
DISCUSSION PAPER SERIES

IZA DP No. 16163

L. Fumarco
S. M. Gaddis
F. Sarracino
I. Snoddy

Sendemails: An Automated Email
Package with Multiple Applications

MAY 2023

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 16163

Sendemails: An Automated Email
Package with Multiple Applications

MAY 2023

Luca Fumarco
Masaryk University, IZA and GLO

S. Michael Gaddis
University of California and Northwest
Evaluation Association

Francesco Sarracino
Research Division of STATEC and GLO

I. Snoddy
Analysis Group Vancouver, British Columbia

ABSTRACT

IZA DP No. 16163 MAY 2023

Sendemails: An Automated Email
Package with Multiple Applications*

Correspondence audits are a popular method to examine discrimination in a causal

framework. However, they often require sending hundreds or thousands of emails to

subjects. The sendemails package allows users to automatically send emails with Stata

through PowerShell, which is open-source and cross-platform. Researchers can use this

package to perform several email tasks, such as contacting students or colleagues with

standardized messages. Additionally, researchers can perform more complex tasks that

entail sending randomized messages with multiple attachments from multiple accounts,

tasks that are often necessary to conduct correspondence audit tests. This paper introduces

the command and illustrates multiple examples of its application.

JEL Classification: C8

Keywords: sendemails, PowerShell, email

Corresponding author:
Luca Fumarco
Masaryk University
Tvrdého 12
60200 Brno
Czech Republic

E-mail: luca.fumarco@econ.muni.cz

* This manuscript is currently under review at Stata Journal.

2

1 Introduction

This article introduces a new Stata package, sendemails, which allows instructors,

researchers, or students to send emails through Stata, to the benefit of their pedagogical or

scientific tasks.

Stata is a powerful software for data science that can be adapted to send messages. To

present, only limited and sparsely documented resources have been provided for this purpose.

Some contributed do-files allow users to send messages from specific email providers1, but their

customization can be complicated and time-consuming for people with limited programming

skills. Some users have prepared dedicated Stata packages intending to simplify the process of

sending emails; a good example is psemail by Xuan Zhang and colleagues (2013). However,

these early packages have some limitations; for example, they either do not allow html input,2

they do not allow sending multiple attachments or do not include standard email options, such as

delivery notifications and priority.

sendemails overcomes these limitations. This is a simple general and flexible tool,

which can be used by anyone. It allows several useful applications such as sending several

emails to students or colleagues. For example, the user can send personalized emails to students

with their exam grades, or to send a message to people in a mailing list. Our package can send

one email at a time, within a short period, thus overcoming the limit on the maximum number of

recipients per email usually set by the email provider. Outlook, for instance, imposes a limit of

500 recipients per message. With sendemails the only constraint is the maximum quantity of

recipients allowed per day which, in the case of Outlook, is 5,000. Moreover, sendemails

1 For example, there is a Stata script to send emails with an Outlook application through VBScript
(http://www.wmatsuoka.com/stata/sending-an-email-with-stata-outlook-edition) or a script to send emails with an
Outlook application invoked through Stata’s shell (https://www.stata.com/statalist/archive/2013-01/msg01201.html).
2 This limitation implies that is not possible to use italic or bold characters, for example.

http://fmwww.bc.edu/repec/bocode/p/psemail.ado
http://www.wmatsuoka.com/stata/sending-an-email-with-stata-outlook-edition
https://www.stata.com/statalist/archive/2013-01/msg01201.html

3

allows sending emails with attachments (e.g., tables and figures) after the completion of tasks

that can take several days to be carried out. In this regard, sendemails offers features similar

to other Stata packages, such as sendtoslack (which sends messages through Slack and is

available here: http://fmwww.bc.edu/repec/bocode/s/sendtoslack.ado) and statapush(which

sends messages through Pushbullet, Pushover, or IFTT, and is available here:

https://github.com/wschpero/statapush).3

sendemails allows users to send messages from different addresses, which might be

useful for a variety of reasons. For example, for different projects, the user could correspond

with different emails (e.g., a personal email address, the former affiliation address, and the

current affiliation address). For this, sendemails can be very useful to conduct online

experiments, such as correspondence audit tests. For more details and an example of the specific

application of sendemails to correspondence audit tests, please refer to Appendix 2.

sendemails requires tknz to be installed. This package tokenizes strings into tokens

and stores the results in the local macros.

In the following sections, we discuss the details of this command and provide examples

to help the reader better understand the proper usage and full potential of sendemails.

2 A Command for Standardizing and Automatically Sending Email: sendemails

2.1 Syntax

sendemails uses Windows PowerShell to send emails.

This is the syntax of sendemails:

3 Readers may also be interested in packages that enable Stata to reproduce an audio file through Windows Media
Player when a task is concluded, such as milito22 (https://bit.ly/3xwU47v).

http://fmwww.bc.edu/repec/bocode/s/sendtoslack.ado
https://github.com/wschpero/statapush
https://bit.ly/3xwU47v

4

sendemails recipient@email.com [if] [, subject(string)

body(string) attachment(string) folder(string) html(string)

paragraphs(string) htmltxt(string) psloc(string)

mailps(string) smtpport(string) smtpsserver(string)

from(string) sleep(string) ufile(string) pfile(string)

cc(string) bcc(string) notification(string) priority(string)

encode(string) pstimeout(string) nossl report

erroroption(string) errormessage(string)]

The argument of the command sendemails is:

recipient@email.com .

The argument specifies the recipient of the email, and it cannot be omitted. When

multiple recipients are included, they have to be separated by a semicolon, without any blank

space (e.g., “luca@myemail.it; stefano@hisemail.co.uk" is not allowed by the underlying

PowerShell cdmlet, more details are provided below).

2.2 Options

Options are organized into five subsections.

Main options:

subject(string) declares the email subject. It must be specified.

body(string) specifies the body of the email to be sent. The body should be input as a single

string with blocks of text being parsed by “|”. Each substring separated by “|” will be

numbered and modified using html wrappers if specified. Text inputted as "line1 |

5

line2 | line3" will be treated as 3 separate blocks of text and numbered 1, 2, 3. It

cannot be invoked when htmltxt(string) is specified.

from(string) is the name of the sender. The default parameter value is the email username.

ufile(string) gives the location and filename of the user’s email address saved as plain

text in a .txt file. The default location is the working directory. The file extension is

optional. The file name must be specified.

pfile(string) gives the location and filename of the user’s password saved as plain text in

a .txt file; the default location is the working directory. The file extension is optional.

The file name must be specified. It should be noted that the user does not have to enter

the actual password and username inside ufile(string) and pfile(string).

The user should rather write locations and filenames of the two txt-files from which

sendemails will extract username and password.

mailps(string) gives the name of the .ps1 file, default is “mailps.ps1”. .ps1 is

the script that contains PowerShell commands, and it can be opened with any .txt file

editor. This file can be used to double-check the details of the message being sent (e.g.,

subject, body and line breaks, recipient).

psloc(string) gives the folder location where the .ps1 file will be saved, the default

location is the working directory.

Attachment options:

attachment(string) gives the location and name of the files to be included as attachments

to the email. File extension must be included; in alternative, if there is no file with the

same name, the user can type “.*” in place of the extension. If the location is not

6

included, Stata looks for the attachment in the working directory. When multiple files are

included, they have to be separated by a semicolon, without any blank space (e.g.,

“lucapaper.pdf; Stefano.*” uses the semicolon, but includes a blank space so

it is not allowed).

folder(string) gives the folder location of all the attachments the user wants to send at

once. If the user wants all of the files in the folder, the user must type “*.*”

following the folder name; assuming the folder is called “robe” then string =

“working_directory_path\robe*.*”. If the user wants only those files with

a particular extension, the second * must be substituted by the extension. For example, if

the user wants to attach all the pdf’s from a folder containing also .dta’s, .doc’s, etc…,

the user should type “*.pdf”; assuming the folder is called “robe” then string =

“working_directory_path\robe*.pdf”. The user should note that if there

are files with the same name, but different extensions in the same folder, and the user

wants to attach them all, then string =

“working_directory_path\robe\file_name.*” could be written. The user

cannot specify attachment(string) when folder(string)is specified.

Formatting options:

html(string) provides the html to be included in the email and that modifies the appearance

of the text. As each block of text parsed by “|” in the body is numbered, the html code

should be provided as wrappers around these numbers. Users should input a string where

html wrappers are placed around numbers, with each number representing a substring of

the body. For example, “<i>1 2</i> 3 4” makes all text in substrings 1

7

and 2 italic and text in substring 2 bold. If html is specified, it must include a number for

every substring. If there are 4 inputted substrings and html takes input “ 1

2 3” then the fourth string will be missing from the email. The user can create

paragraphs using html or using par. This option cannot be specified when

body(string) is empty.

paragraph(string) provides paragraph breaks between substrings parsed by “|” in body.

The input to this option should take the format of a numbered list, for example, par(1

3 5) creates a new paragraph following substrings 1, 3, and 5. This option cannot be

specified when body(string) is empty.

htmltxt(string) provides the location of the txt file with the html message to be included

in the email and that modifies the appearance of the text. It cannot be specified when

body(string) is specified.

encode(string) is the encoding option. PowerShell allows the following parameters:

ASCII, BigEndianUnicode, BigEndianUTF32, OEM, Unicode (default), UTF7, UTF8,

UTF8BOM, UTF8NoBOM, UTF32. Beginning with PowerShell 6.2, encode() also

allows numeric IDs of registered code pages or string names of registered code pages.

For more information, see the .NET documentation for Encoding. PowerShell allows

abbreviated parameter names until the parameter is no longer unambiguous; cases do not

matter.

Sending options:

smtpport(string) gives the smtp port number. The default parameter value is the Outlook

port.

https://learn.microsoft.com/en-us/dotnet/api/system.text.encoding?view=net-8.0

8

smtpsserver(string) gives the smtp server address. The default parameter value is the

Outlook server.

cc(string) is the email address included as a cc to the email. When multiple cc’s are

included, they have to be separated by a semicolon, without any blank space (e.g.,

“luca@myemail.it; stefano@hisemail.co.uk” is not allowed).

bcc(string) is the email address included as a bcc to the email. When multiple bcc’s are

included, they must be separated by a semicolon, without any blank space (e.g.,

“luca@myemail.it; stefano@hisemail.co.uk" is not allowed).

sleep(string) is the time gap between multiple emails sent in sequence (e.g., through a

loop). The default parameter value is 3.000 milliseconds (i.e., 3 seconds).

notification(string) is the notification option. It provides feedback to the author about

delivery status. As allowed by PowerShell, it can be set to: None (default) , Never,

OnSuccess, OnFailure, Delay, or any combination of the last three parameter

values (e.g. OnSuccess, Delay). PowerShell allows abbreviated parameter values

until the parameter is no longer unambiguous; cases do not matter.

priority(string) is the priority option. PowerShell allows the following options: Normal

(default), High, or Low. PowerShell allows abbreviated parameter values until the

parameter is no longer unambiguous; cases do not matter.

nossl specifies that the Secure Sockets Layer (SSL) to establish a connection is not used.

Reporting options:

report tells Stata to display a summary of email with sender and receiver(s), email options

(i.e., priority, notification, encode), optional metadata (i.e., psloc, mailps, PowerShell

9

timeout, error option), time and date of the email. When email options and metadata are

not set by the user, this report lists the default options.

erroroption(string) tells PowerShell what to do in case of an error. The following

options are allowed: Stop, Inquire, or Continue (default). Differently from other

PowerShell options, no abbreviations or different combinations of capital and lowercase

letters are allowed to prevent mistakes; the only allowed exception is the usage of

lowercase letters only. When Continue is chosen, if PowerShell detects an error, it

does not stop and it does not display any message. When Stop is chosen, if PowerShell

detects an error, it stops and displays an error until the user manually closes the

PowerShell window. When Inquire is chosen, if PowerShell detects an error, it stops

and inquires on what to do, that is, either Stop or Continue—additional parameters

being provided are useless in this context, but are provided by default by PowerShell and

cannot be omitted by us; after the user responds the inquiry, PowerShell automatically

closes its window.

errormessage(string) is the name of the txt file where the error message should be

written by PowerShell. The error message transcribed in that file is the same as the one

that would be displayed in the PowerShell window. The default name of the txt is

‘errormessage’. While PowerShell window does not display the error message when

erroroption() is Continue, the error message will be visible in this txt. The

location of this error message is psloc. pstimeout(string) is the timeout option

that tells how long PowerShell should wait before closing its window after the

sendemails command has run. If an error occurred and erroroption is Stop, the

window will close after 3’ as by PS default or after the user’s closes it—the timeout

10

option is irrelevant in this case. If an error occurred and erroroption is Continue,

the window will close after the default five seconds or after the number of seconds

selected by the user. If an error occurred and erroroption is Inquire, the window

will close following the user’s choice after the default number of seconds or after the

number of seconds selected by the user.

3 Technical Details

PowerShell was originally a Windows component exclusively; however, on August 2016 it was

made open-source and cross-platform. If you do not have already PowerShell (e.g., if you have

an Apple computer), you can download it here: https://github.com/PowerShell/PowerShell.

Emails are sent using the Send-MailMessage cmdlet (information here:

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/send-

mailmessage).

sendemails sends emails using SMTP (Simple Mail Transfer Protocol). Users’

credentials, the recipient's email address, and features to be included in the email are captured by

the program. A .ps1 script is created and runs using PowerShell. This file is stored on the

user’s system in a specified location along with the user’s credentials.

sendemails works only with email providers that allow access from external apps. By

default, the smtp settings are set for the use of Outlook accounts. These settings can be modified

to work for other email providers. For instance, to send an email using zoho.com the

smtpserver should be set to “smtp.zoho.com” and the smtpport to “587.” Different

email accounts may require users to modify settings before the use of smtp. For instance, Gmail

requires that users allow access to less secure apps before an email can be sent using smtp via

https://github.com/PowerShell/PowerShell
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/send-mailmessage
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/send-mailmessage

11

PowerShell (details on this are in Appendix 1). We are aware of only one email provider that

does not allow smtp protocol and thus sendemails; this is Office365, since December 31,

2022. The speed of email delivery may also differ across services. Appendix 1 reports smtp

servers and ports for some of the most popular email providers, in Table A.1.

Users who have not used PowerShell before should note that by default they may not

have sufficient administrative privileges to perform the operations in sendemails. First-time

users should open PowerShell as administrators and type “Set-ExecutionPolicy

RemoteSigned.” This command must be given only the first time that sendemails is run

on the machine; it specifies that scripts created on the current system and files with a digital

signature may be executed.

There are two alternative short routes for this execution policy change. The choice

between which route to follow depends on the user’s needs and administrator rights. The first

route is the fastest one. The user can open PowerShell from within Stata by typing:

!powershell -noexit -command "Set-ExecutionPolicy -

ExecutionPolicy RemoteSigned -Scope CurrentUser". This policy is not

changed as an administrator; thus, it will be valid only for the current user. Other users of the

same machine should change their execution policy too. Notice that some institutes or companies

may not grant local administrator rights; in this case, it is necessary to request access as an

administrator to the local IT staff. The second alternative route requires a minimum direct

interaction with PowerShell (i.e., from outside of Stata), but it changes the execution policy for

all users of the machine. The user can open PowerShell as an administrator from within Stata by

typing: !powershell -noexit -command "start-process powershell -

verb runas" which opens a window called “User Account Control” asking to allow

12

PowerShell to make changes to the device. The user should select “yes.” Afterwards, the

command window named “Administrator: PowerShell” opens. At the end of the first line—

where the last character is ’>’—the following command should be typed: Set-

ExecutionPolicy RemoteSigned -Force and then the Enter key should be pressed.

The option -Force tells PowerShell to skip the confirmation prompt, that is, it does not ask the

user to confirm the change to the execution policy.

To check and reset the execution policy from within Stata, two commands are available.

First, !powershell -noexit -command "Get-ExecutionPolicy" prompts

PowerShell to display the current policy. Second, !powershell -noexit -command

"Set-ExecutionPolicy -ExecutionPolicy Default -Scope

CurrentUser" sets the policy back into being Restricted.

Owed to the configuration of the Send-MailMessage cmdlet, the way locations

and file names can be written follows some rules. There cannot be blank spaces in: (i)

attachment(string), (ii) in folder(string), (iii) between multiple main recipients,

(iv) between additional recipients in both cc(string)and bcc(string).

In any option that may include a location, this location cannot include blank spaces, even

between quotes in Stata (i.e., psloc("C:\Users\Documents\Stata Jour Paper")

is not allowed). Some options are mandatory, namely ufile(string),

pfile(string), and subject(string).

Multiple main recipients as well as additional recipients in both cc(string)and

bcc(string)must be separated by a semicolon without blank spaces.

Parameter values in notification(string) must be separated by a comma and

may include blank spaces.

13

Parameter values of notification(string), encode(string), and

priority(string) accept parameters abbreviations as well until the parameter is no longer

unambiguous; moreover, cases do not matter.

4 Setting up the material for the examples

Before starting the series of examples, the user should create two one-word txt-files: one file

includes the actual password and we call it “password”, while the other file includes the

username and we call it “username”—which usually equals the email address itself, referring

to the email address used for sending messages. We recommend the user writes the txt-files from

outside Stata to protect the user's personal information in case the do-file with the sendemails

command had to be shared with someone else. The txt-files can be produced, for example,

directly on Notepad or Notepad++ and stored in the working directory. These two txt-files are

used in Example 5.1. In alternative, the user could produce password and username files from

within Stata. This is a minimal working example:

cd "working_directory_path\"
file open myfile using "password.txt", write replace
file write myfile "mypassword" //where mypassword is the

user’s actual password
file close myfile
file open myfile using "username.txt", write replace
file write myfile "myemail" //where myemail is the user’s

actual email address
file close myfile

Note that the same process of storing email address details somewhere in the machine is

used in psemail; instead of having password and username in two separate txt-files, they are

in macro globals in the profile.do. An example of how users can take advantage of macro

globals stored in the profile.do when using sendemails is presented in Section 6. Note

14

that, because of psemail nature, the user can store and use only one email address, while

sendemails allows details on several senders’ email addresses to be stored and used,

depending on the needs.

We recommend the user to load the example dataset, which is (partially) used from

Example 5.2 onward. The dataset is called “excelstatajexamples.xls” and it contains

four lines, from different senders to different receivers, with several personalized components of

the message. The user should personalize the dataset so that the string variable called “email”

contains those emails used in the examples in this and the following section. The string variable

called “server” and the numeric variable called “port” should include the parameters that

correspond to “email.” The string variable called “receiver” should contain the recipient address.

Finally, the variables “password” and “username” are already populated with strings

corresponding to names of the txt-files that contain the actual password and the email username

for the sending email addresses used in Section 6. To replicate the examples in Section 6, the

user needs to create four additional txt-files.

The user should personalize similarly the anonymized do file

“examplesendemails—anonymized.do.”

Once the txt-files are ready, the excel and the do-files are personalized, this do-file can

run all the examples from Example 5.1, including the one in Appendix 2. Remember also to set

up administrative privileges, as discussed in Section 3.

5 Examples

5.1 Example 1: Sending one message

Let us send a one-liner email using the email provider Outlook. Let us give Stata the command:

sendemails try.send.emails2@gmail.com , ///
body(ciao amico) sub(hi) ///

15

ufile(USERNAME2) ///
pfile(PASSWORD2-APPPWD) ///
smtpport(587) smtps(smtp.gmail.com) ///
psloc(.\)

This command will create an email that looks like this:

ciao amico

The email subject is “hi”.

The user with an Outlook account can try this same example while omitting smtpport

and smptserver options; the email will be sent anyway, because of the default settings.

Stata should be open whenever an email is to be sent.

5.2 Example 2: Sending one message to more than one email address

This example sends one email message as in Example 1; however, the body is personalized and

the email is sent to several receivers from several sending addresses. We additionally set the

.ps1 location in a different folder, the sleep time, and the name of the .ps1 files. Let us give

Stata the command:

import excel .\excelstatajexamples.xls, firstrow clear

local N=_N
forval i =1(1) `N' {

local nome = nome[`i']
local username = username[`i']
local password = password[`i']
local port = port[`i']
local server = server[`i']
local receiver = receiver[`i']

sendemails `receiver', ///
body(ciao `nome') sub(hi) ///
smtpport(`port') ///
smtpserver(`server') ///
ufile(`username') ///
pfile(`password') ///
psloc(.\) sleep(3000) ///

16

mailps("`receiver'`nome'B")
 }

This will create an email that looks like this:

ciao FRIEND’S NAME

Note that mailps sets a name for the .ps1 file; this name is composed of the receiver's

email and name, and a letter. This file, as well as those from the next examples, are all included

in the working directory.

5.3 Example 3: Sending one message to more than one email address, with same cc

This example is the same as Example 2, except that one email in cc is included as well. Let us

give Stata the command:

local N=_N
forval i =1(1) `N' {

local nome = nome[`i']
local username = username[`i']
local password = password[`i']
local port = port[`i']
local server = server[`i']
local receiver = receiver[`i']

sendemails `receiver', ///
body(ciao `nome') sub(hi) ///
smtpport(`port') ///
smtpserver(`server') ///
ufile(`username') ///
pfile(`password') ///
cc(CCEMAIL@provider.com) ///
psloc(.\) sleep(3000) ///
mailps("`receiver'`nome'C")

5.4 Example 4: Sending one message to more than one email address, with same cc
and same bcc

This example is the same as Example 3, except that we add an email address in bcc. Let us give

Stata the command:

17

local N=_N
forval i =1(1) `N' {

local nome = nome[`i']
local username = username[`i']
local password = password[`i']
local port = port[`i']
local server = server[`i']
local receiver = receiver[`i']

sendemails `receiver', ///
body(ciao `nome') sub(hi) ///
smtpport(`port') ///
smtpserver(`server') ///
ufile(`username') ///
pfile(`password') ///
cc(CCEMAIL@provider.com) ///
bcc(BCCEMAIL@provider.com) ///
psloc(.\) sleep(3000) ///
mailps("`receiver'`nome'D")

}

5.5 Example 5: Sending one message to more than one email address, with same cc
and same bcc, and one attachment

This example is the same as Example 4, except that one file—the extension is irrelevant—is

attached to the email. Let us give Stata the command:

local N=_N
forval i =1(1) `N' {

local nome = nome[`i']
local username = username[`i']
local password = password[`i']
local port = port[`i']
local server = server[`i']
local receiver = receiver[`i']

sendemails `receiver', ///
body(ciao `nome') sub(hi) ///
smtpport(`port') ///
smtpserver(`server') ///
ufile(`username') ///
pfile(`password') ///

18

cc(CCEMAIL@provider.com) ///
bcc(BCCEMAIL@provider.com) ///
psloc(.\) ///
attachment(ecselfile2.*) ///
sleep(3000) ///
mailps("`receiver'`nome'E")
}

Note that there is only one file called ecselfile2, so the extension is not needed.

5.6 Example 6: Sending one message to more than one email address, with same cc
and same bcc, and all the files from a folder

This example is the same as Example 4, except that all the files from a folder are attached to the

email—we call the folder ATTFOLDER, it includes five files with different names and

extensions. Let us give Stata the command:

local N=_N
forval i =1(1) `N' {
local nome = nome[`i']
local username = username[`i']
local password = password[`i']
local port = port[`i']
local server = server[`i']
local receiver = receiver[`i']

sendemails `receiver', ///
body(ciao `nome') sub(hi) ///
smtpport(`port') ///
smtpserver(`server') ///
ufile(`username') ///
pfile(`password') ///
cc(CCEMAIL@provider.com) ///
bcc(BCCEMAIL@provider.com) ///
psloc(.\) ///
folder(.\ATTFOLDER*.*) ///
sleep(3000) ///
mailps("`receiver'`nome'F")
}

What follows is a slightly modified version of Example 6. The difference is that now all the files

with the same extension are attached from the folder ATTFOLDER. Let us give Stata the

command:

19

local N=_N
forval i =1(1) `N' {
local nome = nome[`i']
local username = username[`i']
local password = password[`i']
local port = port[`i']
local server = server[`i']
local receiver = receiver[`i']

sendemails `receiver', ///
body(ciao `nome') sub(hi) ///
smtpport(`port') ///
smtpserver(`server') ///
ufile(`username') ///
pfile(`password') ///
cc(CCEMAIL@provider.com) ///
bcc(BCCEMAIL@provider.com) ///
psloc(.\) /// what follows is the option to attach all the

files from a folder
folder(.\ATTFOLDER*.xls) ///
sleep(3000) ///
mailps("`receiver'`nome'F")
}

5.7 Example 7: Sending one message, in three paragraphs, to more than one email
address, with same cc and same bcc, and one attachment.

This example is the same as Example 5, except that one long email body is used, and is divided

into three paragraphs using “|” as a delimiter. Let us give Stata the command:

local N=_N
forval i =1(1) `N' {

local nome = nome[`i']
local username = username[`i']
local password = password[`i']
local port = port[`i']
local server = server[`i']
local receiver = receiver[`i']

local body "In this study, I show that with the appropriate

experimental strategy, a correspondence test can be adapted to
investigate disability discrimination in the rental housing
market. | I focus on discrimination against blind tenants
assisted by guide dogs in Italy and obtain very robust results.

20

The utilization of three fictitious household tenants (that is,
a married couple, a married couple with a blind wife who owns a
guide dog, and a married couple where the wife is normal sighted
and owns a pet dog) allows me to investigate whether
discrimination is due to the blindness or to the guide dog. I
find that apartment owners discriminate blind tenants because of
the presence of the guide dog alone. | According to the Italian
law, this is indirect discrimination, which in the US
corresponds to the refusal to provide reasonable accommodation."

sendemails `receiver', ///
body(`body') sub(hi) para(1 2) ///
smtpport(`port') ///
smtpserver(`server') ///
ufile(`username') ///
pfile(`password') ///
cc(CCEMAIL@provider.com) ///
bcc(BCCEMAIL@provider.com) ///
attachment("ecselfile2.*") ///
psloc(.\) sleep(3000) ///
mailps("`receiver'`nome'G")
}

This example produces an email text that looks as follows:

“In this study, I show that with the appropriate experimental

strategy, a correspondence test can be adapted to investigate

disability discrimination in the rental housing market.

I focus on discrimination against blind tenants assisted by

guide dogs in Italy and obtain very robust results. The

utilization of three fictitious household tenants (that is, a

married couple, a married couple with a blind wife who owns a

guide dog, and a married couple where the wife is normal sighted

and owns a pet dog) allows me to investigate whether

discrimination is due to the blindness or to the guide dog. I

21

find that apartment owners discriminate blind tenants because of

the presence of the guide dog alone.

According to the Italian law, this is indirect discrimination,

which in the US corresponds to the refusal to provide reasonable

accommodation.”

This is the abstract from Fumarco (2017), with line breaks.

5.8 Example 8: Sending an email with html bold words

This example is similar to Example 1, but it is sent from only one email address, the message is

shorter, and some words are in bold. Let us give Stata the command:

local body "hello friend, | How are you doing? | Best,
Friend"

sendemails try.send.emails2@gmail.com, body(`body') sub(hi)
html(1 2 3) ///

smtpport(587) smtpserver(smtp.gmail.com) ///
ufile(USERNAME2) ///
pfile(PASSWORD2-APPPWD) ///
psloc(.\)

This will create an email that looks like this:

hello friend, How are you doing? Best, Friend

Note that if we erroneously specified html(1 2) the output would be:

hello friend, How are you doing?

5.9 Example 9: Sending an email with html paragraphs

This example follows Example 8, but the paragraphs are generated with two alternative methods:

first, using html commands, and second, using the par(paragraphs)option.

22

The following uses of the sendemails command are equivalent:

local body "hello friend, | How are you doing? | Best,
Friend"

sendemails try.send.emails2@gmail.com, body(`body') sub(hi)
html(1 2

 3) ///

ufile(USERNAME2) ///
pfile(PASSWORD2-APPPWD) ///
smtpport(587) smtpserver(smtp.gmail.com) ///
psloc(.\)

local body "hello friend, | How are you doing? | Best,

Friend"
sendemails try.send.emails2@gmail.com, body(`body') sub(hi)

para(2) ///
ufile(USERNAME2) ///
pfile(PASSWORD2-APPPWD) ///
smtpport(587) smtpserver(smtp.gmail.com) ///
psloc(.\)

Both commands give the same result:

hello friend, How are you doing?
Best, Friend

5.10 Example 10: Sending an email using the html content included in an external
document named textmessage.txt

This example shows how to send an email with html formatting. The difference compared to

Examples 8 and 9 is that now the content and html formatting are included in an external

document called “textmessage.txt” that is invoked using the htmltxt() option.

sendemails try.send.emails2@gmail.com, sub(hi) /// what
follows is the option to include an external txt file with the
content of the message and html formatting

htmltxt(.\textmessage.txt) ///
ufile(USERNAME2) pfile(PASSWORD2-APPPWD) ///
smtpport(587) ///
smtpserver(smtp.gmail.com)

Notice that htmltxt(string) cannot be specified together with the option

body(string).

23

5.11 Example 11: Sending an email with the results of a Stata program

This example shows how to send via email the output of a Stata command at the end of a routine.

sysuse auto.dta, clear
forvalues i = 1/5{
regress price mpg if rep78 == `i'
parmest, label list(parm label estimate) saving(./est`i'.dta,

replace)
}
use ./est5.dta, clear
append using est1.dta est2.dta est3.dta est4.dta
save ./results.dta, replace

sendemails try.send.emails2@gmail.com, ///
body(Please, find attached the results of your regressions)

sub(Regression results) ///
smtpport(587) ///
smtpserver(smtp.gmail.com) ///
ufile(USERNAME2) ///
pfile(PASSWORD2-APPPWD) ///
psloc(.\) /// what follows attaches a list of files with the

results.
attachment(results.dta) ///
sleep(3000) ///
mailps(try.send.emails2-Results)

It is straightforward to include sendemails in the loop and let it send the result of each estimate

separately as the loop progresses. An example follows.

sysuse auto.dta, clear
forvalues i = 1/5{
 regress price mpg if rep78 == `i'
 parmest, label list(parm label estimate)

saving(./est`i'.dta, replace)

 sendemails try.send.emails2@gmail.com, ///
 body(Please, find attached the results of your regressions)

sub(Regression results "`i'") ///
 smtpport(587) ///
 smtpserver(smtp.gmail.com) ///
 ufile(USERNAME2) ///
 pfile(PASSWORD2-APPPWD) ///

24

 psloc(.\) /// what follows attaches a list of files with
the results.

 attachment(./est`i'.dta) ///
 sleep(3000) ///
 mailps(try.send.emails2-est`i')
}

5.12 Example 12: Inspecting the output in case of an error

Let us consider the case when the user makes a mistake, and—hypothetically—misspells the

receiver’s email address. The option report prompts Stata to provide a report on the details of

the last sent email. Inspecting the content of the report reveals that the receiver’s email is

incomplete. An example follows.

sendemails try.send.emails2@gmail. , /// input the email of
the receiver with an error

body(ciao amico) sub(hi) ///
ufile(USERNAME2) ///
pfile(PASSWORD2-APPPWD) ///
smtpport(587) smtps(smtp.gmail.com) ///
psloc(.\) /// the following option prompts Stata to report

the details of the sent email
report

This is the output of report.

--(Email details
- Start)
Email sender and receiver(s)
From: try.send.emails1@gmail.com
To: try.send.emails2@gmail.
Cc:
Bcc:

Email options
Priority: Normal
Notification: None
Encode: Unicode

Email optional metadata
Ps location: .\
Mailps file: mailps.ps1
Powershell waiting time: 1 seconds

25

Powershell error option: Continue

Time and date
Email sent at 17:37:16 on 17 Apr 2023
--(Email details
- End)

Besides asking for a report, the user can prompt PowerShell to ask the user what to do in case of

an error. An example follows.

sendemails try.send.emails2@gmail. , /// input the email of
the receiver with an error

body(ciao amico) sub(hi) ///
ufile(USERNAME2) ///
pfile(PASSWORD2-APPPWD) ///
smtpport(587) smtps(smtp.gmail.com) ///
psloc(.\) /// the following option prompts PowerShell to ask

the user what to do in case of an error
erroroption(inquire)

In this case, Stata executes the command, invokes PowerShell which reports an error, and asks

the user how to proceed, see Figure 1.

The user can choose to continue and disregard the error or to stop or suspend the command. The

last option, “help,” provides details about what each option entails, namely:

Y - Continue with only the next step of the operation.
A - Continue with all the steps of the operation.

Figure 1. PowerShell encounters an error and inquires how to proceed.

26

H - Stop this command.
S - Pause the current pipeline and return to the command
prompt. Type "exit" to resume the pipeline.

6 Automatize own details loading

If the user is always using the same email address(es) to send messages, we suggest writing a

global macro in profile.do, which will be automatically run in the background by Stata

whenever the software is opened. Let us write the macro and pretend it is saved in the profile.do:

//type the following macro in profile.do
global EmailDetails `"ufile(USERNAME2) pfile(PASSWORD2-

APPPWD) smtpport(587) smtpserver(smtp.gmail.com)"'

//then sendemails could be written as follows
sendemails try.send.emails2@gmail.com, ///
body(ciao amico) sub(hi) $EmailDetails ///
psloc(.\)

Now, the command for Example 1 can be written as follows:

sendemails try.send.emails2@gmail.com, b(ciao amico) s(hi)
$EmailDetails psloc(.\)

It is worth noting two things. First, the way this command works allows the user to write in

profile.do details of different sending emails. For example, the user could have three

different email addresses for sending emails, in this case, profile.do would contain three

global macros, such as EmailDetails1, EmailDetails2, and EmailDetails3.

Second, the global macro(s) (or the profile.do file) can be enriched with additional, frequently

used options to minimize the number of options invoked each time. In the following example,

some common options about message priority and error notification are added:

global EmailDetails `"ufile(USERNAME2) pfile(PASSWORD2-
APPPWD) smtpport(587) smtpserver(smtp.gmail.com) pstimeout(5)
priority(High) report notif(OnSuccess, Delay)"'

27

7 Verify possible errors and what emails have been sent

Many things could go wrong in the process of sending emails; we identified five types of errors:

(i) Errors detectable by the email provider. For example, the recipient address might

contain a non-existent username (e.g., verdghdjsp@hotmail.it). Strictly speaking, this

is not a mistake either in the underlying PowerShell script or in the Stata script, so it

will not be detected by them. In this case, an automatic email with an error message

would be sent to the delivering address by the email provider of the receiver. Another

example of an "error” detectable by the email provider is that the receiver’s mailbox is

full or no longer active.

(ii) Port and server errors. There could be an error in how the port or the server is typed,

this is not a mistake in either the underlying PowerShell script or the Stata script. This

error cannot be detected by either PowerShell or Stata—to the best of our knowledge.

It is not even an error detectable by the email provider, because the email provider

cannot be contacted in the first place if port and/or server are wrong. In this case, the

PowerShell operation cannot be concluded, so it reaches the default operation timeout

of 3’ (note that this parameter does not correspond to the pstimeout() option and

cannot be easily changed by PowerShell users with a simple script). No error message

is thus delivered by the email provider, by PowerShell, or by Stata.

(iii) Writing Stata command.

(iv) Errors in the PowerShell script.

(v) Errors detectable by PowerShell and concerning the email being sent. For example, the

email address must have the final extension, e.g. “.it” or “.com”. If no extension is

included, PowerShell displays an error message.

28

The user can verify the presence of most of these errors in different ways. To verify if error

(i) occurred, the user can rely on the notification() option. To verify if error (ii)

occurred, nothing can be done—to the best of our knowledge. This error is equivalent to not

plugging in a desktop computer and expecting it to display an error message; so, the user

must be careful in inputting the server and port information. To verify if error (iii) occurred,

the user must rely on Stata error messages. Errors type (iv) cannot occur—to the best of our

knowledge, if the ado file that includes the PowerShell script is correct. To verify if errors

type (v) occurred, the user can rely on the combination of erroroption(),

errormessage(), and pstimeout().

If the user is sending very many emails, it is possible to verify which emails have been

commanded to be sent by inputting the information in an ad-hoc dataset in the folder with .ps1

files. For that purpose, it is possible to use several commands. Here is an example of how to use

filelist—a user-contributed package that should be downloaded—with this purpose:

ssc install filelist
cap erase .\SUCCESSemails.dta
filelist, dir(.\) pat("*.ps1") save(.\SUCCESSemails.dta)

replace

This command grabs all the .ps1 files with personalized and meaningful names—as

suggested in Example 2—and inputs them in a dataset called SUCCESSemails.

The user can check individual .ps1 files too; these files can be opened with Notepad

and Notepad++, for example.

29

8 Conclusion

The sendemails package allows users to automatically send emails with Stata through

PowerShell, which is open-source and cross-platform. Using this package researchers can

perform various email tasks.

 This package has one potential limitation. Protocols established by email providers are

ever-changing, which could cause the future failure of sendemails. While Send-

MailMessage, and thus this package, currently works with the most popular email providers,

there is no alternative cdmlet that can be universally adapted to any email provider yet.

However, there are at least two solutions. (A) The security procedure can be updated. For

example, this situation has already occurred in between revisions of this manuscript, when at the

end of May 2022 Google adopted a new third-party sign-in policy—we described the procedure

to deal with this issue in Appendix 1. (B) Whenever a new universal cdmlet will be available,

Send-MailMessage can be updated to let sendemails work with the new protocols.

9 Programs and supplemental materials

Please visit the website: https://sites.google.com/site/lucafumarco/stata-packages for the

complete package material.

Acknowledgments

We thank an anonymous referee for the constructive suggestions and comments. We owe a debt

of gratitude to Michaela Kecskésová for the research assistance. Luca Fumarco acknowledges

the generous support from the NPO “Systemic Risk Institute” number LX22NPO5101, funded

by European Union - Next Generation EU (Ministry of Education, Youth and Sports, NPO:

EXCELES) and from the CERGE-EI Foundation Teaching Fellowship Program. We thank

Clyde Schechter and Sam Langfield for their help in solving some package bugs.

https://sites.google.com/site/lucafumarco/stata-packages

30

References

Baert, Stijn. 2018. “Hiring Discrimination: An Overview of (almost) All Correspondence

Experiments since 2005.” In Audit Studies: Behind the Scenes with Theory, Method, and

Nuance, edited by S. M. Gaddis, 63–77. Cham, Switzerland: Springer.

Button, Patrick, Eva Dils, Benjamin Harrell, Luca Fumarco, David Schwegman. 2020. “Gender

Identity, Race, and Ethnicity Discrimination in Access to Mental Health Care:

Preliminary Evidence from a Multi-Wave Audit Field Experiment.” NBER Working

Paper. Available at: https://www.nber.org/papers/w28164

Carlsson, Magnus, Dan-Olof Rooth. 2007. “Evidence of Ethnic Discrimination in the Swedish

Labor Market Using Experimental Data.” Labour Economics 14(4):716-29.

Chehras, Nanneh. 2017. Automating correspondence study applications with python and SQL:

Guide and code. Mimeo.

Crabtree, Charles. 2018. “An Introduction to Conducting Email Audit Studies.” In Audit Studies:

Behind the Scenes with Theory, Method, and Nuance, edited by S. M. Gaddis, 103–117.

Cham, Switzerland: Springer.

Fumarco, Luca. 2017. “Disability Discrimination in the Italian Rental Housing Market: A Field

Experiment with Blind Tenants.” Land Economics 93(4):567-84.

Gaddis, S. Michael. 2015. “Discrimination in the Credential Society: An Audit Study of Race

and College Selectivity in the Labor Market.” Social Forces 93(4):1451–79.

Gaddis, S. Michael. 2018a. “An Introduction to Audit Studies in the Social Sciences.” In Audit

Studies: Behind the Scenes with Theory, Method, and Nuance, edited by S. M. Gaddis, 3–

44. Cham, Switzerland: Springer.

https://www.nber.org/papers/w28164

31

Gaddis, S. Michael. 2018b. Audit Studies: Behind the Scenes with Theory, Method, and Nuance.

Cham, Switzerland: Springer.

Gaddis, S. M., DiRago, N. 2021. “Housing Audit Studies in the Social Sciences.” SSRN Working

Paper. Available at https://papers.ssrn.com/abstract=3796335

Gaddis, S. Michael, and Raj Ghoshal. 2015. “Arab American Housing Discrimination, Ethnic

Competition, and the Contact Hypothesis.” Annals of the American Academy of Political

and Social Science 660(1):282–99.

Gaddis, S. Michael, and Raj Ghoshal. 2020. “Searching for a Roommate: A Correspondence

Audit Examining Racial/Ethnic and Immigrant Discrimination among Millennials.”

Socius 6: 1-16.

Lahey, Joanna N., and Ryan A. Beasley. 2009. Computerizing audit studies. Journal of

Economic Behavior & Organization 70(3): 508–514.

Neumark, David, Ian Burn, and Patrick Button. 2019. “Is It Harder for Older Workers to Find

Jobs? New and Improved Evidence from a Field Experiment.” Journal of Political

Economy¸127(2):922-70.

Oh, Sun Jung, John Yinger. 2015. “What Have We Learned from Paired Testing in Housing

Markets?” Cityscape, 17(3):15–60.

Quillian, Lincoln, Devah Pager, Ole Hexel, and Arnfinn Midtbøen. 2017. “The Persistence of

Racial Discrimination: A Meta-analysis of Field Experiments in Hiring over Time.”

Proceedings of the National Academy of Sciences, 114(41):10870–5.

Rich, Judith. 2014. “What Do Field Experiments of Discrimination in Markets Tell Us? A Meta-

analysis of Studies Conducted since 2000.” IZA Working Paper, 8584. Available at

https://papers.ssrn.com/abstract=3796335

32

https://www.iza.org/publications/dp/8584/what-do-field-experiments-of-discrimination-

in-markets-tell-us-a-meta-analysis-of-studies-conducted-since-2000.

Xuan Zhang & Dongliang Cui & Chuntao Li, 2013. “PSEMAIL: Stata module to send email

from within Stata for Windows environment.” Statistical Software Components,

S457606, Boston College Department of Economics.

Zschirnt, Eva, and Didier Ruedin. 2016. “Ethnic Discrimination in Hiring Decisions: A Meta-

analysis of Correspondence Tests 1990–2015.” Journal of Ethnic and Migration Studies,

42(7):1115–34.

About the authors

Luca Fumarco is an Assistant Professor of Economics, at Masaryk University. His research

interests include labor, education, and sports economics; he primarily investigates discrimination

issues and relative age effects. He is also IZA Affiliate and GLO Fellow.

Michael Gaddis is an Associate Professor of Sociology, at University of California, Los Angeles.

He is also a Faculty Fellow with the California Center for Population Research, and a Faculty

Affiliate with the Center for Social Statistics. Finally, he is a Senior Research Scientist at

Northwest Evaluation Association. His research interests include inequality, race and ethnicity,

discrimination, labor markets, sociology of education, higher education, mental health and stigma,

correspondence audits tests, and experimental methods.

Francesco Sarracino is a Senior Happiness Economist at the Research Division of STATEC—the

National Institute of Statistics and Economic Studies of Luxembourg, and GLO fellow. His work

https://www.iza.org/publications/dp/8584/what-do-field-experiments-of-discrimination-in-markets-tell-us-a-meta-analysis-of-studies-conducted-since-2000
https://www.iza.org/publications/dp/8584/what-do-field-experiments-of-discrimination-in-markets-tell-us-a-meta-analysis-of-studies-conducted-since-2000
https://ideas.repec.org/c/boc/bocode/s457606.html
https://ideas.repec.org/c/boc/bocode/s457606.html
https://ideas.repec.org/s/boc/bocode.html

33

aims at identifying evidence-based policies to promote people’s well-being and sustainable

development; he also contributes to methodological survey research.

Iain Snoddy is Associate at Analysis Group. He completed his PhD in Economics from the

Vancouver School of Economics at the University of British Columbia. His research focuses on

analyzing the labor market and novel econometric methods.

34

Appendix 1

Table A.1 SMTP servers and ports.
Service SMTP server Port Connection
Outlook.com smtp-mail.outlook.com 587 TLS
Yahoo mail smtp.mail.yahoo.com 587 TLS
Windows Live Hotmail smtp.live.com 587 TLS
Zoho smtp.zoho.com 587 TLS
Gmail smtp.gmail.com 587 TLS

Setting up Gmail

On May 30th, 2022, Google adopted a new third-party sign-in policy, which does not allow

users to log-in via a third-party app with a standard username and password combination. Since

then, to use sendemails with Gmail accounts, the user needs to carry out two additional steps,

which lead to the generation of an app-specific password, which substitutes the email password

for sendemails. The actual password of Gmail is not changed. This password is an

automatically generated 16-digit passcode, generated by Gmail itself. The user should carry out

the following two steps:

A) Enabling the 2-step verification

The account needs to have the two-factor authentication enabled. This can be done by

logging into the account, then going to Manage your Google account → Security → Sign in to

Google → 2-Step Verification → add the user's phone number, choose a backup option and press

SEND → type in the received code → TURN ON.

B) Generating app-specific password for Stata

35

The user should repeat the same procedure in A) up until “Sign in to Google,” but now,

instead of 2-Step Verification, the user should go to “App passwords.” In the “Select app,” the

user should choose “Other (custom name)” and give a name to the app (e.g., sendemails) and click

GENERATE. The user should now see an app-specific password that we advise to be carefully

noted somewhere: after this window is closed, the token is gone. This token is the actual password

that will be used by sendemails, so it should be written in the password txt-file, in place of the

actual Gmail account password.

Appendix 2

sendemails for correspondence tests: a brief discussion and an example

sendemails can be very useful to conduct online experiments, such as correspondence

audit tests. In these experiments, social scientists send emails from fictitious people over a long

period. These emails are similar to each other, except for one aspect which reflects a

characteristic of interest to the researcher. This method has been used to covertly detect

discrimination in various markets based on race/ethnicity, gender, age, sexual orientation, gender

identity, disability, and other characteristics (Button et al. 2020; Carlsson and Rooth 2007;

Gaddis 2018a, 2018b; Fumarco 2017; Neumark, Burn, and Button 2019).4 Often time, this type

of experiment requires experimenters to send multiple attachments as well. To conduct these

experiments, some researchers have created ad-hoc solutions (Lahey and Beasley 2009; Gaddis

2015; Gaddis and Ghoshal 2015, 2020). These solutions have been developed for Python, SQL,

and R (Chehras 2017; Crabtree 2018). Alternative solutions are expensive, such as hiring

4 Social scientists have increasingly used this experimental method in recent years (Baert 2018; Gaddis 2018a;
Gaddis and DiRago 2021; Oh and Yinger 2015; Quillian et al. 2017; Rich 2014; Zschirnt and Rueding 2016).

36

freelancers (Crabtree 2018). sendemails — the first Stata package able to send emails from

different accounts and with multiple attachments — provides a cheap and versatile tool that can

come in handy with correspondence tests. Below, we provide an example of how to conduct a

correspondence test with sendemails.

Let us assume that the experiment is conducted over two days only, and the first day of

the experiment is April 17th, 2022.

For this example, the user does not have to load a dataset again, because Stata still has the

dataset "excelstatajexamples.dta" in memory — partially used in Subsection 5.2. In

this example, this dataset will be used in full.

The computer should be turned on, and Stata should be open whenever the experiment is

run. Notice that emails are not created beforehand, saved on the server of the email provider, and

sent at the right time automatically.

Day one of the experiment

Before executing the part of the do-file to conduct the actual experiment, the user should create a

“date” variable. This can be done, for instance, as follows:

//Generate date variable that we use for the loop:
cap drop date_send
gen date_send= "17apr2023"

 //TODAYDATE each day when you want to conduct the
experiment, you change this date and Stata will send only those
messages for which (see more below)

replace date_send= "17apr2023" in 1
replace date_send= "16apr2023" in 3
replace date_send= "21apr2023" in 2

cap drop datestand
gen datestand = daily(date_send, "DMY")

 //Stata loops over the number of days since January 1, 1960
format datestand %td

37

//Tell Stata to create temporary information about the time
and date when the email has been sent:

cap drop date_sent
gen date_sent = ""
cap drop time_sent
gen time_sent = ""

cap drop deliverydate
cap drop deliverytime
gen deliverydate = ""
gen deliverytime = ""

What follows is the part of the do-file that would be run on each day the experiment is

conducted.

set more off

//generate today date

display "`c(current_date)'"
cap drop today
gen today=daily("`c(current_date)'", "DMY")
format today %td

cap drop tmp
gen tmp= _n if datestand==today

cap drop identifier
egen identifier= rank(tmp)

//Stata gives an increasing number to those emails for

which datestand==today, that is, those emails for which the
planned date for the email delivery equals today; this number
will be used to loop sendemails only over those days

//Loop over the observations for which datestand==today:

sum identifier if datestand==today
forval i= `r(min)'/`r(max)' {

// create temporary variables and locals that Stata uses to

populate the sendemails command. These values are based on the
information in the dataset

cap drop `bodystr'
tempvar bodystr

38

gene `bodystr'=_n if identifier==`i' & datestand==today
summ `bodystr', meanonly
local index=r(mean)
local b=body[`index']

cap drop `serverstr'
tempvar serverstr
gene `serverstr'=_n if identifier==`i' & datestand==today
summ `serverstr', meanonly
local index=r(mean)
local s=server[`index']

cap drop `portstr'
tempvar portstr
gene `portstr'=_n if identifier==`i' & datestand==today
summ `portstr', meanonly
local index=r(mean)
local po=port[`index']

cap drop `userstr'
tempvar userstr
gene `userstr'=_n if identifier==`i' & datestand==today
summ `userstr', meanonly
local index=r(mean)
local u=username[`index']

cap drop `passstr'
tempvar passstr
gene `passstr'=_n if identifier==`i' & datestand==today
summ `passstr', meanonly
local index=r(mean)
local pa=password[`index']

cap drop `friendstr'
tempvar friendstr
gene `friendstr'=_n if identifier==`i' & datestand==today
summ `friendstr', meanonly
local index=r(mean)
local r=receiver[`index']

cap drop `subjectstr'
tempvar subjectstr
gene `subjectstr'=_n if identifier==`i' & datestand==today
summ `subjectstr', meanonly
local index=r(mean)
local sbj=saluto[`index']

39

 sendemails `r', ///
body(`b') para(1 2 3) sub(`sbj') ///
smtpport(`po') smtpserver(`s') /// the user can try to omit

these two options, if you use outlook
ufile(`u') ///
pfile(`pa') ///
psloc(.\)

replace date_sent= “`c(current_date)'” if identifier==`i'
replace time_sent= “`c(current_time)'” if identifier==`i'
}

replace deliverydate = date_sent if deliverydate== ""
replace deliverytime = time_sent if deliverytime== ""

cap drop __*

save "statajexamplescorrtests.dta", replace

On this first day, only the email in the fourth row is sent. The dataset is now called

"statajexamplescorrtests.dta".

Day two of the experiment

After the user has run the first day of the experiment, the second day could be run immediately,

with the help of a little trick. This can be done by changing date_send, for example as

follows:

cap drop date_send
gen date_send= "18apr2023"
replace date_send= "21apr2023" in 4
replace date_send= "17apr2023" in 3
replace date_send= "17apr2023" in 2

cap drop datestand
gen datestand = daily(date_send, “DMY”)
format datestand %td

What follows is the part of the do-file that would be run on each day the experiment is

conducted.

40

set more off
display "`c(current_date)'"
cap drop today
gen today=daily("`c(current_date)'", "DMY")
format today %td

cap drop tmp
gen tmp= _n if datestand==today

cap drop identifier
egen identifier= rank(tmp)

sum identifier if datestand==today
forval i= `r(min)'/`r(max)' {

cap drop `bodystr'
tempvar bodystr
gene `bodystr'=_n if identifier==`i' & datestand==today
summ `bodystr', meanonly
local index=r(mean)
local b=body[`index']

cap drop `serverstr'
tempvar serverstr
gene `serverstr'=_n if identifier==`i' & datestand==today
summ `serverstr', meanonly
local index=r(mean)
local s=server[`index']

cap drop `portstr'
tempvar portstr
gene `portstr'=_n if identifier==`i' & datestand==today
summ `portstr', meanonly
local index=r(mean)
local po=port[`index']

cap drop `userstr'
tempvar userstr
gene `userstr'=_n if identifier==`i' & datestand==today
summ `userstr', meanonly
local index=r(mean)
local u=username[`index']

cap drop `passstr'
tempvar passstr
gene `passstr'=_n if identifier==`i' & datestand==today
summ `passstr', meanonly

41

local index=r(mean)
local pa=password[`index']

cap drop `friendstr'
tempvar friendstr
gene `friendstr'=_n if identifier==`i' & datestand==today
summ `friendstr', meanonly
local index=r(mean)
local r=receiver[`index']

cap drop `subjectstr'
tempvar subjectstr
gene `subjectstr'=_n if identifier==`i' & datestand==today
summ `subjectstr', meanonly
local index=r(mean)
local sbj=saluto[`index']

sendemails `r', ///
body(`b') para(1 2 3) sub(`sbj') ///
smtpport(`po') smtpserver(`s') /// the user can try to omit

these two options, if you use outlook
ufile(`u') ///
pfile(`pa') ///
psloc(.\)

replace date_sent="`c(current_date)'" if identifier==`i'
replace time_sent="`c(current_time)' " if identifier==`i'
}

replace deliverydate = date_sent if deliverydate== ""
replace deliverytime = time_sent if deliverytime== ""

cap drop __*

save "statajexamplescorrtests.dta", replace

	sendemails: An automated email package with multiple applications
	1 Introduction
	2 A Command for Standardizing and Automatically Sending Email: sendemails
	2.1 Syntax
	2.2 Options
	Main options:
	Attachment options:
	Formatting options:
	Sending options:
	Reporting options:

	3 Technical Details
	4 Setting up the material for the examples
	5 Examples
	5.1 Example 1: Sending one message
	5.2 Example 2: Sending one message to more than one email address
	5.3 Example 3: Sending one message to more than one email address, with same cc
	5.4 Example 4: Sending one message to more than one email address, with same cc and same bcc
	5.5 Example 5: Sending one message to more than one email address, with same cc and same bcc, and one attachment
	5.6 Example 6: Sending one message to more than one email address, with same cc and same bcc, and all the files from a folder
	5.7 Example 7: Sending one message, in three paragraphs, to more than one email address, with same cc and same bcc, and one attachment.
	5.8 Example 8: Sending an email with html bold words
	5.9 Example 9: Sending an email with html paragraphs
	5.10 Example 10: Sending an email using the html content included in an external document named textmessage.txt
	5.11 Example 11: Sending an email with the results of a Stata program
	5.12 Example 12: Inspecting the output in case of an error

	6 Automatize own details loading
	7 Verify possible errors and what emails have been sent
	8 Conclusion
	9 Programs and supplemental materials
	Acknowledgments
	References
	About the authors
	Appendix 1
	Appendix 2
	sendemails for correspondence tests: a brief discussion and an example
	Day one of the experiment
	Day two of the experiment

