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This paper proposes a method to analyze interval-censored data, using multiple imputation 

based on a heteroskedastic interval regression approach. The proposed model aims to 

obtain a synthetic data set that can be used for standard analysis, including standard linear 

regression, quantile regression, or poverty and inequality estimation. The paper presents 

two applications to show the performance of the method. First, it runs a Monte Carlo 

simulation to show the method’s performance under the assumption of multiplicative 

heteroskedasticity, with and without conditional normality. Second, it uses the proposed 

methodology to analyze labor income data in Grenada for 2013–20, where the salary 

data are interval-censored according to the salary intervals prespecified in the survey 

questionnaire. The results obtained are consistent across both exercises.
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1. Introduction 

Labor force surveys are a useful data source to understand employment dynamics in both 

developing and developed countries. These surveys provide vast information on the labor market 

status at higher frequency levels than living conditions surveys. In some cases, they are the only 

source of information to describe and examine the structure of the labor markets. In the Latin 

American and the Caribbean region, countries like Bolivia, Costa Rica, Ecuador, Jamaica, Mexico, 

Peru, and Uruguay collect their labor force surveys quarterly as opposed to a yearly basis, which 

is the case of most household and living standard surveys.  

 

One of the key features of these labor surveys is that they provide information on the wages and 

salaries of workers. This allows to estimate job market trends and obtain inequality measures of 

labor income among workers. However, the full income distribution in many countries cannot be 

retrieved because labor income is reported in brackets. Because of this, the estimation of inequality 

or poverty measures, as well as regression type analysis, is difficult. This is the case of the labor 

force survey for all countries in the Organization of Eastern Caribbean States (OECS).  

 

This is not unique to the Caribbean region. Countries like Colombia, Germany, Australia, New 

Zealand, Bosnia and Herzegovina, North Macedonia and Serbia, among others, have similar data 

collection protocols for their micro census (Walter and Weimer 2018). In the U.S, the current 

population survey (CPS) collects detailed family income only once a year, in the March 

supplement, but collects family income in brackets on a monthly basis.  

One argument in favor of using interval-censored questions to collect information on income is 

the higher response rate compared to questions asking to report exact amounts (Wang et al., 2013). 

This happens because income information is considered “sensitive”, and people are reluctant to 

report actual earnings, and may choose not to respond to those questions at all (Moore et al., 2000; 

Hagenaars and Vos, 1988). Field tests conducted in the past have shown that asking follow-up 

income questions in a series of unfolding brackets achieves superior results in terms of response 

rates for income amounts, as was the case of the National Health Interview Survey (NHIS) and the 

Behavioral Risk Factor Surveillance System Survey (BRFSS), both administered by the Center for 

Disease Control and Prevention of the United States (Angelov and Ekstrom 2018, Yan et al. 2018). 



 

 

However, even though this form of data collection solves the problem of underreporting or 

misreporting, it raises a problem for recovering the full wage (income) distribution, which is key 

to understanding and analyzing inequality.  

To better use the information from these types of surveys, we propose an imputation approach to 

simulate the distribution of the data that is only available in brackets. The method is an extension 

on the imputation approach described in Royston (2007), which considers heteroskedastic errors 

to model the conditional distribution of the censored data. The estimated conditional distribution 

is then used impute the data using draws from the estimated conditional distribution. Once the 

imputed data is obtained, standard aggregation methods (Rubin, 1987) can be used to analyze the 

censored data as if it were fully observed. For example, it can be used calculate poverty or 

inequality measures, as well as perform regression analysis. To demonstrate the flexibility of this 

approach, we use a Monte Carlo simulation to analyze the sensitivity of our method. As an 

empirical example, we use the approach to analyze wage inequality in Grenada utilizing the 

country’s Labor Force Survey. 

Other approaches exist in the literature, and have been used for analyzing this kind of data. To 

measure income inequality with right-censored (top-coded) data, Jenkins et al. (2011) propose 

multiple-imputation methods for estimation and inference where censored observations are 

imputed using draws from a flexible parametric model fitted to the censored distribution, such as 

Generalized Beta of the second kind (GB2), Sigh-Maddala or Dagum distributions. Chen (2017) 

provides a generalized approach for the estimation of parametric income distributions using 

grouped data, showing its consistency through complementary simulation results. More recently, 

Walter and Weimer (2018) propose an iterative kernel density algorithm that generates pseudo 

samples from the interval-censored income variable to estimate poverty and inequality indicators. 

While the interval regression approach we propose fits with the models described in Chen (2017), 

Jenkins et al (2011), and Walter and Weimer (2018), these papers focus on recovering the 

unconditional distribution of income, without considering the relationship with explanatory 

variables.  

 

Zhou et al. (2017) and Chih-Yuan et al. (2021) propose methodologies for the estimation of 

conditional quantile regressions using interval censored data, under different distributional 



 

 

assumptions. While this approach can be used for analyzing interval censored data, it only focuses 

on estimating conditional quantile regressions, requiring specialized software that are not readily 

available. In contrast, the method we propose can be applied not only for the estimation of 

conditional quantile regressions, but also for the estimation of unconditional distribution statistics. 

 

Other studies, like the one proposed by Han et al. (2020), construct new measures of the income 

distribution and estimate poverty in the U.S. using data from the monthly Current Population 

Survey (CPS). They address the problem of censored income data using draws from the empirical 

income distribution observed in the last March supplement. A similar method is proposed by 

Parolin and Wimer (2020), who produce monthly updates of the Supplemental Poverty Measure 

(SPM) rates with demographic data from the CPS and poverty data from the previous March 

supplement of the CPS. However, these studies seek to obtain income estimates using the 

uncensored distribution of previous years, which is not always available with other data sources, 

like the ones analyzed in this paper.  

 

Buutner and Rassler (2008) propose a multiple imputation approach, similar to ours, to analyze 

wages from the German Institute of Employment Research (IAB) employment survey. While their 

method focuses on the analysis top coded data, we expand the approach to analyze data with a 

more generalized censoring structure. 

The paper is organized as follows. Section 2 introduces the model and the econometric issues 

associated with the imputation method; Section 3 provides a Monte Carlo simulation exercise to 

analyze the performance of the methodology; Section 4 uses the methodology to analyze labor 

income distribution changes in Grenada using the 2013-2020 series of the Labor Force Survey. 

Section 5 concludes.  

2. Methodology 

To address the problem of interval-censored data, we propose a multiple imputation approach 

based on a heteroskedastic interval-regression model. An interval-regression model is a 

generalization of the Tobit model that allows using a mixture of censored and completely observed 

data, even if the censoring thresholds are unique to each individual. The goal of the model is to 



 

 

find a set of parameters that maximizes the probability that, given a set of characteristics, the 

predicted latent earnings fall within the declared earning threshold. Imputations are obtained using 

random draws of the estimated conditional distributions. 

2.1. Interval regression model  

Assume that (log) earned income (!!) has a data generating process such that: 

!! = #(%!) + (!)(%!)	 (1) 

Where (! is a homoscedastic i.i.d. error, with mean 0 and standard deviation 1, that is independent 

of the characteristics %. #(%!) and )(%!) are flexible functions of %!. #(%!) represents the 

conditional mean of !!, and )(%!) is a strictly positive function that represents the conditional 

standard deviation of !!. Following Machado and Santos-Silva (2019), the conditional mean 

#(%!)	captures location shift effects of characteristics on the outcome, whereas )(%!) capture the 

scale shifts, which relate to how much of the spread is explained by differences in characteristics. 

Following the standard setup of interval-regression models (Stewart, 1983), we impose the 

assumption that (! follows a standard normal distribution, so that !!|%! is also normally distributed 

with mean #(%!) and standard deviation )(%!).1 

-.	(!~0(0,1) → !!|%!~04#(%), )(%)5 (2) 

Under this assumption, equation 1 can be estimated via maximum likelihood by maximizing the 

following function: 

7!4#(%), )(%)5 = ."|$4#(%), )(%)5 =
1

)(%)8 9
!! − #(%)
)(%) ; (3a) 

 

1 While this assumption is unnecessary for the estimation of standard linear regression models, imposing some 
distribution assumption on the errors is necessary when estimating models via maximum likelihood. Nevertheless, 
as described in MacDonald, Stoddard and Walton (2018), it is possible to relax this assumption using more flexible 
distributions. 



 

 

#(%), )(%) = max
1
0@log(7!) (3b) 

Under these conditions, and assuming a flexible enough model specification to capture the 

conditional mean and conditional variance, estimating equation (1) allows us to recover the whole 

distribution of the dependent variable !!.  

When !! is fully observed, this variable can be directly used for estimating any measure of poverty 

or inequality, or to analyze the relationship between observed characteristics E and the outcome 

!, using standard statistical methods. Often, however, due to survey design, one may only have 

access to data reported in brackets. In other words, rather than observing !!, one may only observe 

that reported income by individual  - is within some lower (FF!) and upper (GG!)	thresholds, which 

may be different for each individual. In this case, unless FF! = GG!, the likelihood function defined 

by Equations 3a and 3b is not defined.  

An alternative for estimating a model with this type of data is the use of what is known as interval 

regression. Interval regression is a generalization of the censored regression estimators like the 

Tobit model (see Cameron and Trivedi (2010, ch 16) for a discussion of censored regressions), 

where data can be a mixture of left-censored, right-censored, interval-censored, or fully observed. 

For simplicity, we refer to the case with interval-censored data.   

When the data is interval-censored, rather than modeling the outcome itself, the approach focuses 

on modeling the probability that an individual - reports income to be within the underlying income 

brackets: 

H(FF! ≤ !! < GG!|%!) (4) 

Using the data generating process (d.g.p.) defined by equation 1, and the normality assumption 

of the error (!, equation (4) can be rewritten as: 

H 9
FF! − #(%!)
)(%!)

≤ (! 	<
GG! − #(%!)

)(%!)
|%!; = P9(! 	<

GG! − #(%!)
)(%!)

; − P9(! 	<
FF! − #(%!)
)(%!)

; (5N) 



 

 

= Φ9
GG! − #(%!)

)(%!)
; − Φ9

FF! − #(%!)
)(%!)

; (5P) 

Where Φ(. ) is the cumulative normal density function. Using equation (5b), the loglikelihood 

function that is maximized to identify the parameters #(%!) and )(%!) is defined as: 

7!4#(%), )(%)5 = Φ9
GG! − #(%!)

)(%!)
; − Φ9

FF! − #(%!)
)(%!)

; 	-.	data	is	interval − censored (6a) 

7!4#(%), )(%)5 = Φ9
GG! − #(%!)

)(%!)
; 	-.	data	is	left − 	censored (6b) 

7!4#(%), )(%)5 = 1 − Φ9
FF! − #(%!)
)(%!)

; 	-.	data	is	right − censored (6c) 

7!4#(%), )(%)5 =
1

)(%!)
ϕ 9

FF! − #(%!)
)(%!)

; 	-.	data	is	fully	observed (6d) 

Which can be used to obtain estimates for #(%) and )(%) using maximum likelihood estimation. 

2.2. Model imputation 

As previously described, when dealing with interval-censored data, we have limited access to the 

observed distribution of the variable of interest. This is in contrast with standard multiple 

imputation analysis, where the variable of interest is fully unobserved. This distinction has 

implications on the imputation strategy because it determines the appropriate draw of the imputed 

error. 

Consider the  d.g.p stated in equation 1 and define !!∗ to be the true but unobserved variable of 

interest. By definition, if the data is interval-censored, the range of values that can be potentially 

used to impute !!∗ are bounded between the lower and upper threshold of a given interval. In 

addition, conditional on the observed characteristics %, and the parameters #(%!) and )(%!), it 

implies that the unobserved error (!∗ is also bounded: 



 

 

(!∗ ∈ b
FF! − #(%!)
)(%!)

,
GG& − #(%!)
)(%!)

c (7) 

Furthermore, under the assumption that (! follows a standard normal distribution, we can impute 

values for !!∗, by simply getting random draws for (!∗ from a truncated random normal distribution: 

(e! = Φ'((f!), where	f!~hi-.jfklΦ9
FF! − #(%!)
)(%!)

; ,Φ 9
GG& − #(%!)
)(%!)

;m (8) 

Where Φ'((f!) corresponds to the f)* quantile for the standard normal distribution. Finally, the 

imputed value for the outcome of interest !!∗ is given by: 

!e! = 	#(%!) + (e!)(%!) (9) 

Because the population parameters #(%!) and )(%!) are unknown, we use the sample equivalents 

that are estimated using the interval regression estimator via maximum likelihood.2 To account for 

the uncertainty of the regression estimation, we obtain random draws from the following joint 

normal distribution: 

p#e
(%)
)e(%)q~0 r

#̂(%)
	)t(%), Ω

vw	; 		Ωv = Ωy ∗
i
ie ; ie~{+

,	 (10) 

Where Ωy is the ML variance-covariance matrix estimate, i is the number of observations in the 

sample, and  ie is a random draw from a chi squared distribution i degrees of freedom. Finally, the 

imputation for !!∗ will be given by: 

!e|! = #e(%!) + (e|!)e(%!) (11N) 

(e|! = Φ'((f̃!), where	f!~hi-.jfklΦ9
FF! − #e(%!)
)e(%!)

; ,Φ9
GG! − #e(%!)

)e(%!)
;m (11P) 

 

2 For numerical purposes, it is also important to emphasize that !(#!) is not estimated directly, but ln !(#!) is 
estimated instead.  

 



 

 

Where (e|! is used in (11a) instead of (e!, to account for the role of the estimated parameters on the 

error (e. 

In summary, the imputation algorithm is as follows: 

1. Estimate the parameters associated with #(%) and )(%) using a heteroskedastic interval 

regression approach via maximum likelihood, as well as the variance covariance matrix 

Ω. 

2. Obtain ie from a random draw from {+,, and estimate Ωv. 

3. Obtain a random draw for #e(%) and )e(%) from 0 r#̂
(%)

	)t(%), Ω
vw. 

4. Obtain random draws for (e|!, conditional on #e(%) and )e(%), for each observation -. 

5. Get the full sample of imputed data !e|!. 

6. Repeat steps 2-4 M times and obtain M sets of imputed samples.  

Steps 2-4 corresponds to simulating from the posterior distribution, similar to what is described in 

Gelman et al. (2014).  

2.3. Model estimation and inference 

Once the M imputed data sets have been obtained, statistical analysis can be done by independently 

implementing the desired model estimation across all M imputed samples. The aggregation and 

summary from the M estimated models could then be done applying the combination rules 

described in Rubin (1987).  

Let ~ be the set of parameters of interest, and ~�- and ÄÅ- be the set of estimated coefficients and 

corresponding variance-covariance matrix obtained using simulated sample k. The multiple 

imputation estimates ~�. for the parameter of interest is given by: 

~�. =
1
Ç @ ~�-

.

-/(
(13) 

Whereas the variance-covariance estimate ÄÅ. is given by: 



 

 

ÄÅ. =
1
Ç @ Ä-

.

-/(
+ r

Ç + 1
Ç w

4~�- − ~�.5′4~�- − ~�.5
Ç − 1 		 (14) 

3. Simulation studies 
3.1. Setup 

We examine the performance of our proposed estimator under several simulation scenarios, 

using data structures with explicit multiplicative heteroskedasticity, similar to the ones proposed 

in Machado and Santos-Silva (2019), and with a varying coefficient model structure, as in Hsu, 

Wen and Chen (2021). In both cases, the goal is to simulate data that would show heterogeneity 

when using conditional quantile regressions for the estimation. This structure is flexible enough to 

also allow the estimation of other distribution based regressions such as unconditional quantile 

regressions (Firpo, Fortin and Lemieux, 2009) and Recentered Influence function regressions in 

general (Rios-Avila, 2020).  

The first set of simulations is designed to study the performance of the estimator under 

the assumption of multiplicative heteroskedasticity assuming the following functional form: 

! = ~0 + ~(%( + ~,%, + ()(%(, %,) (15) 

Where %(~PÑfiGFF-(0.5) and %,~{1,/5 . Following Machado and Santos-Silva (2019), 

we use two different functional forms for )(%(, %,): 

)((%(, %,) = Ü0 + Ü(%( + Ü,%, (16N) 

),(%(, %,) = Ñ2"32#$#32$$$ (16P) 

In both cases, we require that )(%(, %,) to be strictly positive. The first case, equation (16a), 

imposes the assumption of linear hetoreskedasticity and provides a closed form solution for the 

corresponding quantile coefficients. The second option, equation (16b), guarantees standard 

deviation to be strictly positive, but does not have a closed form solution for the corresponding 

conditional quantile regression coefficients. As described in Machado and Santos-Silva (2019), 

this data generating process also guarantees that quantiles will not cross, and thus the 



 

 

corresponding coefficients can be estimated directly using standard conditional quantile regression 

estimators. 

Using this data structure, we consider four different distributions for the error (: Normal 

distribution, logistic distribution, chi square distribution with 5 degrees of freedom, and uniform 

distribution. All of them were adjusted to have a mean 0 and standard deviation 1. Whereas the 

first two distributions are meant to show how sensitive is the estimator to the normality 

assumption, the third and fourth aim to show how sensitive the results are to cases where the error 

has a skew distribution, or a distribution with limited range. With this considerations, the data 

generating process is defined as: 

! = %( + %, + ( ∗ (1 − 0.5%( + 0.2%,) (17N) 

! = %( + %, + ( ∗ Ñ0.5'0.130.,$$ (17P) 

The second set of simulations use a data generating process following a varying coefficient 

approach, based on the percentile á an observation belongs to. In this setup, we assume that á is 

defined by a random draw from a uniform distribution, and that ! is given by: 

! = ~0(á) + ~((á)%( + ~,(á)%, (18) 

Following Hsu, et al (2021), the coefficients ~(á)′à are defined as: 

~0(á) = 1 + 0.5Φ'((á); ~((á) = 0.4 + 1.2Φ'((á); ~,(á) = 0.6 + 0.5Φ'((á) (19N) 

~0(á) = ~((á) = ~,(á) = 0.5(1 + Φ'((á) − log(1 − á)) (19P) 

Equation (19a) imposes a structure that is similar to the multiplicative normality under 

linear heteroskedasticity (equation 17a), whereas the second equation imposes a skew conditional 

distribution of the outcome. 

In all scenarios, we assume that data is subject to interval censoring, such that FF! =

⌊!!⌋		&	GG! = ⌈!!⌉, where ⌊. ⌋ and ⌈. ⌉ represent the nearest integers that is lower or higher than !! 

respectively. In addition, we also assume if !! < −1 or !! > 10, the lower and upper thresholds, 

respectively, will be undefined.  



 

 

For the implementation and analysis, we use 2500 replications, with a sample size of 1,000 

observations. Replications using sample sizes of 500 and 2,000 are provided in the appendix, with 

results that are qualitatively similar. We focus on the comparison of conditional quantile 

regressions for the 10th, 50th and 90th quantiles, as well as for the 10th, 50th and 90th unconditional 

quantiles. Quantile regressions were estimated using the fast algorithm developed in 

Chernozhukov et al (2022) and implemented via the Stata command -qrprocess-, whereas the 

unconditional quantile regressions were estimated following Firpo, Fortin and Lemieux (2009) 

and implanted via the Stata command -rifhdreg- (Rios-Avila, 2020). Finally, the simulation was 

implemented using -parallel- (Vega Yon and Quistorff, 2019). Finally, our imputation method is 

implanted with a new user-written program -intreg_mi-, which is available upon request. 

While population parameters for conditional quantile regressions for some of the data 

generating exists, there are no close form solutions for the population parameters corresponding 

to the RIF regressions. Because of this, we assume that average estimates using fully observed 

data represent the population parameters, for the calculation of the relevant statistics. Thus, by 

construction, the bias of the model estimations using fully observed data is zero. 

3.2. Results 

Tables 1 to 3 provide a summary of the results for the Monte Carlo simulations using the 

different data generating processes. In each table, we present the bias of our imputation procedure 

compared to the average parameters using fully observed data as if they were the asymptotic 

population parameters. For both conditional and unconditional quantile regressions, the bias 

observed using the multiple imputation data is small when the homoscedastic error is assumed to 

follow a symmetric bell curve distribution, regardless of the type of heteroskedasticity implied by 

the dgp.  

When the errors follow a chi2 distribution or uniform distribution, we observe some bias,  

especially for the lower quantile coefficients. The bias, however, is considerably smaller if the data 

generating process assumes an functional form with exponential heteroskedasticity. Finally, the 

results using the varying coefficient structure reveal low bias in both cases. In all simulations, the 

bias magnitude did not depend on the sample size (see appendix). 



 

 

In terms of the mean absolute error (MAE), we present the ratio between the MAE for the 

imputed data and the MAE for the fully observed data. Except for cases when the bias is large, the 

MAE for the imputed data is somewhat smaller than the one using fully observed data, by almost 

10%. It is possible that this gain in the precision of the point estimate may be simulation specific, 

since we are indirectly using parametric structures for the estimation of the quantile regressions. 

In terms of standard errors ratio, which compares the average standard errors of the imputed data 

to fully observed data, we observe that the standard errors for imputed data are about 15% larger 

on average, than the standard errors based on fully observed data. This is expected given the 

information loss due to the nature of the interval censored data.



 

 

 

Table 1. Monte Carlo Simulation: N=1000, Linear Heteroskedasticity 

! = #$ + & ∗ (# 
&~normal &~logistic &~Chi2 &~uniform 

TRUE Bias 
MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio 

CQR-Q10 
x1 2.011 0.008 -0.014 0.235 1.955 -0.030 -0.094 0.156 1.848 0.321 3.886 0.915 2.094 0.258 2.073 0.690 
x2 0.798 0.002 -0.030 0.155 0.803 -0.006 -0.063 0.134 0.831 0.123 1.490 0.377 0.786 0.052 0.293 0.296 
cons -2.381 -0.008 0.006 0.292 -2.247 0.022 -0.084 0.207 -1.989 -0.471 5.425 1.035 -2.572 -0.264 1.946 0.749 

CQR-Q50 
x1 1.000 0.001 -0.055 0.070 1.003 -0.001 -0.056 0.086 1.168 0.020 -0.029 0.094 0.996 0.004 -0.053 0.043 
x2 1.001 -0.002 -0.055 0.071 0.997 -0.001 -0.025 0.088 0.969 0.000 -0.048 0.084 0.999 0.001 -0.074 0.041 
cons -0.001 0.002 -0.042 0.072 -0.002 0.002 -0.060 0.088 -0.385 0.023 -0.032 0.096 0.005 -0.005 -0.042 0.045 

CQR-Q90 
x1 -0.009 0.000 -0.049 0.103 0.041 0.005 -0.066 0.096 -0.051 -0.011 -0.051 0.048 -0.097 -0.008 -0.019 0.146 
x2 1.199 0.001 -0.041 0.110 1.191 0.000 -0.067 0.109 1.215 -0.004 -0.054 0.047 1.216 -0.001 0.024 0.145 
cons 2.383 -0.001 -0.059 0.099 2.252 0.007 -0.061 0.095 2.486 -0.003 -0.048 0.046 2.573 -0.042 0.057 0.141 

UQR-Q10 
x1 2.097 0.008 -0.005 0.159 1.915 -0.021 -0.065 0.114 1.840 0.188 0.903 0.287 2.539 0.236 0.760 0.459 
x2 0.611 0.001 -0.021 0.060 0.602 -0.008 -0.067 0.047 0.684 0.079 0.312 0.252 0.651 0.027 0.075 0.191 
cons -2.537 -0.006 0.006 0.130 -2.342 0.016 -0.063 0.108 -2.370 -0.174 0.557 0.332 -3.046 -0.163 0.352 0.401 

UQR-Q50 
x1 1.006 0.000 -0.083 0.130 1.026 -0.007 -0.059 0.159 1.165 0.039 -0.011 0.161 0.945 0.012 -0.070 0.066 
x2 0.929 0.000 -0.058 0.110 0.919 -0.002 -0.061 0.128 0.945 0.000 -0.067 0.144 0.921 0.007 -0.096 0.062 
cons 0.131 0.001 -0.069 0.122 0.120 0.004 -0.072 0.140 -0.199 0.020 0.001 0.137 0.190 -0.004 -0.076 0.073 

UQR-Q90 
x1 0.052 -0.001 -0.076 0.103 0.106 0.004 -0.061 0.108 0.014 -0.004 -0.055 0.034 -0.003 -0.004 -0.045 0.166 
x2 1.466 0.001 -0.053 0.192 1.492 -0.004 -0.089 0.213 1.455 -0.004 -0.087 0.111 1.484 -0.015 0.052 0.231 
cons 2.263 -0.001 -0.075 0.129 2.134 0.010 -0.063 0.134 2.369 0.000 -0.060 0.068 2.314 0.010 0.003 0.176 

 

  



 

 

Table 2 Monte Carlo Simulation: N=1000, exponential Heteroskedasticity 

! = #$ + & ∗ )!" 
&~normal &~logistic &~Chi2 &~uniform 

TRUE Bias 
MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio 

CQR-Q10 
x1 1.639 -0.001 -0.032 0.168 1.603 -0.009 -0.066 0.143 1.536 -0.030 0.301 0.484 1.691 -0.012 0.228 0.320 
x2 0.743 0.004 -0.040 0.173 0.758 0.003 -0.078 0.162 0.788 0.018 0.258 0.465 0.726 0.046 0.501 0.268 
cons -1.280 -0.003 -0.026 0.160 -1.209 -0.013 -0.081 0.129 -1.072 -0.050 0.434 0.456 -1.384 -0.008 0.352 0.344 

CQR-Q50 
x1 1.000 0.000 -0.076 0.115 0.999 0.000 -0.045 0.158 1.102 0.025 0.009 0.152 1.001 -0.001 -0.123 0.045 
x2 0.999 0.000 -0.060 0.114 0.998 -0.003 -0.027 0.158 0.959 -0.009 -0.012 0.154 1.002 0.007 -0.104 0.043 
cons 0.000 0.001 -0.078 0.119 0.004 0.003 -0.032 0.162 -0.204 0.053 0.195 0.154 0.000 -0.008 -0.105 0.045 

CQR-Q90 
x1 0.364 -0.002 -0.066 0.170 0.392 0.009 -0.062 0.154 0.331 -0.003 -0.075 0.053 0.306 0.014 0.148 0.270 
x2 1.255 -0.001 -0.065 0.162 1.239 -0.002 -0.040 0.157 1.269 -0.007 -0.078 0.035 1.274 -0.012 0.152 0.253 
cons 1.279 0.001 -0.066 0.164 1.216 0.012 -0.061 0.147 1.340 -0.010 -0.083 0.047 1.386 -0.040 0.268 0.266 

UQR-Q10 
x1 1.613 -0.002 -0.184 0.256 1.478 0.018 -0.097 0.258 1.273 0.071 0.059 0.265 1.734 -0.125 0.171 0.089 
x2 0.582 0.001 -0.097 0.107 0.565 0.006 -0.052 0.100 0.648 -0.003 -0.106 0.180 0.670 -0.084 0.219 0.042 
cons -1.533 -0.001 -0.135 0.274 -1.390 -0.019 -0.043 0.256 -1.417 -0.042 -0.138 0.348 -1.843 0.200 0.496 0.167 

UQR-Q50 
x1 1.003 0.002 -0.072 0.246 1.025 -0.015 -0.053 0.273 1.099 0.037 0.045 0.284 0.922 0.072 0.152 0.181 
x2 0.850 0.001 -0.079 0.183 0.853 -0.009 -0.074 0.200 0.860 -0.031 0.037 0.219 0.839 0.042 0.077 0.139 
cons 0.170 0.000 -0.079 0.207 0.152 0.016 -0.047 0.221 0.023 0.059 0.191 0.233 0.245 -0.077 0.144 0.182 

UQR-Q90 
x1 0.430 -0.002 -0.047 0.077 0.446 -0.006 -0.068 0.050 0.383 -0.020 -0.075 0.000 0.429 0.009 -0.010 0.129 
x2 1.624 -0.001 -0.124 0.484 1.612 -0.024 -0.105 0.433 1.585 -0.064 -0.055 0.295 1.630 0.041 -0.083 0.558 
cons 1.212 0.002 -0.134 0.323 1.190 0.027 -0.127 0.290 1.305 0.066 -0.073 0.163 1.217 -0.043 -0.078 0.377 



 

 

Table 3 Monte Carlo Simulation: N=1000, Varying coefficient structure 

! = #$(+) 

Type 1 Type 2 

TRUE Bias 
MAE  
Ratio 

StErr  
Ratio TRUE Bias 

MAE  
Ratio 

StErr  
Ratio 

CQR-Q10 
x1 -1.140 0.000 -0.030 0.103 -0.092 0.011 0.033 0.154 
x2 -0.035 0.010 -0.038 0.120 -0.086 0.010 0.016 0.156 
cons 0.356 -0.010 -0.046 0.182 -0.086 -0.043 0.178 0.170 

CQR-Q50 
x1 0.404 -0.002 -0.052 0.067 0.845 -0.009 -0.021 0.056 
x2 0.601 -0.001 -0.050 0.065 0.841 -0.004 -0.016 0.045 
cons 0.998 0.003 -0.031 0.085 0.853 0.029 0.011 0.059 

CQR-Q90 
x1 1.938 0.001 -0.048 0.098 2.282 -0.001 -0.045 0.045 
x2 1.236 -0.005 -0.038 0.098 2.280 -0.010 -0.067 0.054 
cons 1.644 0.004 -0.046 0.139 2.309 -0.002 -0.066 0.073 

UQR-Q10 
x1 -1.211 0.002 -0.046 0.170 -0.097 0.018 -0.027 0.174 
x2 -0.044 0.002 -0.023 0.072 -0.078 0.012 -0.031 0.157 
cons 0.482 -0.004 -0.025 0.066 -0.074 -0.056 0.078 0.162 

UQR-Q50 
x1 0.418 -0.003 -0.059 0.119 0.900 -0.008 -0.023 0.031 
x2 0.535 -0.003 -0.071 0.112 0.737 -0.005 -0.015 0.026 
cons 0.899 0.007 -0.061 0.124 0.757 0.017 -0.031 0.028 

UQR-Q90 
x1 1.982 0.001 -0.079 0.150 2.214 -0.002 -0.039 0.051 
x2 1.296 0.002 -0.060 0.136 2.321 0.001 -0.022 0.077 
cons 1.778 -0.003 -0.093 0.141 2.499 -0.006 -0.031 0.057 

 

4. Wage inequality in Grenada 

This illustration focuses on an empirical application of our proposed method for the case of 

Grenada, focusing on the description of wage inequality trends in the country between 2013 and 

2020 using the annual Labor Force Survey (LFS). This survey provides the only source of 

information that can be used to describe the status of the labor market and the distribution of labor 

income in the country.  

One major limitation of this survey, however, is the collection of labor income data. Compared to 

standard household surveys or labor force surveys in most developed countries, labor income 

recorded in the LFS in Grenada is only available in brackets. Furthermore, there is a large 

proportion of the employed population who do not declare their labor income. Table 4 provides an 

overview of the labor income distribution across time. 

 

 



 

 

Table 4 Labor Income distribution by year 

Year 2013 2014 2015 2016 2017 2018 2019 2020 
>200 3.0 1.2 3.7 3.5 1.4 0.2 0.0 0.4 
200-399 6.9 5.8 6.3 5.3 4.1 1.6 1.2 1.1 
400-799 15.4 15.9 12.3 14.2 13.7 9.0 8.3 10.3 
800-1199 19.1 20.0 18.3 18.7 21.1 20.4 23.8 24.6 
1200-1999 17.7 17.4 13.9 13.1 18.4 14.7 14.9 15.9 
2000-3999 15.6 11.3 11.2 11.5 10.5 9.7 12.8 11.8 
4000-5999 2.6 2.4 2.4 2.2 2.2 1.6 1.2 2.1 
6000+ 2.0 1.2 0.6 0.6 0.7 1.0 1.0 0.5 
Not stated 17.7 24.8 31.3 30.9 27.9 41.8 36.7 33.2 

In this case, we face two types of problems. On the one hand, we only have access to interval-

censored data, which is insufficient to analyze changes in the distribution of earnings in the 

country, and, on the other hand, we have an increasing proportion of individuals who do not declare 

income. We apply the imputation procedure previously described to address both problems, 

estimating the interval-censored regression for each year, with a set of household-level 

characteristics and job type characteristics. The sample of interest includes all adults who declared 

to be employed, even if they did not state their income. 

We make the simplifying assumption that people who did not state income are randomly 

distributed conditional on observed characteristics. To account for the fact that characteristics may 

differ across those who did or did not state their incomes, an inverse probability weighting strategy 

is used to estimate the interval regression model. Finally, the imputation procedure is implemented 

as discussed in section 3 but assuming no lower and upper bounds for the imputed wages. 

Nevertheless, the maximum imputed wage for those who do not state their income is capped at the 

maximum predicted among those who declare their income. In all cases, imputed earnings are 

adjusted by inflation. 



 

 

Figure 1 Average Monthly Earnings by Year and Gender 

 

The results suggest that after a small decline in average real monthly earnings from 2013 to 2016, 

there was a slight improvement in the following two years, with a small decline in 2019, with 

average wages remaining at stable levels in 2020, despite the Covid-19 pandemic.7 The results 

also suggest that the gender earnings gap has shown a somewhat increasing trend between 2013 

and 2019, although it is predicted to decline a little in 2020. 

 

 

7 This estimate does not take into account the decline in labor force participation observed during the pandemic. 



 

 

Figure 2 Selected Quantiles and Gini coefficient across Years 

 

In terms of inequality, the estimates suggest that it has declined substantially across the years. The 

estimated Gini coefficient fell from 44.2 Gini points in 2015 to 34.1 in 2019, with a significant 

increase in 2020. This decline in inequality seems to have been driven by faster growth in the 

lower and middle sections of the wage distribution and a small decline in the upper section of the 

distribution. 

5. Conclusion 

In this paper, we present an imputation strategy that can be used to analyze interval-censored data. 

Our method proposes that a flexible enough interval regression model can be used to impute 

interval-censored data, which allows to recover the full distribution of data, and can be further 

analyzed using standard statistical methods.  

The main limitation of our strategy is the assumption of conditional normality, which is required 

for the estimation of the interval regression model using standard software. The principles of the 

imputation approach, however, could be extended to allow for more flexible moment 

specifications, as well as error distributions.  



 

 

Nevertheless, the Monte Carlo simulation suggests that as long as the latent error has a symmetric 

bell shaped distribution, regression analysis using the imputed data show small bias, with 

performance that is comparable to analyzing the uncensored data. Furthermore, when the 

heteroskedasticity structure is given by an exponential function, biases are small even when the 

latent error follows a skew or a limited distribution.  

For the specific case of Grenada, we only had access to interval-censored data, which is insufficient 

to analyze changes in the distribution of earnings in the country, and, on the other hand, we have 

an increasing proportion of individuals who do not declare income. We apply the imputation 

procedure to address both problems, estimating the interval-censored regression for each year, with 

a set of household-level characteristics and job type characteristics. The results suggest that earned 

income inequality in this country has declined, which coincides with other economic performance 

indicators in the country.  
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Appendix 

Table A1. Monte Carlo Simulation: N=500, Linear Heteroskedasticity 

! = #$ + & ∗ (# 
&~normal &~logistic &~Chi2 &~uniform 

TRUE Bias 
MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio 

CQR-Q10 
x1 2.005 0.023 -0.013 0.249 1.962 -0.028 -0.070 0.177 1.843 0.330 2.664 0.807 2.093 0.265 1.397 0.587 
x2 0.808 0.006 -0.036 0.162 0.802 -0.004 -0.041 0.146 0.838 0.123 0.816 0.335 0.783 0.052 0.249 0.249 
cons -2.385 -0.025 -0.021 0.303 -2.251 0.020 -0.068 0.227 -1.988 -0.481 3.696 0.918 -2.563 -0.274 1.395 0.638 

CQR-Q50 
x1 1.003 0.001 -0.063 0.062 0.998 -0.001 -0.031 0.080 1.160 0.021 -0.042 0.095 1.009 0.000 -0.059 0.054 
x2 1.004 0.000 -0.057 0.063 0.999 0.000 -0.039 0.080 0.971 0.000 -0.044 0.082 0.996 0.000 -0.069 0.055 
cons -0.004 0.000 -0.062 0.064 0.005 0.001 -0.040 0.081 -0.379 0.023 -0.044 0.104 -0.002 -0.002 -0.064 0.056 

CQR-Q90 
x1 -0.011 0.000 -0.050 0.105 0.040 0.005 -0.070 0.106 -0.047 -0.012 -0.050 0.054 -0.090 -0.010 -0.021 0.120 
x2 1.205 -0.001 -0.064 0.112 1.190 -0.004 -0.069 0.119 1.212 -0.002 -0.069 0.056 1.209 0.000 0.040 0.118 
cons 2.376 0.000 -0.053 0.103 2.255 0.011 -0.063 0.104 2.488 -0.006 -0.054 0.052 2.569 -0.039 0.038 0.115 

UQR-Q10 
x1 2.071 0.022 0.017 0.165 1.907 -0.018 -0.024 0.114 1.829 0.201 0.715 0.295 2.461 0.264 0.724 0.437 
x2 0.613 0.005 -0.029 0.074 0.594 -0.006 -0.063 0.049 0.687 0.087 0.262 0.258 0.631 0.038 0.096 0.220 
cons -2.528 -0.016 0.021 0.149 -2.327 0.012 -0.051 0.114 -2.366 -0.190 0.436 0.348 -2.983 -0.196 0.333 0.413 

UQR-Q50 
x1 1.023 0.002 -0.058 0.129 1.035 -0.009 -0.065 0.158 1.169 0.039 -0.025 0.151 0.956 0.011 -0.081 0.064 
x2 0.941 0.003 -0.074 0.106 0.934 -0.001 -0.053 0.127 0.965 -0.004 -0.056 0.137 0.921 0.011 -0.093 0.058 
cons 0.111 -0.003 -0.077 0.116 0.107 0.004 -0.051 0.136 -0.218 0.023 -0.004 0.131 0.183 -0.006 -0.080 0.068 

UQR-Q90 
x1 0.042 0.000 -0.064 0.098 0.100 0.006 -0.077 0.104 0.018 -0.006 -0.055 0.039 0.000 -0.004 -0.049 0.164 
x2 1.470 -0.005 -0.057 0.180 1.469 -0.004 -0.074 0.207 1.430 -0.006 -0.074 0.109 1.481 -0.012 0.042 0.220 
cons 2.267 0.001 -0.046 0.118 2.158 0.010 -0.062 0.125 2.389 0.002 -0.057 0.064 2.313 0.009 -0.006 0.167 

 

  



 

 

Table A2 Monte Carlo Simulation: N=500, exponential Heteroskedasticity 

! = #$ + & ∗ )!" 
&~normal &~logistic &~Chi2 &~uniform 

TRUE Bias 
MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio 

CQR-Q10 
x1 1.643 0.000 -0.053 0.172 1.608 -0.008 -0.091 0.159 1.535 -0.029 0.217 0.422 1.692 -0.011 0.244 0.258 
x2 0.749 0.004 -0.076 0.174 0.762 0.003 -0.076 0.175 0.788 0.018 0.196 0.404 0.728 0.046 0.372 0.211 
cons -1.287 -0.004 -0.057 0.169 -1.219 -0.013 -0.077 0.147 -1.071 -0.049 0.253 0.400 -1.383 -0.011 0.344 0.275 

CQR-Q50 
x1 1.001 0.001 -0.068 0.105 0.999 0.000 -0.039 0.146 1.101 0.022 -0.035 0.139 0.997 0.000 -0.124 0.052 
x2 1.002 -0.002 -0.066 0.103 1.002 -0.005 -0.042 0.143 0.958 -0.010 -0.003 0.139 0.998 0.006 -0.117 0.050 
cons -0.003 0.001 -0.085 0.106 -0.002 0.006 -0.054 0.150 -0.202 0.055 0.090 0.140 0.003 -0.008 -0.121 0.052 

CQR-Q90 
x1 0.363 0.000 -0.066 0.173 0.392 0.004 -0.073 0.166 0.329 -0.003 -0.059 0.062 0.307 0.011 0.124 0.218 
x2 1.254 -0.004 -0.054 0.165 1.238 -0.004 -0.068 0.168 1.261 -0.006 -0.082 0.058 1.271 -0.014 0.144 0.201 
cons 1.278 0.003 -0.045 0.165 1.217 0.015 -0.069 0.160 1.346 -0.015 -0.067 0.061 1.385 -0.037 0.161 0.213 

UQR-Q10 
x1 1.596 -0.001 -0.143 0.204 1.466 0.022 -0.082 0.203 1.288 0.054 -0.057 0.209 1.724 -0.103 -0.007 0.081 
x2 0.581 0.001 -0.080 0.099 0.564 0.006 -0.052 0.094 0.654 -0.011 -0.073 0.149 0.671 -0.073 0.047 0.049 
cons -1.527 -0.002 -0.090 0.235 -1.388 -0.022 -0.052 0.217 -1.427 -0.027 -0.135 0.288 -1.836 0.175 0.146 0.158 

UQR-Q50 
x1 1.020 0.004 -0.061 0.235 1.041 -0.016 -0.053 0.266 1.118 0.038 0.015 0.276 0.928 0.072 0.029 0.175 
x2 0.870 -0.002 -0.075 0.172 0.870 -0.010 -0.059 0.196 0.870 -0.027 -0.008 0.212 0.846 0.043 0.018 0.133 
cons 0.143 0.002 -0.057 0.188 0.125 0.020 -0.038 0.206 0.003 0.055 0.095 0.217 0.234 -0.076 0.043 0.166 

UQR-Q90 
x1 0.424 0.002 -0.042 0.087 0.436 -0.006 -0.066 0.062 0.373 -0.016 -0.074 0.011 0.421 0.005 -0.027 0.132 
x2 1.598 0.005 -0.083 0.400 1.604 -0.021 -0.108 0.367 1.572 -0.053 -0.089 0.253 1.606 0.031 -0.086 0.471 
cons 1.239 -0.006 -0.085 0.262 1.206 0.025 -0.120 0.238 1.325 0.049 -0.102 0.135 1.241 -0.032 -0.099 0.308 

 

  



 

 

Table A3 Monte Carlo Simulation: N=500, Varying coefficient structure 

! = #$(+) 

Type 1 Type 2 

TRUE Bias 
MAE  
Ratio 

StErr  
Ratio TRUE Bias 

MAE  
Ratio 

StErr  
Ratio 

CQR-Q10 
x1 -1.133 0.002 -0.030 0.110 -0.078 0.010 0.027 0.139 
x2 -0.036 0.008 -0.045 0.119 -0.078 0.009 0.036 0.146 
cons 0.359 -0.009 -0.067 0.169 -0.094 -0.041 0.134 0.152 

CQR-Q50 
x1 0.401 -0.001 -0.044 0.064 0.852 -0.009 -0.044 0.052 
x2 0.598 0.000 -0.052 0.059 0.848 -0.004 -0.002 0.042 
cons 1.002 0.001 -0.051 0.070 0.847 0.028 0.005 0.051 

CQR-Q90 
x1 1.933 0.001 -0.050 0.100 2.296 0.001 -0.040 0.047 
x2 1.234 -0.005 -0.039 0.099 2.276 -0.010 -0.046 0.067 
cons 1.649 0.004 -0.045 0.136 2.305 -0.001 -0.055 0.086 

UQR-Q10 
x1 -1.183 0.003 -0.063 0.152 -0.085 0.013 -0.015 0.166 
x2 -0.045 0.003 -0.046 0.075 -0.077 0.014 -0.018 0.149 
cons 0.471 -0.005 -0.029 0.066 -0.077 -0.053 0.036 0.152 

UQR-Q50 
x1 0.419 0.000 -0.061 0.122 0.914 -0.005 -0.026 0.037 
x2 0.542 -0.003 -0.053 0.109 0.746 -0.003 -0.025 0.030 
cons 0.892 0.004 -0.067 0.118 0.742 0.015 -0.030 0.032 

UQR-Q90 
x1 1.953 0.003 -0.055 0.123 2.215 0.000 -0.041 0.050 
x2 1.291 0.002 -0.044 0.130 2.305 -0.003 -0.033 0.076 
cons 1.800 -0.004 -0.061 0.112 2.517 -0.005 -0.037 0.049 

 

  



 

 

Table A4. Monte Carlo Simulation: N=2000, Linear Heteroskedasticity 

! = #$ + & ∗ (# 
&~normal &~logistic &~Chi2 &~uniform 

TRUE Bias 
MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio 

CQR-Q10 
x1 2.012 0.001 -0.011 0.228 1.956 -0.032 -0.058 0.140 1.846 0.315 5.759 1.028 2.097 0.254 3.135 0.790 
x2 0.797 0.000 -0.040 0.150 0.813 -0.007 -0.060 0.121 0.831 0.120 2.261 0.414 0.785 0.053 0.433 0.343 
cons -2.379 -0.002 -0.028 0.283 -2.253 0.025 -0.059 0.188 -1.990 -0.462 7.931 1.152 -2.576 -0.261 2.864 0.859 

CQR-Q50 
x1 1.000 0.001 -0.056 0.076 1.000 -0.001 -0.042 0.095 1.162 0.020 -0.016 0.090 0.997 0.001 -0.077 0.038 
x2 1.000 0.000 -0.057 0.076 1.001 -0.001 -0.044 0.099 0.967 0.000 -0.066 0.086 1.001 0.001 -0.077 0.035 
cons -0.001 0.000 -0.059 0.076 -0.001 0.002 -0.047 0.096 -0.379 0.024 -0.025 0.087 0.002 -0.002 -0.078 0.040 

CQR-Q90 
x1 -0.013 0.001 -0.045 0.099 0.040 0.008 -0.073 0.092 -0.059 -0.011 -0.055 0.045 -0.099 -0.010 -0.007 0.180 
x2 1.204 -0.001 -0.047 0.107 1.193 -0.002 -0.055 0.099 1.207 -0.003 -0.059 0.041 1.217 0.000 0.036 0.178 
cons 2.380 -0.002 -0.057 0.096 2.251 0.008 -0.058 0.088 2.497 -0.003 -0.048 0.042 2.577 -0.042 0.108 0.177 

UQR-Q10 
x1 2.102 0.004 -0.011 0.174 1.928 -0.018 -0.091 0.123 1.849 0.168 1.117 0.282 2.605 0.208 0.772 0.504 
x2 0.611 0.001 -0.032 0.059 0.615 -0.010 -0.061 0.050 0.683 0.073 0.482 0.241 0.672 0.018 0.062 0.176 
cons -2.537 -0.004 0.006 0.128 -2.357 0.014 -0.080 0.109 -2.374 -0.157 0.725 0.318 -3.104 -0.135 0.370 0.415 

UQR-Q50 
x1 0.997 0.002 -0.071 0.136 1.014 -0.010 -0.070 0.162 1.141 0.046 0.068 0.171 0.941 0.013 -0.069 0.065 
x2 0.918 0.000 -0.069 0.112 0.914 -0.003 -0.066 0.131 0.932 0.000 -0.080 0.151 0.924 0.007 -0.093 0.063 
cons 0.144 -0.001 -0.064 0.129 0.134 0.006 -0.055 0.147 -0.174 0.017 0.001 0.143 0.190 -0.003 -0.066 0.077 

UQR-Q90 
x1 0.051 0.001 -0.047 0.104 0.104 0.006 -0.073 0.110 0.010 -0.005 -0.051 0.035 -0.006 -0.003 -0.043 0.169 
x2 1.478 -0.001 -0.062 0.203 1.502 -0.002 -0.079 0.220 1.463 0.001 -0.083 0.127 1.474 -0.011 0.060 0.251 
cons 2.249 0.000 -0.065 0.142 2.126 0.008 -0.082 0.144 2.362 -0.003 -0.043 0.083 2.326 0.008 -0.010 0.190 

 

  



 

 

Table A5 Monte Carlo Simulation: N=2000, exponential Heteroskedasticity 

! = #$ + & ∗ (# 
&~normal &~logistic &~Chi2 &~uniform 

TRUE Bias 
MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio TRUE Bias 

MAE 
Ratio 

StErr 
Ratio 

CQR-Q10 
x1 1.639 0.000 -0.053 0.162 1.603 -0.009 -0.076 0.130 1.536 -0.030 0.442 0.541 1.693 -0.014 0.254 0.390 
x2 0.744 0.004 -0.051 0.169 0.758 0.002 -0.086 0.150 0.786 0.017 0.308 0.512 0.726 0.044 0.721 0.333 
cons -1.280 -0.004 -0.043 0.153 -1.210 -0.013 -0.099 0.114 -1.072 -0.048 0.749 0.503 -1.386 -0.005 0.312 0.420 

CQR-Q50 
x1 0.999 0.001 -0.072 0.127 1.001 0.000 -0.047 0.170 1.103 0.024 0.071 0.157 1.001 -0.001 -0.118 0.038 
x2 1.000 0.000 -0.060 0.122 0.999 -0.003 -0.012 0.170 0.957 -0.008 -0.011 0.165 1.001 0.007 -0.129 0.033 
cons 0.000 -0.001 -0.044 0.129 0.000 0.004 -0.042 0.169 -0.203 0.053 0.375 0.161 -0.002 -0.008 -0.118 0.038 

CQR-Q90 
x1 0.363 -0.002 -0.041 0.165 0.397 0.006 -0.060 0.142 0.332 -0.003 -0.066 0.047 0.310 0.014 0.137 0.338 
x2 1.256 -0.002 -0.062 0.161 1.241 -0.002 -0.088 0.142 1.265 -0.003 -0.076 0.028 1.276 -0.012 0.161 0.317 
cons 1.279 0.002 -0.053 0.160 1.211 0.016 -0.075 0.140 1.341 -0.013 -0.063 0.045 1.383 -0.040 0.365 0.333 

UQR-Q10 
x1 1.621 -0.001 -0.219 0.316 1.485 0.022 -0.097 0.314 1.266 0.081 0.396 0.326 1.735 -0.141 0.500 0.106 
x2 0.587 0.000 -0.086 0.123 0.570 0.006 -0.064 0.115 0.643 0.002 -0.112 0.211 0.675 -0.091 0.542 0.037 
cons -1.542 -0.001 -0.131 0.326 -1.401 -0.020 -0.049 0.301 -1.406 -0.052 -0.049 0.412 -1.850 0.216 1.038 0.181 

UQR-Q50 
x1 0.991 0.002 -0.082 0.258 1.014 -0.016 -0.038 0.289 1.082 0.036 0.143 0.298 0.916 0.070 0.329 0.196 
x2 0.843 -0.001 -0.086 0.194 0.842 -0.010 -0.046 0.219 0.844 -0.030 0.114 0.241 0.831 0.041 0.157 0.156 
cons 0.184 0.002 -0.083 0.228 0.167 0.019 -0.046 0.243 0.046 0.059 0.339 0.264 0.256 -0.074 0.330 0.200 

UQR-Q90 
x1 0.433 0.000 -0.028 0.072 0.455 -0.007 -0.051 0.046 0.388 -0.023 -0.071 -0.009 0.437 0.012 0.004 0.135 
x2 1.630 -0.001 -0.148 0.553 1.632 -0.027 -0.114 0.514 1.606 -0.081 -0.010 0.348 1.647 0.047 -0.100 0.682 
cons 1.201 0.001 -0.158 0.379 1.167 0.030 -0.143 0.358 1.282 0.083 -0.019 0.199 1.194 -0.049 -0.093 0.472 

 

  



 

 

Table A6 Monte Carlo Simulation: N=2000, Varying coefficient structure 

! = #$(+) 

Type 1 Type 2 

TRUE Bias 
MAE  
Ratio 

StErr  
Ratio TRUE Bias 

MAE  
Ratio 

StErr  
Ratio 

CQR-Q10 
x1 -1.131 0.003 -0.074 0.101 -0.085 0.010 0.024 0.167 
x2 -0.041 0.010 -0.030 0.116 -0.090 0.011 0.021 0.158 
cons 0.358 -0.012 -0.060 0.187 -0.087 -0.043 0.208 0.184 

CQR-Q50 
x1 0.400 0.000 -0.041 0.072 0.849 -0.009 -0.023 0.059 
x2 0.599 -0.002 -0.057 0.072 0.845 -0.006 -0.027 0.047 
cons 0.999 0.004 -0.058 0.098 0.850 0.030 0.040 0.065 

CQR-Q90 
x1 1.937 0.000 -0.045 0.098 2.294 -0.007 -0.045 0.041 
x2 1.240 -0.006 -0.055 0.094 2.293 -0.015 -0.069 0.047 
cons 1.640 0.005 -0.055 0.134 2.291 0.006 -0.075 0.063 

UQR-Q10 
x1 -1.219 0.000 -0.087 0.194 -0.089 0.017 -0.030 0.179 
x2 -0.049 0.002 -0.037 0.069 -0.079 0.014 -0.009 0.159 
cons 0.492 -0.003 -0.039 0.067 -0.076 -0.057 0.165 0.166 

UQR-Q50 
x1 0.410 -0.003 -0.061 0.124 0.897 -0.007 -0.016 0.027 
x2 0.528 -0.006 -0.060 0.116 0.733 -0.006 -0.028 0.022 
cons 0.908 0.010 -0.066 0.129 0.765 0.016 -0.037 0.027 

UQR-Q90 
x1 1.999 0.002 -0.097 0.190 2.249 -0.002 -0.045 0.052 
x2 1.314 0.002 -0.061 0.159 2.348 -0.003 -0.031 0.081 
cons 1.747 -0.003 -0.109 0.191 2.458 -0.002 -0.044 0.072 

 


