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I document negative externalities of air pollution in the Indian agricultural sector. Using 

variation in pollution induced by changes in wind across years, I show that higher levels 

of pollution lead to decreased agricultural productivity, with large changes in productivity 

being common. The negative effects of pollution are larger in areas growing more labor-

intensive crops, indicating that the pollution works at least partly through direct effects on 

labor productivity. Finally, combining wind direction with the rollout of coal plants, results 

indicate that pollution from coal plants has a larger effect on agricultural productivity than 

other types of pollution. Given that the agricultural sector is a refuge for the poor in many 

developing countries, these results suggest that the negative externalities of pollution may 

hit the poorest particularly hard.
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1 Introduction

While reliance on coal is declining in much of the world, it continues to be an important source of energy

in many countries. In 2021, energy generation from coal reached an all-time high,1 driven in part by rapid

population growth in developing countries, including India. From 1990 to 2010, India’s population grew by

more than 40 percent, leading to a large increase in demand for power.2 While natural gas has become a

popular alternative in much of the world, the Indian government met much of the increased demand through

the construction of coal power plants. During those same two decades, power generation from all coal units

of at least 30 megawatts in the country more than doubled, from 42.4 gigawatts to more than 100 gigawatts.3

While there may be positive e�ects from this increase in power generation – for example, electricity may lead

to economic and productivity growth (Dinkelman 2011; Kline and Moretti 2014; Rud 2012; Van de Walle

et al. 2017), though electrification alone may not be a su�cient condition (K. Lee, Miguel, and Wolfram

2020) – these improvements do not come without downsides, especially when it comes to power derived from

coal. Emissions from the production and burning of coal are also directly harmful to human health and the

environment; pollutants like sulfur dioxide, nitrogen oxides, methane, and mercury are particularly harmful.

While the use of coal had been declining, recent events – including Russia’s invasion of Ukraine – have led to

an increase in the demand for coal.4

In addition to pollution from coal, pollution more generally is also increasing in much of the world. Carbon

dioxide equivalent per capita has almost double over the last 50 years in India, more than doubled in Indonesia,

and almost tripled in China.5 Much of this increase is due to the development process itself – as countries

develop, their economies transform, with more people moving out of agriculture and into manufacturing and

services (Herrendorf, Rogerson, and Valentinyi 2014). Despite this development, agriculture remains a key

sector in many developing countries, employing a large proportion of the poor (Dercon 2009). This also

means agriculture is a key sector when it comes to poverty reduction (Christiaensen, Demery, and Kuhl 2011).

Given the large e�ects of pollution on health and previously documented impacts on agriculture, this raises a

important question: do rising pollution levels in developing countries threaten agricultural productivity?

Although we have made much progress over the last several decades, poverty and inequality remain important

challenges in the developing world (Alvaredo and Gasparini 2015). Poverty is particularly prevalent in rural

areas, where the majority of the world’s poor live (Dercon 2009), and in the agricultural sector, where the
1www.iea.org/reports/coal-fired-electricity
2data.worldbank.org
3globalenergymonitor.org/
4www.npr.org/2022/08/15/1117560560/a-rising-demand-for-coal-amidst-war-in-ukraine
5https://edgar.jrc.ec.europa.eu
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majority of the world’s poor work (Christiaensen, Demery, and Kuhl 2011). As such, agricultural productivity

is a key determinant of poverty in developing countries (Dercon 2009), meaning that any threat to agricultural

productivity is also a threat to poverty reduction.

In this paper, I study the e�ects of pollution on agricultural productivity in India. Previous work has

suggested that there may be harmful direct e�ects of air pollution (Heck et al. 1982; Marshall et al. 1997)

and water pollution (Reddy and Behera 2006) on agricultural productivity, including work showing that

gold mines – which release large amounts of pollutants into the surrounding environment – lead to lower

agricultural productivity in Ghana (Aragón and Rud 2016). These e�ects can work through the well-known

e�ects on human health and productivity, but also directly through land productivity. Black carbon in soot,

for example, can directly a�ect solar radiation reaching plants on the surface (Ramanathan and Carmichael

2008; Burney and Ramanathan 2014), while, on the other hand, sulfur in some pollution sources can actually

be productivity enhancing (Sanders and Barreca 2022). Relative to previous work in economics, this paper

tackles pollution more broadly, before turning to a specific source of pollution: coal plants. I show that air

pollution leads to lower agricultural productivity in India and that pollution from coal plants is particularly

harmful to agriculture.

Identifying the causal e�ects of pollution is di�cult. For starters, the construction of coal plants is likely to

be endogenous, though the relationship between construction and economic conditions is not a priori clear.

On the one hand, governments may locate new plants in fast-growing areas, while on the other hand, they

may decide the exact location of plants based on the political power of local citizens (Kopas et al. 2020). In

the case of the data I use here, coal plants are constructed in areas with higher population and higher levels

of pollution. In terms of agriculture, higher productivity predicts more coal plants in a given year as well

as the construction of a coal plant over the next decade, indicating possible bias when estimating e�ects of

pollution on agricultural productivity.

To identify the e�ects of air pollution on agricultural productivity, I identify areas of high pollution emission

using the location of coal plants. While coal plants may add emissions, I show that they are located in areas

with relatively higher levels of pollution, in general. Using these locations as point sources of pollution, I use

plausibly exogenous changes in wind direction – in a similar spirit to Deryugina et al. (2019) – to measure

the e�ects of pollution on key agricultural outcomes. I first plot the location of coal plants in India by year.

Using a village-level shapefile, I identify all villages that are located within 30km of a coal plant at any

time during the sample period, which comprises the 2000s to the 2010s, with di�erences across outcomes

depending on data availability. I then calculate the direction from each coal plant to all villages within 30km.

I include all areas, regardless of whether the coal plant has opened yet, to allow me to disaggregate the e�ects
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of pollution from coal plants with other kinds of pollution later in the paper.

Using daily wind data and these spatial variables, I create an identifier separately for every village for

whether a given village is located downwind from a coal plant on any given day. I then aggregate this

exposure variable based on the desired analysis; for agricultural productivity, for example, I create an exposure

variable measuring the total number of exposure days in the five-month agricultural season, focusing only on

the monsoon (Kharif) season. More days being located downwind from a high-pollution location leads to

substantially higher average concentrations of particulate matter 2.5 (PM 2.5).6

Using wind direction as an instrument for particulate matter, an increase of PM 2.5 by one percent leads to a

large decrease in agricultural productivity, with an elasticity of approximately -0.63 in the most conservative

specification. The IV estimates indicate that the e�ect of pollution is more negative than naïve OLS

estimates, which is consistent with the evidence on the construction of coal plants; higher levels of pollution

are correlated with higher levels of agricultural productivity, a relationship that the IV strategy adjusts

downwards. Robustness checks confirm these main results. Randomization inference shows that the estimates

are robust to alternative measures of uncertainty, while leads of pollution do not a�ect current agricultural

productivity.

Heterogeneity analysis shows that the negative e�ects of pollution are larger in villages that experience higher

median exposure to pollution and in villages with higher initial yields. Finally, given how many poor farmers

rely on rainfall and how weather shocks are on the rise across the globe, I also look at possible multiplicative

e�ects of shocks by interacting the pollution variables with a rainfall variable. Higher exposure along with

less rainfall increases the negative e�ect of either shock individually, meaning these shocks are compounding.

Given concerns regarding agricultural productivity and climate change, the rise of pollution in India may be

particularly problematic for poor farmers.

A key question is the mechanism: does pollution reduce labor productivity, land productivity, or both? While

previous work from the United States indicates that pollution from coal plants, specifically, can lead to

higher land productivity (Sanders and Barreca 2022), agriculture in India di�ers greatly from agriculture in

the United States. To test for possible e�ects on labor productivity, I look at di�erential e�ects based on

labor intensity of the predominant crops in di�erent villages. Specifically, I separate e�ects in predominantly

rice-growing areas from other areas; since rice is very labor intensive, we would expect to see larger negative

e�ects of pollution in rice-growing regions relative to other regions if one mechanism through which pollution

a�ects productivity is direct e�ects on labor. I show that pollution negatively e�ects agricultural productivity
6PM 2.5 is defined as particulate matter with a diameter of less than 2.5 micrometers.
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in non-rice areas but that the e�ects in rice-growing areas are around 50 percent larger in magnitude. These

results indicate that pollution likely directly a�ects labor productivity, though I am not able to rule out

direct e�ects on land, either, due to a lack of data.

The final set of analyses tries to disentangle the e�ects of pollution from the e�ects of coal pollution, specifically,

by using wind direction and the rollout of coal plants across the country. Combining instrumental variables

with a di�erences-in-di�erences strategy, I show that agricultural productivity has an elasticity of around

-0.22 with respect to non-coal pollution. The opening of a coal plant, however, doubles the elasticity, to

more than -0.44, indicating that coal plant emissions are particularly harmful to agricultural productivity, at

least in India. This is consistent with coal emissions being quite di�erent from other forms of pollution; coal

emissions contain di�erent types and quantities of harmful substances, meaning e�ects may di�er greatly.

An important caveat to these results is that I cannot disentangle exactly which pollutants drive results. While

I use PM 2.5 as a measure of overall exposure to pollution, e�ects could be driven by any pollutants carried

by the wind. This leaves open an important avenue of future research regarding the e�ects of di�erent types

of pollutants on agricultural productivity.

This paper contributes to several strands of literature. We already have evidence of e�ects of pollution on

di�erent forms of labor activity. For example, general levels of pollution decrease productivity of call center

works in China (Chang et al. 2019), lead people to perform worse on cognitive functions (Ebenstein, Lavy,

and Roth 2016; Wen and Burke 2022), lower labor market earnings (Borgschulte, Molitor, and Zou 2022), and

also lead to lower levels of farm labor productivity in California, driven by changes in ozone concentration

(Gra� Zivin and Neidell 2012). Also in China, He, Liu, and Salvo (2019) find small but significant negative

e�ects of pollution on manufacturing productivity, while Chen, Oliva, and Zhang (2022) show pollution leads

to labor out migration. Relevant to my results, Hanna and Oliva (2015) show that decreases in pollution lead

to increases in labor allocation in another developing country.

Several papers are closely related to this one. Aragón and Rud (2016) show that gold mines in Ghana have

substantial negative impacts on agricultural productivity in the surrounding areas. Burney and Ramanathan

(2014) model the e�ects of climate change and pollutants on agricultural productivity in India. Finally,

Sanders and Barreca (2022) actually find that coal emissions can be good for agriculture in the United

States, due to the presence of sulfur, which can increase agricultural productivity. This paper di�ers from

the previous literature in three important ways. First, I explore e�ects of pollution more generally as well

as from coal plants, which are much more ubiquitous than gold mines across the world. Second, I use a

di�erent identification strategy from most other papers, relying on wind blowing pollution from coal plants.
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Finally, agriculture in India and the United States can be quite di�erent, with the latter being much more

mechanized. This means e�ects of pollution could di�er substantially depending on the context, a conclusion

that the current results support.

2 Data

The main goal of this paper is to examine whether exposure to pollution a�ects agricultural productivity, as

well as to provide evidence about the e�ects of pollution from coal plants, in particular. I use several sources

of data, which I describe here and list in Table A1 of the appendix.

The first set of data lists the location of coal plant across the globe. This data comes from Global Energy

Monitor7 and lists all units generating at least 30 megawatts of electricity. The data on coal plants includes

the year of opening (and, if applicable, the year of retirement), the GPS (latitude/longitude) location of

each plant, and the amount of power produced by the units at each plant. For this paper, I do not use the

information on the capacity of the plant.

Figure A1 in the appendix displays the location of coal plants in India for two specific years: 1990 and 2010.

There is a clear increase in the prevalence of coal plants across the country over the two decades. Additionally,

the overall capacity from coal plants increased from 42.4 gigawatts to 100.4 gigawatts, an increase of 136.6

percent in just 20 years. This increase is driven both by the roll out of new plants as well as the construction

of new units at existing plants, the latter of which is not shown in Figure A1.

The second dataset includes agricultural productivity for both the monsoon and winter seasons, from 2002

to 2018. To match other data, I only use the data up to 2013. This data comes from Gangopadhyay et al.

(2022) and estimates land productivity (i.e. yield, in tons per hectare) for the major crops in India, using

satellite-derived data. While there is a wealth of literature on measurement error in land (Desiere and Jolli�e

2018; Abay et al. 2022), the authors use a static cropland mask for the productivity estimates. This means

that any measurement error will hopefully be constant across time and subsumed by the village fixed e�ects.

While the measure of output is also noisy, the use of satellite-derived data and a static cropland mask reduces

concerns about measurement error being responsible for the results below, especially since common sources

of measurement error are unlikely to be correlated with wind direction. The authors define the monsoon

season as June to October and the winter season as November to March. Due to large di�erences in the crops

grown and the production technologies used across seasons, I focus on only the monsoon season and keep

the authors’ definition when matching across data below. The data on agricultural productivity is publicly
7globalenergymonitor.org/projects/global-coal-plant-tracker/
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available from Nature’s data-sharing website.8 Since the main regressions below use village fixed e�ects, any

di�erences in cropping patterns across areas should not bias estimates on changes, as long as these patterns

do not change markedly in response to annual pollution levels.

The agricultural productivity data is available as raster files with a resolution of 500m. To aggregate this

data up to a useful administrative unit, I use village-level shapefiles provided by Asher et al. (2021) and

publicly available on the SHRUG platform.9 I aggregate the agricultural productivity data to the village

level by extracting mean productivity for each feature in the shapefile. I do this separately for the monsoon

season each year, from 2002 to 2013.

To measure exposure to pollution from point sources around coal plants, I first locate all village centroids

located within 30km from a coal plant in a given year. I choose 30km due to previous research on the e�ects

of (air) pollution (Aragón and Rud 2016; Bencko and Symon 1977; Li and Gibson 2014). I then calculate the

direction from these point sources to all village centroids within that 30km radius. To define exposure, I pull

daily wind direction data from the National Center for Atmospheric Research.10 For each day, I document

whether the wind is blowing towards each village centroid11 and then temporally aggregate this daily data

depending on the temporal definition of the corresponding outcome. For example, agricultural productivity

is defined across five months (i.e. the monsoon season is from June to October) so I count the total days a

given village is exposed to wind blowing from any coal plant within 30km during those five months.

The top panel in Figure A2 in the appendix is an example wind direction raster. The raster shows wind

direction for the entirety of India on January 1st, 2010, as well as the location of coal power plants on that

date. The prevailing winds on the date di�er across the country and, though not shown in the figure, across

days. This means that the overall exposure for a given area to coal plant emissions changes across time.

For pollution data, I use estimated particulate matter (PM). Specifically, I use estimates of PM 2.5, which

includes particles with a diameter of 2.5 micrometers or less. This data comes from Hammer et al. (2020)

and is available as a raster with a resolution of 0.01 degrees. I aggregate this data to the village level by

extracting the mean PM for each feature in the shapefile. I do this separately for each month from June 2002

to October 2013. The bottom panel in Figure A2 in the appendix is an example of the PM data. The figure

shows the estimated PM 2.5 from for each village in Guna district of Madhya Pradesh on January 1st, 2010.

While I use PM 2.5 as the estimated level of pollution, it is important to clarify that I cannot explicitly
8springernature.figshare.com
9www.devdatalab.org/shrug_download/
10climatedataguide.ucar.edu/
11I define “towards” as within five degrees to help take into account that I am using village centroids. The wind data includes

both the x and y components of wind speed, which I can use to calculate angles from point sources to village centroids.
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say that PM 2.5, per se, is responsible for any e�ects. Pollution includes a variety of di�erent components,

including PM 2.5, PM 10, sulfur dioxide, and nitrogen dioxide, to name but a few. While I use PM 2.5 as a

proxy for pollution, it is possible that other components are responsible for the e�ects. Additionally, the PM

2.5 data is estimated using satellite data and a machine learning algorithm. While this is a common approach

in the literature ( see Hammer et al. (2020) for more details), it is important to note that the estimates are

not direct measurements of pollution. However, a valid instrumental variable can help for any measurement

error present in the data (Glewwe 2012; Gillen, Snowberg, and Yariv 2019).

To help understand some of the mechanisms driving the relationship between exposure to emissions and

agricultural productivity, I also look at the di�erential e�ects by the labor intensity of the predominant

crop in each area. For this, I use data from Monfreda, Ramankutty, and Foley (2008), who estimate area

harvested for di�erent crops across the global around the year 2000. I identify areas where rice (paddy) is

the most commonly grown crop, under the assumption that rice is more labor intensive than other crops

(Vollrath 2011; Michler 2020). Michler (2020), for example, shows that rice, on avearge, uses almost 1,800

hours per hectare, while the second-highest crop in his data, cotton, juses just 850. He also estimates that

wheat, another common crop in India, uses just 600 hours per hectare.

3 Methods

I am primarily interested in the e�ects of pollution on agricultural productivity. We might consider a

regression of the following form:

yit = –i + “t + —PMit + ”rainit + Âtempit + Áit, (1)

where yit is outcome y for unit i at time t, – is a geographic fixed e�ects, “t is time fixed e�ects, PMit is the

(log) concentration of particulate matter 2.5, rainit is total rainfall during the season, and tempit is average

temperature during the season.

However, even with the fixed e�ects, this regression likely su�ers from endogeneity; places with more pollution

may be very di�erent from places with less pollution. It is di�cult to sign the direction of the bias a priori,

because it depends on the local context and how the coal plants are placed. For example, if coal plants are

placed in places in need of power – for example, due to rapid growth – then the estimates might be upwards

biased. On the other hand, if o�cials purposefully place coal plants in poorer areas for political reasons, then

the estimates might be downwards biased.
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Table 1: Local characteristics and the construction of coal plants

1991 census 2001 census
1991 2001 2001 2011

Population (log) 0.012*** 0.009*** 0.015*** 0.006***
(0.001) (0.000) (0.000) (0.000)

Area (log) -0.010*** -0.005*** -0.010*** -0.005***
(0.001) (0.000) (0.000) (0.000)

Urban pop (prop) -0.029 0.006 -0.003 -0.007
(0.037) (0.035) (0.022) (0.018)

Ag. productivity 0.014*** 0.028***
(0.001) (0.001)

Pollution (log PM 2.5) 0.051*** 0.016***
(0.002) (0.001)

Sub-sample all no plant all no plant
Observations 283,021 264,265 508,786 469,005

Note: State fixed e�ects are included in regressions. Robust standard errors are in
parentheses. The outcome in the first column is whether the village is within 30km of
a coal plant in 1991. The second column is whether a village in 1991 will have a coal
plant in 2001, conditional on not having one in 1991. The last two columns are similarly
defined, except using 2001 and 2011 as the years. * p<0.10 ** p<0.05 *** p<0.01

What are the characteristics of areas near the construction of new coal plants? Table 1 presents four separate

regressions, using state-level fixed e�ects due to the spatial variation in coal plants. The first two columns

use 1991 census data – downloaded from SHRUG – and the second two columns use 2001 census data, all

at the village level. The first column presents results from regressing a dummy for whether there is a coal

plant within 30km in 1991 on several census variables. Villages with higher population densities (higher

log population and lower log area) are more likely to be near a coal plant at the time. Urban population

proportion is not a significant predictor after conditioning on population and area.

The second column keeps the 1991 census data but changes the outcome variable to a dummy for whether

there will be a coal plant constructed within 30km before 2001. This column restricts the sample to only

villages that do not already have a coal plant within 30km in 1991. The pattern of significance remains the

same in column two.

The last two columns are particularly relevant to the current results. They present similar results to those in

the first two columns, but use the 2001 census data and a dummy for the presence of a coal plant in 2001 and

2011 in columns three and four, respectively. Importantly, I include agricultural productivity in the monsoon

season of 2002 – the earliest year available – as well as average pollution during the monsoon season for 1998

through 2000 as additional predictors. In 2001, agricultural productivity is a strong predictor for the presence

of a coal plant. Moreover, it is also a significant predictor of the construction of a coal plant between 2001
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and 2011 (column four). Given that the coe�cient is positive, this indicates that coal plants are more likely

to be built in areas with higher agricultural productivity. In other words, any selection in the overall location

of coal plants would bias against finding negative e�ects of pollution on agricultural productivity. However,

note that this is not the same as looking at wind direction, though comparing the OLS and IV results below

leads to the same conclusion regarding selection.

Pollution is also a significant predictor for the presence of a coal plant in 2001 as well as for whether a coal

plant will be constructed before 2011. While the coe�cient is relatively small, it is actually quite large given

that only three percent of villages in column four will get a new plant in the next decade.

Since pollution is likely to be endogenous, a naïve OLS regression will not return unbiased estimates. The

experimental ideal would be to randomly assign pollution to villages, but this is obviously not possible.

Instead, I use an instrumental variables (IV) approach to identify the causal e�ects of pollution on agricultural

productivity. The key identifying assumption is that wind direction is exogenous from year to year, conditional

on village fixed e�ects and weather. While the location of pollution sources might be endogenous, the amount

of pollution received by a specific village in a given year can vary randomly based on wind direction. By

counting the number of days in a given year that a village is downwind from a polluted area and conditioning

on village fixed e�ects and weather (rainfall and temperature), variation across years is plausibly exogenous.

Since I include village fixed e�ects, identification comes from within-village changes in wind direction across

years.

Consider the reduced form e�ect of wind exposure on agricultural productivity:

PM2.5it = –i + “t + —windit + ”rainit + Âtempit + Áit, (2)

where variables are defined identically to above but with wind as the primary variable of interest instead of

pollution. Combining these into a two-stage procedure, we can instrument for pollution using wind direction;

small changes in wind direction can lead to large changes in pollution exposure for villages located near point

sources of pollution, allowing me to identify the causal e�ects of pollution by isolating the random component

driven by wind direction. This is similar in spirit to Deryugina et al. (2019).

Identification relies on changes in wind direction across time for the same geographic units. In other words,

conditional on the fixed e�ects and weather, I assume changes in wind direction are as good as random and

uncorrelated with the outcome – primarily agricultural productivity in this paper – except through exposure

to pollution.
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The inclusion of rainfall and temperature is meant to reduce concerns that wind direction may not a�ect

agricultural productivity but, instead, be correlated with it through changes in weather. For example,

prevailing winds from one direction may be associated with dry weather, while winds from another direction

may be more likely to carry moisture and rain. It is not a priori clear how this would bias the estimates with

respect to pollution and coal plants, however. The di�erences in weather patterns is very context specific and

can di�er even for villages located near one another.

I believe there are two reasons this is unlikely to be the case here. First, villages located near one another

have very similar weather patterns, but wind direction leads to large di�erences in pollution exposure even

for villages right next to one another. Second, in some specifications, I include very flexible specifications for

weather. These inclusions do not lead to very large changes in the estimated relationship between pollution

and agricultural productivity, suggesting that weather is unlikely to be responsible for a spurious correlation

between productivity and pollution in the main results.

It is worth taking the time to validate the use of wind direction as a measure of exposure to pollution.

Consider the data used for the regressions presented in Table A2 of the appendix. The outcome variable

is particulate matter – specifically, PM2.5, which is particulate matter no larger than 2.5 micrometers in

diameter – which comes from Hammer et al. (2020). PM2.5 is one of the harmful byproducts from many

industrial processes, including power generation. Particulate matter is a major component of the pollution

emitted by coal plants, along with sulfur dioxide, di�erent types of nitrogen oxides, and mercury.12 This data

is available at the monthly level, but I aggregate variables to the season variable since that is the level of

analysis in the main results.

Both the particulate matter data and the wind data is at the village level, which means the regressions

in Table A2 are at the village level. As such, the geographic fixed e�ects are village fixed e�ects and the

temporal fixed e�ects are month fixed e�ects. Since the exposure variable is at the village level and we

follow villages over time, the standard errors are also clustered at the village level. I add more and more

flexible specifications for weather, with the most flexible specification in the fourth column. Note that the

relationship between wind direction and particulate matter is very similar across all four columns, suggesting

that the inclusion of weather does not change the relationship between wind direction and pollution. This is

important because it suggests that the use of wind direction as a proxy for pollution exposure is not biased

by weather patterns.
12www.epa.gov/airmarkets/power-plants-and-neighboring-communities
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3.1 Identifying mechanisms

A key question is how pollution a�ects agricultural productivity. Specifically, does pollution directly a�ect

labor productivity, land productivity, or both? Unfortunately, there is a lack of data that would allow me

to directly test these mechanisms, since I do not have data on the amount of labor or land used in each

village. Instead, I look at heterogeneity in the e�ects of pollution based on the predominant crop grown in

each village.

Michler (2020) presents estimates of labor intensity for several major crops in India. The most labor-intensive

crop is rice, which uses almost 1,800 hours per hectare. The second-most labor-intensive crop is cotton, which

uses just 850 hours per hectare. Wheat, another common crop in India, uses just 600 hours per hectare. This

suggests that pollution should be more harmful for rice than for other crops if there are direct impacts on

labor productivity.

To identify this possible mechanism, I identify areas that grow predominantly rice. Specifically, I estimate

the following regression:

yit = –i + “t + ÊPMit + „riceit + —PMit ◊ riceit + ”rainit + Âtempit + Áit, (3)

where PMit denotes the e�ect of pollution in non-rice areas and PMit ◊ riceit is the di�erential e�ect in

rice-growing areas. Here, I create an indicator variable for rice areas that is time invariant, so riceit drops

out of the estimation. I instrument for PMit and for PMit ◊ riceit using wind and wind interacted with the

indicator for rice.

While this is a useful first step, it is not a perfect identification strategy. First, there could be other di�erences

in the types of areas that grow rice, and these di�erences could actually be responsible for any heterogeneity.

Second, this strategy does not allow me to say anything about the e�ects of pollution on land productivity.

3.2 Identifying e�ects of pollution from coal plants

I use the location of coal plants to identify locations of high pollution emission, but there can be other

pollution sources located near coal plants, as well. I nonetheless also want to identify the e�ects of pollution

coming specifically from coal plants, in addition to the overall e�ects of pollution in the other parts of the

paper. I do this by combining the two-stage procedure above with a di�erences-in-di�erences framework.

Specifically, I create a new variable identifying the exact year the coal plant opens in a given area and

calculate the change in the e�ects of pollution on agricultural productivity.
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Consider the following regression of interest:

yit = –i + “t + ÊPMit + „openit + —PMit ◊ openit + ”rainit + Âtempit + Áit, (4)

where the interaction term PMit ◊ openit indicates the change in the e�ect of pollution following the opening

of the coal plant. Note that this is not the same as saying that pollution increased; instead, it is focusing on

the change in the e�ect of a change in pollution of one unit on the outcome of interest, agricultural yield. I

instrument for both PMit and PMit ◊ openit using wind and the interaction between wind and the open

indicator, or windit ◊ openit.

4 Results

I first present the reduced form results for agricultural productivity. The outcome for all regressions in this

section is the log of agricultural land productivity, which is defined as tons per hectare. The first set of results

are in Table 2. The unit of analysis is the village-season – from 2002 to 2013 – focusing only on the monsoon

(kharif) season. The data used to construct the yield measure is calculated using five months of data, so the

wind variable is defined for the same five months and is the sum of days in which the wind is pointed towards

the village centroid from a coal plant.

The first column presents the most simple results, with only the wind exposure variable and the fixed e�ects.

The second column adds a rainfall and average temperature variable. While I leave them out of the table

for simplicity, the coe�cients are in the expected direction: rainfall is positive and average temperature is

negative. The third column adds higher-order weather variables for both rainfall and temperature, as well as

the interaction between them. This attenuates the relationship between wind and productivity somewhat,

but the coe�cient remains negative and statistically significant.

The final column includes the most flexible form for the weather variables. The z-score for rainfall is turned

into bins – with cuto�s at z = ≠1 and z = 1 – based on rainfall in each month of the season. In other words,

over the five months, I create 15 di�erent indicator variables for rainfall based on the z-score in each month.

One of these indicators drops out for each month of the year, leaving 10. I also include interactions between

all of these and temperature, as well as between the bins and temperature squared. The coe�cient on wind

remains negative and statistically significant, and is actually slightly larger in magnitude than the results

in column three, which is a much less flexible specification for weather. This leads me to conclude that the

results are not being driven by weather patterns.
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Table 2: Wind direction and agricultural productivity

(1) (2) (3) (4)
wind days -0.0078*** -0.0065*** -0.0051*** -0.0053***

(0.0007) (0.0007) (0.0007) (0.0007)
weather No Yes Yes No
weather (expanded) No No Yes No
weather (expanded, bins) No No No Yes
fixed e�ects:
village Yes Yes Yes Yes
year Yes Yes Yes Yes
observations 1,266,922 1,266,922 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clustered at the village level. The outcome in
all regressions is estimated agricultural yield, defined as tons per hectare. * p<0.10 ** p<0.05 ***
p<0.01

Table 3: Particulate matter (PM 2.5) and agricultural productivity

(1) (2) (3) (4)
Particulate matter (log PM 2.5) -0.042*** -0.045*** -0.008** -0.041***

(0.003) (0.003) (0.003) (0.003)
Weather No Yes Yes No
Weather (expanded) No No Yes No
weather (expanded, bins) No No No Yes
Fixed e�ects:
Village Yes Yes Yes Yes
Year Yes Yes Yes Yes
Observations 1,266,922 1,266,922 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clustered at the village level. The outcome
in all regressions is estimated agricultural yield, defined as tons per hectare. * p<0.10 **
p<0.05 *** p<0.01

To put the size of the coe�cient in context, it is worth digging a little deeper into the exposure variable.

The mean within-village absolute deviation in wind exposure is approximately 2.42 days, meaning that the

average change in agricultural productivity from year-to-year due to nothing but changes in wind patterns

carrying particulate matter is around 1.5 percent relative to the mean. This implies that swings in agricultural

productivity – due to wind direction – of several percent are probably quite common, since the absolute

deviation includes deviations above and below the mean.

Of course, it is not wind, per se, that we are interested in. Instead, we are actually interested in better

understanding the e�ects of exposure to pollution on agricultural productivity. Table 3 presents the same

regressions as Table 2, with a key di�erence: instead of wind exposure, it uses log average concentration of

PM2.5 – from Hammer et al. (2020) – during the season as the key explanatory variable. There is again

a consistent, negative relationship between particulate matter and agricultural productivity. Since both
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variables are logged, the coe�cients are similar to elasticities, indicating that a one-percent increase in

pollution leads to an approximately 0.04 percent decrease in agricultural productivity in three of the columns.

Recall, however, the results from above: coal plants were placed in places with higher average agricultural

productivity. This means that the simple regressions in Table 3 might actually be biased upwards: although

pollution might negatively a�ect productivity, pollution is higher in more productive areas due to the

endogenous placement of pollution sources in the study areas. One possible way to recover the actual e�ect of

pollution on agricultural productivity is with an instrument. If, conditional on the fixed e�ects and weather

variables, wind direction is exogenous and only a�ects agricultural productivity through pollution, then it is

a valid instrument for pollution.

I present these IV results in Table 4, with the first-stage F-statistic at the bottom. The first-stage results –

the full results are in Table A2 of the appendix – make clear how strong of an instrument wind is; all three

F-statistics are above 1,000, meeting even the higher bar for the first-stage F-test argued for by D. Lee et al.

(2022).

The second-stage results first indicate that PM2.5 is a very strong predictor of agricultural productivity.

Using the results in column three, a one percent increase in particulate matter leads to a 0.62 percent decrease

in agricultural productivity. To put this in further perspective, the mean particulate matter concentration is

just short of 40 (39.68) in the monsoon sample, while the within-village absolute deviation in particulate

matter is 3.98, meaning year-to-year swings of several percent in agricultural productivity due to pollution

exposure alone are common.

Column four presents one last specification; it includes a much more flexible specification for weather. This is

the same binned specificaiton as I describe above. The coe�cient in column four shows almost not change

from those in column three, again relieving some concerns that weather may not be correctly specified, leading

to a spurious correlation between particulate matter and agricultural productivity.

The comparison of the results to those in the previous table also confirm the concerns around endogenous

placement of pollution sources. The coe�cients in Table 4 are substantially more negative than those in

Table 3. In other words, the simple regression of agricultural productivity on pollution results in coe�cients

on pollution that are upwards biased, since higher levels of pollution occur in more productive areas, on

average. The IV strategy corrects this bias and leads to a robust, negative relationship between pollution and

agricultural productivity.
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Table 4: Pollution and agricultural productivity, IV estimates

(1) (2) (3) (4)
Particulate matter -0.941*** -0.769*** -0.621*** -0.626***
(log PM 2.5) (0.078) (0.075) (0.080) (0.077)
Weather No Yes Yes No
Weather (expanded) No No Yes No
Weather (expanded, bins) No No No Yes
Fixed e�ects:
Village Yes Yes Yes Yes
Year Yes Yes Yes Yes
F (first stage) 1,236 1,266 1,205 1,246
Observations 1,266,922 1,266,922 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clustered at the village level. The out-
come in all regressions is estimated agricultural yield, defined as tons per hectare. * p<0.10
** p<0.05 *** p<0.01

4.1 Robustness checks

In this section, I report the results of two separate robustness checks for the main results presented above.

In the previous results, standard errors are clustered at the level of the village, which is also the level at

which treatment (exposure to pollution) is assigned as well as the level at which agricultural productivity is

extracted. Past work has shown that standard errors might be underestimated in such contexts (Bertrand,

Duflo, and Mullainathan 2004). This is a particular concern in the present case, since agricultural productivity

is extracted at the village level but estimated using less coarse data that has high spatial correlation

(Gangopadhyay et al. 2022).

To help remedy concerns, I perform randomization inference (e.g. Barrios et al. (2012)) by randomly assigning

observed treatment across villages and repeating this process 1,000 times. I do this in two separate ways.

First, I take all villages in a given year and randomly assign, with replacement, treatment intensity within

the year. Second, I do this separately by selecting from within district-years only, to help take into account

district-year correlation in outcomes and as a way to mitigate possible concerns that traditional clustered

standard errors may actually be much too conservative (Abadie et al. 2023). Since this is an instrumental

variables procedure, I randomly select the wind and pollution variable together.

I present these results in Figure A3 of the appendix. The purple density is the resulting distribution of

estimated treatment e�ects when selecting from all villages within the same year. The density of treatment

e�ects is relatively tight around 0, with the left tail only reaching slightly beyond -0.05, compared to the

most conservative actual estimated treatment e�ect of -0.63.

The within-district correlation in outcomes and treatment is apparent when instead randomly selecting from
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Table 5: Agricultural productivity and pollution leads

(1) (2)
particulate matter (one-year lead) -0.033

(0.067)
particulate matter (two-year lead) -0.070

(0.052)
weather (expanded) No No
fixed e�ects:
village Yes Yes
year Yes Yes
F 592 783
observations 1,161,265 1,055,562

Note: Standard errors are in parentheses and are clustered
at the village level. The outcome in all regressions estimated
agricultural yield (tons per hectare). * p<0.10 ** p<0.05 ***
p<0.01

only villages within the same district in the same year. The distribution is still approximately normal but

has a mode of almost -0.4. Nonetheless, the actual treatment e�ect is larger in magnitude than almost all of

the bootstrapped replications. The results are apparently robust to alternative specifications of uncertainty.

The second robustness check includes leads of pollution and wind direction. I instrument for future pollution

using future wind direction, which mirrors the strategy employed in the main results. I present these results

in Table 5. Neither a one-year nor a two-year lead predicts current agricultural productivity, which supports

the identification assumptions.

4.2 Heterogeneity

Having established that exposure to pollution has a negative e�ect on agricultural productivity, I now move

to the heterogeneity in these e�ects to better understand whether certain areas are driving the e�ects. Table

6 presents three di�erent analyses: heterogeneity by median exposure, heterogeneity by initial yield, and

possible multiplicative e�ects of shocks. All regressions use the IV strategy detailed above and I include the F

statistic from the first stage regressions (of which there are two in the last column) at the bottom of the table.

The first two columns split the sample based on median exposure. In other words, for each village, I calculate

the median exposure (based on wind) and then use this single value for each village to split the sample into

villages above and below the median. The coe�cient in the first column is only slightly larger than the

coe�cient in the second column, indicating that pollution does not have large di�erential e�ects based on

exposure. One possible explanation is that exposure is not cumulative, but continues to be harmful regardless

of the baseline level.
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Table 6: Heterogeneity in the e�ects of pollution on productivity

Wind Yield
>p(50) <=p(50) >p(50) <=p(50)

Particulate matter -0.415*** -0.336*** -1.026*** -0.568*** -0.306***
(log PM 2.5) (0.114) (0.099) (0.060) (0.166) (0.077)
PM times Rain 0.119***

(0.002)
Weather Yes Yes Yes Yes Yes
Fixed e�ects:
Village Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes
F (1st stage, PM) 597 482 675 428 674
F (1st stage, PM times rain) 6,393
Observations 617,804 649,118 634,342 632,580 1,266,922

Note: Standard errors are in parentheses and are clustered at the village level. The outcome in all
regressions is estimated agricultural yield, defined as tons per hectare. The first two columns split the
sample based on the median exposure (by village). The second two columns split the sample based on
initial – the first year available – agricultural productivity. * p<0.10 ** p<0.05 *** p<0.01

Columns three and four split the sample based on median yield at the very beginning of the sample (the first

year available, 2002). Column three presents results for villages above the median while column four presents

results for villages below the median. The largest e�ects are apparently concentrated in the upper half of the

distribution, meaning the most productive areas are also most susceptible to the e�ects of pollution. This

could have important implications for the overall e�ects of the placement of any point sources of pollution.

Given ongoing changes in the climate, a key question is how welfare will change as shocks become more and

more common. The last column looks at possible multiplicative e�ects of shocks by interacting pollution

with rainfall and seeing whether the e�ects compound one another. Since there are now two endogenous

regressors, I instrument for both using wind exposure and an interaction between wind exposure and rainfall.

The coe�cient on the level term for pollution is negative. Since rainfall is defined as a z score, this represents

the e�ect of pollution only when rainfall is at its mean value for a given season. The interaction term, on the

other hand, is positive. Since higher values of rainfall are generally good, this positive coe�cient represents

a compounding e�ect of pollution and rainfall; when rainfall is low (bad), the e�ects of particulate matter

on agricultural productivity is larger (more negative). Another way to think about this, however, is that

higher values of rainfall dampen the e�ects of pollution shocks. This could have very profound e�ects on

welfare, since this essentially increases the variance of agricultural productivity across years (which is already

increasing due to climate change), at least as it relates to pollution exposure. Given the importance of

variability to welfare (Dercon 2002; Merfeld and Morduch 2023), this could have important implications for

the e�ects of pollution on welfare.
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Figure 1: Most common crop by village

Note: The figure shows the most common crop grown in each village, by area harvested.
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4.3 Crops and labor intensity

A key question about the results is the mechanism. While previous results indicate that pollution may

actually increase land productivity (Sanders and Barreca 2022), the results in that paper come from the

United States, where agricultural practices vary greatly from those in India. On the other hand, we also

know that pollution can a�ect labor productivity in other contexts (Chang et al. 2019; Ebenstein, Lavy, and

Roth 2016; Gra� Zivin and Neidell 2012; Wen and Burke 2022). Unfortunately, there is no available labor

data that would allow me to directly test the e�ects of pollution on agricultural labor productivity. While

the National Sample Survey is nationally representative, it does not allow one to back out productivity, only

total labor allocation in the preceding week. Additional data options – like the ARIS-REDS or IHDS – are

not collected frequently enough to enable the kind of analysis employed here.

Instead, I look at heterogeneity by the modal crop grown in each area. I use data from Monfreda, Ramankutty,

and Foley (2008), who estimate area harvested by crop at a resolution of approximately 10km. These estimates

come from around the year 2000, at the beginning of my sample period. I identify areas where rice is the

most commonly grown crop. Rice (paddy) is commonly regarded as a labor-intensive crop in India (Vollrath

2011; Michler 2020), meaning that it may be more susceptible to pollution if some of the e�ects of pollution

are through direct e�ects on labor productivity.

Figure 1 shows the distribution of the most common crop across the villages in my sample. Though there

are large areas where rice is the most commonly grown crop, there is also quite a bit of overlap, especially

in the middle parts of the country. However, given the geographic concentration of rice production, I will

implement a robustness check with state-by-year fixed e�ects below.

Table 7 presents the main results in this section. I continue to employ an IV strategy, interacting pollution

with an indicator for rice and instrumenting this with an interaction between wind and rice. The first row

shows the e�ects of overall pollution on agricultural productivity in villages where rice is not the most

commonly grown crop. Column two, which has the most flexible weather specification, indicates that an

increase of particulate matter by one percent decreases productivity in these areas by around 0.4 percent.

The second row is an interaction term between rice and PM 2.5, meaning the linear combination of the two

coe�cients gives the overall e�ect of pollution on productivity in rice-predominant villages. The coe�cient of

-0.2 shows that pollution decreases productivity by around 50 percent more in rice-growing villages than in

non-rice growing villages. Since rice is more labor intensive, this is evidence that the e�ects of pollution work

at least partly through the e�ects of pollution on labor productivity. This does not, however, rule out any

direct e�ects on land productivity.
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Table 7: Agricultural productivity by most common crop

(1) (2)
Particulate matter (log PM 2.5) -0.287** -0.394***

(0.133) (0.134)
PM 2.5 times rice -0.338*** -0.205***

(0.061) (0.060)
Weather (expanded) Yes No
Weather (expanded, bins) No Yes
Fixed e�ects:
Village Yes Yes
Year Yes Yes
F (PM 2.5) 1,369 1,168
F (PM 2.5 times rice) 2,107 2,201
Observations 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clustered at the vil-
lage level. The outcome in all regressions estimated agricultural yield
(tons per hectare). The rice dummy equals one in villages where rice is
the most commonly harvested crop. * p<0.10 ** p<0.05 *** p<0.01

Given the geographic concentration of crops, Table A4 in the appendix presents the same results but with

state-by-year fixed e�ects, instead of just year fixed e�ects. This will compare the e�ects of pollution within

states in the same year, hopefully decreasing concerns that something other than labor intensity is the main

driver of the heterogeneity documented in Table 7. The results are consistent with those presented here, and

show that pollution decreases productivity more in rice-growing villages than in other villages.

4.4 Coal plants or overall pollution?

Finally, while I identify high-pollution areas using the location of coal plants, an important question is how

much of the overall e�ect is driven by coal plants and how much is driven by other polluting industries

located in areas near coal plants. I try to answer this question in Table 8, where I implement an instrumental

variables di�erences-in-di�erences, essentially instrumenting for pollution prior to the opening of a coal plant

with wind and instrumenting for the interaction term (pollution times plant opening) with wind times plant

opening.

Columns one and two of Table 8 present specifications with slightly di�erent weather controls. Column two

presents the most extensive set of controls – the flexible specification with binned weather variables – and I

focus on that column here. First, there are now two first stages but the F-tests indicate that the instruments

are strong for both, including the interaction term (F = 205 in the second column). Second, the first row

shows the e�ect of pollution on agricultural productivity prior to the opening of a coal plant; the coe�cient

is negative, indicating negative e�ects of non-coal pollution. Third, the interaction term is strongly negative
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Table 8: Agricultural productivity and pollution source

(1) (2)
Particulate matter (log PM 2.5) -0.228*** -0.223***

(0.066) (0.065)
PM 2.5 times Coal -0.250*** -0.220***

(0.024) (0.025)
Weather (expanded) Yes No
Weather (expanded, bins) No Yes
Fixed e�ects:
Year Yes Yes
Village Yes Yes
F (PM) 769 772
F (PM times Coal) 231 205
Observations 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clustered at the
village level. The outcome in all regressions is estimated agricultural
yield, defined as tons per hectare. * p<0.10 ** p<0.05 *** p<0.01

and approximately the same in magnitude as the level term, indicating a very clear e�ect specific to coal

plants, in addition to the overall negative e�ect of pollution.

Importantly, since these results come from an IV, both coe�cients denote the change in agricultural yield

due to an increase in pollution by the same units. In other words, this is not identifying di�erences in overall

pollution, per se, but rather di�erences in the e�ects of an increase of pollution by the same percentage.

These di�erent e�ects could be due to, for example, di�erences in emission patterns for di�erent kinds of

plants and factories; coal plants, for example, are responsible for much more mercury than other kinds of

polluting industries.13

5 Conclusion

In this paper, I show some of the negative e�ects associated with pollution, in general, and coal pollution, in

particular. Using exogenous variation in pollution driven by changes in wind direction, results here show that

pollution has a large, negative e�ect on agricultural productivity in India. These negative e�ects are at least

partly due to changes in labor productivity; areas growing more labor-intensive crops see larger decreases

in agricultural productivity due to pollution. Nonetheless, I am unable to rule out direct e�ects on land

productivity with the data available.

Using instrumental variables in a di�erences-in-di�erences set up, I also show that the e�ects of pollution from

coal, in particular, are particularly harmful to agricultural productivity. Changes of an equivalent increase in
13https://www.epa.gov/sites/default/files/2016-12/documents/nei2014v1_tsd.pdf
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pollution lead to three times larger negative e�ects on agricultural productivity following the opening of a

coal plant, compared to just before.

These results document relatively large, local externalities in the agricultural sector in a developing country.

Since the sector is a refuge for some of the poorest citizens in the world, the results raise important questions

about the current speed of the energy transition as it relates to sustainable development and poverty reduction,

more generally. While we often frame the debate around greenhouse gasses in terms of climate change, there

are important local reasons to reduce pollution emissions, as well. The technology for greener energy exists;

at this point, it is simply a question of policies (Markard 2018; Blazquez, Fuentes, and Manzano 2020).

These results, of course, do not address possible positive e�ects of the building of additional power plants,

which can lead to increased electricity access, or shifting more of the population into non-agricultural sectors,

which can raise standards of living. As such, the main conclusion is that the location of pollution emissions –

especially from coal plants – may be particularly important for multiple aspects of economic activity, not just

health and mortality.
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Appendix A

Table A1: Data sources

source geographic coverage temporal coverage
shapefile Asher et al. (2021) India
coal plants Global Energy Monitor global yearly
wind NCAR global daily
pollution Hammer et al. (2020) global monthly
agriculture Gangopadhya et al. (2022) India two seasons/year
weather TerraClimate global monthly
crops Monfreda et al. (2008) global 2000 (year)

Global Energy Monitor: globalenergymonitor.org/projects/global-coal-plant-tracker. NCAR:
climatedataguide.ucar.edu/. TerraClimate: www.climatologylab.org/terraclimate.html
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Figure A1: Coal plants in India from 1990 to 2010

Note: The left figure shows the location of coal plants of at least 30MW in 1990. The right figure shows the location of such coal
plants in 2010.
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Figure A2: Wind direction and aggregation examples (2010-01-01)

Note: The top figure shows the average wind direction on January 1st, 2010, with zero degrees indicating north. The points are
the location of coal plants on that date. The bottom figure shows the distribution of pollution exposure in a specific district –
Guna district in Madhya Pradesh – on the same date.

28



Table A2: Wind direction and particulate matter

(1) (2) (3) (4)
wind 0.0083*** 0.0085*** 0.0083*** 0.0085***

(0.0002) (0.0002) (0.0002) (0.0002)
weather No Yes Yes No
weather (expanded) No No Yes No
weather (expanded, bins) No No No Yes
fixed e�ects:
village Yes Yes Yes Yes
year Yes Yes Yes Yes
F 1,236 1,266 1,205 1,246
observations 1,266,922 1,266,922 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clustered at the village level. * p<0.10
** p<0.05 *** p<0.01
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Figure A3: Randomization inference

Note: The figure presents the distribution of coe�cients by randomly assigning wind direction across villages within the same
year. The "all" distribution is created by randomly assigning a single wind value to each village, sampled with replacement
across all villages in a given year. The "within district" randomly samples with replacement only from within the same district
in the same year.
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Table A3: Cumulative exposure to pollution during the season

(1) (2) (3) (4) (5)
June -0.643***

(0.064)
July -0.658***

(0.045)
Aug. -0.531***

(0.049)
Sept. -0.672***

(0.047)
Oct. -0.943***

(0.069)
weather Yes Yes Yes Yes Yes
fixed e�ects:
village Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes
F 1,327 2,830 2,933 2,413 1,515
observations 1,266,922 1,266,922 1,266,922 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clustered at the village level. * p<0.10 **
p<0.05 *** p<0.01
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Table A4: Agricultural productivity by most common crop

(1) (2)
Particulate matter -0.811*** -1.034***
(log PM 2.5) (0.158) (0.144)
PM 2.5 times rice -1.204*** -0.966***

(0.095) (0.092)
Weather (expanded) Yes No
Weather (expanded,
bins)

No Yes

Fixed e�ects:
Village Yes Yes
Year Yes Yes
F (PM 2.5) 883 941
F (PM 2.5 times rice) 1,355 1,395
Observations 1,266,922 1,266,922

Note: Standard errors are in parentheses and are clus-
tered at the village level. The outcome in all regressions
estimated agricultural yield (tons per hectare). The rice
dummy equals one in villages where rice is the most com-
monly harvested crop. * p<0.10 ** p<0.05 *** p<0.01
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