

1988 sample (column 1) and 2000-2019 sample (column 2). All dollar figures in 2019 constant dollars.  

1960-1988 2000-2019

Annua l  a l l - cause crude m orta l i ty ra te 9.05 8.23

(per 1,000 population) (2.13) (2.27)

Annua l  res identia l  electri ci ty consum ption 544,032 1,356,266

(Million kwh)

Annua l  res identia l  electri ci ty consum ption 

per capi ta 2,487 4,467

(kwh per person) (794.6) (127.4)

Annua l  res identia l  electri ci ty expendi tures  62,377 172,279

(Million $2019)

Annua l  res identia l  electri ci ty expendi tures  275 566

(Million $2019 per capita) (214.5) (39.0)

Tota l  annua l  NOx em iss ions --- 2.61

(Million tons)

Tota l  annua l  SO2 em iss ions --- 6.12

(Million tons)

Tota l  annua l  CO2 em iss ions --- 2194.7

(Million tons)

Marg ina l  dam age per ton of  NOX and SO2 --- 51,322

($2019 per ton) (36,098)
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Table 2: Predicted Impact of Temperature on Annual Mortality, Residential Electricity 

Consumption, and Economic Damage from Power Plant Emissions 

 

Notes: Table 2 reports predicted heat (and cold) related outcomes in levels from applying fitted equation 

(2) to the realized daily average temperatures distribution for 2011 and 2004 in each county (Panels A, B, 

and D) and state (panel C). All dollar figures in 2019 constant dollars. See the text for more details. 

 

Total  by Terc i le

Total  for U.S. Lowest Middle Highest

A. Predic ted annual temperature-related mortal ity  

(deaths /  year)

Cold-related (<20 °F) 2,744 -2,242 7 4,978

Heat-related (>80 °F) 764 -163 -3 930

B.Gains from adaptation to extreme temperatures 

(avoided deaths /  year)

Cold-related (<20 °F) -203 -1,286 -1 1,085

Heat-related (>80 °F) 8,256 -982 21 9,217

C. Predic ted annual temperature-related electric ity  

consumption in residential  sector ($  Mil . /  year) 

Cold-related (<20 °F) 32 -10 2 40

Heat-related (>80 °F) 357 -9 68 297

D. Predic ted annual temperature-related power 

sector emission damages ($  Mil . /  year) 

Cold-related (<20 °F) 1,022 -957 1 1,980

Heat-related (>80 °F) 7,904 -317 4 8,217
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