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1 Introduction

Scientific knowledge is increasingly produced by older people. John Goodenough was 97 when
he received the 2019 Nobel Prize for Chemistry. Between 2019 and 2023, he held a faculty posi-
tion at the University of Texas at Austin, published ten articles in highly respected peer-reviewed
journals, and filed four US patent applications. Beyond this (arguably extreme) example, the av-
erage age of NIH grant recipients has increased from 39 to 51 between 1981 and 2008 (Daniels
2015). Among faculty members in US chemistry departments, the mean age has increased from 37
in 1960 to 53 in 2015. Moreover, the age at which Nobel-prize-winning discoveries are made has
risen steadily over the course of the 20th century (Jones 2009, Jones & Weinberg 2011). Observers
ranging from Paul Romer to former NIH director Zerhouni have pointed to the aging of the scien-
tific workforce as their major concern for the future of US innovation (Packalen & Bhattacharya
2019, Kaiser 2008).

Scientific discoveries can be made by scientists in middle age - Wilhelm Röntgen discovered
X-rays at the age of 50 - or indeed later. However, scientific output tends to decline as scientists
age. In our data, faculty member productivity declines markedly after the age of 60. Moreover,
as we document in the text, scientists from more recent vintages tend to be more productive than
scientists from previous vintages. When an older faculty gets replaced by a younger one, scientific
output would tend to go up not just because scientists tend to be more productive when young (or
middle-aged) but also because the younger scientist would be from a more recent cohort and have
either higher human capital or higher intrinsic talent.

Understanding the causes of the aging of the scientific workforce is therefore important in
forming appropriate policy responses. An influential explanation for the aging of the scientific
workforce is the “burden of knowledge” hypothesis (Jones 2009). As the stock of human knowl-
edge accumulates over time, new entrants need to spend more time training to reach the knowledge
frontier. This leads to a secular increase in the age at which scientists start their careers and make
key discoveries, empirical patterns that are observed among Nobel Prize winners (Jones 2009,
2010). From this perspective, policymakers should seek to improve the quality of training and pre-
serve incentives to start scientific careers, but may want to refrain from giving large grants to young
scientists (Jones 2011). An alternative explanation for the aging of the scientific workforce is the
decline in the retirement rate of older scientists, a process facilitated by the elimination of manda-
tory retirement in US universities (Ashenfelter & Card 2002, Blau & Weinberg 2017). If declines
in retirement rates drive the aging of the scientific workforce, policymakers might - depending on
the productivity of older scientists - reconsider end-of-career incentives and policies.

It may seem that changing age at entry and retirement dynamics are the only factors changing
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the age composition of the scientific workforce, but this is not so. Entry age and exit dynamics
clearly matter in determining the age composition of the scientific workforce, but a potentially
important third factor is the number of people hired over time. Consider what would happen if the
US government made a large investment in science, perhaps a new Apollo or Manhattan Project.
As the total demand for scientific labor goes up, the extra positions would be disproportionately
filled by younger people graduating from universities (as opposed to older individuals moving from
non-research jobs to research jobs). As a consequence, the scientific workforce would immediately
become younger. In the more distant future, however, if the hiring spree does not continue, the dis-
proportionally large cohort of new entrants will age while staying active over decades, generating
aging for the whole population. Such a scenario is not hypothetical: Indeed, there was a strong
faculty hiring spree in the 1960s in the US that did not continue.1

In this paper, we build a demographic model of the US academic workforce to shed light on
the causes of its aging. The model leverages novel data on the population of US chemistry faculty
members between 1960 and 2010. Having set up the model to mimic observed empirical patterns
in the data, we can then use it to quantify the importance of various channels - changes in entry age;
retirement dynamics; and ratio of entrants to exits - to the aging of the workforce. For instance,
we can ask what would happen to the age composition of faculty members if entry ages did not
increase (stayed at their initial, as of 1960, level) but retirement dynamics and hiring patterns had
evolved as they did.

We find that changes in the ratio of entrants to exits are the main driver in the aging of our
sample. In the data, the mean age of chemistry faculty members rose from 39 in 1960 to 53 years
in 2010. Although the age at which individuals become faculty members has indeed increased (as
predicted by the “burden of knowledge” hypothesis), this only accounts for about a quarter of the
increase in mean faculty age. In contrast, changes in the number of people hired over time appear
to be a major factor in the aging of faculty members: they explain half of the observed aging, and
close to 80% when combined with changes in retirement dynamics.

We provide several pieces of institutional context to shed further light on what happened. In
the 1960s, federal R&D spending was booming due to the Cold War, whereas there was also a
surge in demand for higher education from the baby boom generation. As a result, each retiring
faculty member was replaced by three new hires, whereas subsequently, the ratio of entrants to new
hires declined significantly. Meanwhile, in the 1990s, the abolishment of mandatory retirement for
faculty members led to decreases in retirements, just at the same time as the disproportionally large
cohort of faculty members born in the 1930s and hired in the 1960s approached retirement ages.

1In an even starker case, an unusually large number of faculty members were appointed in Italy in the year 1980.
For details, see Lissoni et al. (2011).
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The combination of these historical events and policies appears to have played a major role in the
aging of the scientific workforce.

Our results have a number of implications for understanding the role of policy in shaping the
demographic composition of the academic workforce. First, the age composition of the academic
workforce need not simply reflect fundamental trends in the nature of knowledge production (or
of overall societal aging). Instead, it may (and perhaps should) be seen as the result of past and
present policy choices, particularly in terms of the number of people hired. Second, hiring more
new faculty could generate disproportionate returns. As new hires tend to be young, they generate
a sort of ‘demographic dividend’ whereby their productivity is higher than the average faculty, at
least in the beginning. Given that currently, less than 10% percent of graduate students become
faculty members and that faculty positions are generally considered attractive (Ganguli, Gaule
& Vuletic 2022), there is no shortage of talented young scholars interested in taking up faculty
positions.

This paper contributes to the literature on the causes of the aging of the scientific workforce
(Jones 2009, Jone 2010, Blau & Weinberg 2017), highlighting a new cause (a slowdown in hiring)
as quantitatively important in the post-World War II era. More generally, this paper also contributes
to the literature on the composition of the population of scientists and inventors (Aghion et al.
2017, Bell et al. 2019, Agarwal & Gaule 2020, Koning, Samila & Ferguson 2021, Celik 2023).
This literature highlights that increasing the representation of underrepresented groups (women,
individuals from developing countries, or disadvantaged socioeconomic backgrounds) in science
and innovation could increase the pace of innovation. Similarly, our paper suggests that increasing
the number of young faculty members (who are not just at the peak of their abilities, but also well
trained and selected by a highly competitive academic labor market) could boost the productivity
of academic research. This is particularly important in a world where ideas may be getting harder
to find (Bloom et al. 2000) and further gains in research intensity and educational attainment may
be difficult to obtain (Jones 2002).

The remainder of the paper is organized as follows. Section 2 discusses the institutional con-
text, including US science funding after World War II, faculty retirement policies, and chemistry
as a scientific discipline. Section 3 describes the data, Section 4 presents the methodology of the
simulation, and Section 5 presents the results. Finally, Section 6 concludes.
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2 Institutional context

In this section, we provide four pieces of institutional context relevant to understanding the
causes and consequences of the aging of the scientific workforce. First, we provide some descrip-
tive statistics on the aging of the US scientific workforce from 1960 to 2010. Second, we describe
how funding for basic research has evolved in the US from World War II to the present, as this
will be relevant to understanding how hiring patterns have changed over time. Third, we describe
how retirement policies for university faculty evolved over time. Finally, because our analysis will
focus on chemistry, we provide some background information on how knowledge production is
organized in this discipline.

2.1 Age structure of the US scientific workforce

The US scientific workforce is aging. Many observers have noted changes in the age compo-
sition of NIH grantees (see, e.g., Daniels 2015). For example, from 1980 to 2010, the median age
of NIH R012 grant recipients has increased from 40 to 50 years of age. Among chemistry faculty
members, the median age has increased from 41 years in 1960 to 51 in 2010.3 Even in mathemat-
ics, traditionally seen as the preserve of the young, the median age of authors has increased from
35 in 1960 to 44 in 2010.4

(Insert Figure 1 about here.)

To put the aging of the US scientific workforce in context, it is useful to consider the aging of
the US labor force as a whole. It is true that the US labor has aged from 1980 to 2010, with the
median age rising from 35 to slightly above 40. However, when considering a longer time period,
the trends are less clear: the US workforce had a median age slightly above 40 in 1960 already.
Moreover, even within 1980-2010, the rate of aging of the US workforce (with the median age
rising by less than 1.5 years by decade) is clearly lower than for the NIH grantees (with the median
age rising by more than 3 years by decade).

2Research Project Grants (R01) is the original and historically oldest grant mechanism used by NIH. They are
meant to support a specified project to be performed by a principal investigator in an area representing the investigator’s
specific interest and competencies, based on the mission of the NIH. NIH R01 grants constitute the bulk of NIH
external grant giving.

3This figure is based on our dataset of US chemistry faculty members that we describe in the next session.
4The figure on authors of mathematics articles is based on our own calculations using data from the Mathematics

Genealogy Project.
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2.2 US Science Funding after World War II

World War II had been a powerful demonstration of the practical utility of science and innova-
tion. For example, the development of the radar gave the United Kingdom a key advantage in the
Battle of Britain (a series of aerial battles between German and British air forces over the skies of
Britain). Most ominously, World War II ended shortly after the deployment of the atomic bomb
at Hiroshima and Nagasaki. The atomic bomb had been developed by the Manhattan Project, a
massive research project mobilizing most of the best physicists residing in America.

After World War II, a consensus emerged that basic research was important both for national
prosperity and in the ongoing geopolitical rivalry with the USSR. The argument was best encap-
sulated in Vannebar Bush’s influential report ‘Science, The Endless Frontier’ (Bush 1945). In
1957, the USSR launched the first satellite into space, sparking fears that the United States was
falling behind in technology. This ‘Sputnik moment’ provided further impetus for investment in
US science and education.

After 1945, the US federal government started supporting basic research on a systematic basis
and public R&D investments became very substantial. In 1950, a brand new federal agency, the
National Science Foundation, was funded. In addition, the National Institutes of Health were
instituted, building on prewar institutions but with a growing mandate and budget. Federal funding
for R&D grew tenfold from 1949 to 1962. As a share of GDP, federal funding for R&D reached
4% in the 1960s before steadily decreasing to 1% in 1980 and below 0.5% currently (see Figure
A-1).

The influx of federal funding resulted in a bonanza for US universities. In an anecdote re-
counted by Paula Stephan (Stephan 2018), federal grant agencies sent representatives to universi-
ties to encourage faculty members to apply for funding. Moreover, US universities also benefited
from a surge in demand for education from the ‘baby boom’ generation going to college with the
number of high school graduates enrolled in college doubling between 1960 and 1970 (Ashenfelter
& Card 2002). In response to increased demand for both research and teaching, US universities
hired large numbers of new faculty members, a pattern we clearly see in our data as we will later
discuss.

Federal R&D funding never recovered after falling from its peak in the 1960s. It was briefly
interrupted by the doubling of the NIH budget between 1998 and 2003 but this increase was not
permanent. Additionally, the rapid increase in NIH spending and subsequent deceleration created
substantial adjustment problems in the market for research (Freeman & Van Reenen 2009).
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2.3 Faculty retirement policies

Faculty retirement policies changed substantially in the postwar period.5 As of the 1970s,
mandatory retirement was nearly universal among postsecondary faculty in the United States.
However, the United States put in place bans on age discrimination in the workplace, which even-
tually resulted in mandatory faculty retirement policies being considered unlawful.6 Mandatory
retirement was effectively eliminated in 1994 with the US from then on offering -uniquely among
developed countries- lifetime employment security for tenured faculty members (Ashenfelter &
Card (2002).

Although the abolition of compulsory retirement at 70 was a notable policy change, its prac-
tical implications were somewhat blunted by a number of factors. First, some universities did not
have compulsory retirement policies for their faculty members, whilst others could let particular
individuals continue beyond 70 on a case-by-case basis. Second and more importantly, individuals
may choose to voluntarily retire before 70 irrespective of compulsory retirement policy. In the
data from Ashenfelter and Card (2002), only half of faculty members employed at age 65 are still
employed at 69, both before and after the age cap was removed. Still, there were large spikes in
retirement rates at 70 and 71 that disappeared after the cap was removed (ibid.).

2.4 Chemistry

Chemistry is the scientific study of the properties and behavior of matter. While chemistry is
a physical science, large parts of it relate to living organisms, so chemistry also relates closely to
life science. Apart from some smaller subdisciplines, such as theoretical chemistry, chemistry is
largely a lab-based science. Besides being a physical space with instruments and research mate-
rials, the lab is also an organizational structure where a faculty member (principal investigator)
obtains funding for the lab, directs research projects, and appears as a coauthor on all publications.
Although faculty members in elite institutions are usually supported by a relatively large number
of graduate students, postdoctoral researchers, and technical staff working in their lab, this varies
to an extent between time and over institutions.

Traditionally, faculty members/lab directors appear as the last authors of scientific publications.
The graduate student or postdoc who has done most of the day-to-day work on the research project

5This subsection is largely based on Ashenfelter & Card (2002)
6The Age Discrimination in Employment Act prohibiting age discrimination for individuals above 1960 was in-

troduced in 1967. Initially, university professors had been an exempt category, but this changed with subsequent
amendments: the compulsory retirement age in higher education was raised to 70 in 1982, and completely abolished
effective January 1994.
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typically receives first authorship. Authors in the middle of the authorship list have normally made
relatively minor contributions to the projects, though this clearly varies across papers.

Research by chemistry faculty members is supported by a mix of federal, state, and industry
sources. Depending on their specialties, chemistry faculty may apply to the National Institutes
of Health, the National Science Foundation, or other federal agencies. Given that research in
chemistry often has practical applications, industry funding through R&D contracts is common.

3 Data

In order to investigate the causes and consequences of the aging of the scientific workforce,
we assembled an original data set that combines multiple sources. The core and most original
component is the longitudinal database of academic scientists derived from the ACS directory
(described below). We complement this longitudinal database with information on publications.

The ACS Directory. Our main data source is the ‘ACS Directory of Graduate Research’ (here-
after: ACS Directory). The ACS Directory was a biennial publication of the American Chemical
Society that ran from 1953 to 2015, when it was discontinued. The purpose of the publication was
to provide prospective graduate students with information on US chemistry departments offering
Ph.D. degrees. Initially published as a book, the ACS directory was later also diffused into an elec-
tronic version (first on CD-ROM and then on a dedicated website). The publication included lists
of faculty members with their names, year of birth, sex, educational history, and current affiliation
among other information. Information on the year of birth is particularly useful as it is otherwise
hard to find on a systematic basis.

(Insert Figure 2 about here.)

Building a dataset of US chemistry faculty members based on the ACS directory. We procured
the 1961, 1971, 1981, 1991, 2001 and 2011 editions of the ACS Directory. For the 1991, 2001 and
2011 editions, we used electronic versions.7 For the earlier versions (1961, 1971 and 1981), we
digitalized the respective copies (for a total of more than 3 thousand pages) using optical character
recognition (OCR) software, as well as freelancers, to correct OCR mistakes. The resulting data
give us six snapshots between 1961 and 2011 of the distribution of faculty members in US chem-
istry departments. We then generated a longitudinal database linking individual faculty members
across the different editions of the book, using names, birth years, and educational histories to

7A version of that database covering the years 1993 to 2009 has been used in Gaule (2014), Gaule & Piacentini
(2018), Catalini, Fons-Rosen & Gaule (2020) and Ganguli, Gaule & Vuletic (2022).
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create links. This longitudinal dataset also enables us to obtain a proxy for entry and exit from
the profession, through the year of the first listing in the directory and the year of the last listing,
respectively.

Publication data. We use publication data from Scopus, a major bibliographic database run by
Elsevier. Our dataset covers scientific articles published between 1960 and 2010 in 500 scientific
journals for a total of more than 1 million publications. The journals in our database include all
the major chemistry journals, as well as multidisciplinary journals (Nature, Science, PNAS) and
journals from other scientific disciplines where chemists might publish (physics, biology, etc.). For
each article in our database, we know the names of the authors and their affiliations, as well as the
total number of citations received (from publication to 2016).

Matching individuals to publications and constructing productivity measures. We then matched
the names of faculty members with their publications in close to 500 chemistry journals using bib-
liographic data from Scopus. The match is based on last name, first and middle initials, and uni-
versity (the last which we know from the faculty data). To generate a proxy for high achievement,
we tagged papers that were in the top centile of the citation distribution for papers published in
a given year. We then created two measures of scientific productivity at the individual scientist
level: the number of papers written and the number of papers hitting the top centile of the citation
distribution.

4 Aging and scientific output

This section discusses how the age composition of the scientific workforce may affect its pro-
ductivity. We first review the prior literature on age and scientific output before studying the link
between age and scientific output in our own data. Finally, we consider the differences between
cohorts in productivity, which are another channel through which the age composition of faculty
may affect its productivity.

4.1 Prior literature on age and scientific output

In this subsection, we briefly review previous work on aging and scientific output. Most rele-
vant for our purposes is Levin & Stephan (1991) who analyze scientific output over the lifecycle
across six science areas in models controlling for motivation and ability through individual fixed
effects. They find that publishing activity initially increases but then declines somewhat in mid-
career, with the exception of particle physics, where there were no life-cycle effects. Similarly,

9



only modest life-cycle effects are found in others such as Diamond (1986) on the productivity of
Berkeley mathematicians and Turner and Mairesse (2003) on French condensed matter physicists.
However, Azoulay et al. (2006) find pronounced life-cycle effects when considering the patenting
behavior of academic life scientists, with mid-career academics being much more likely to patent
than younger and older faculty members. Yu et al. (2022) make the important point that studying
the age-output relationship is subject to a selective attrition problem: the most able scientists tend
to have longer careers. The existence of selective attrition suggests that traditional estimates of the
age-output relationship may understate the extent to which aging decreases productivity.

Related literature investigates the age at which great achievements are made. Considering
Nobel laureates during the period 1900-1992, Stephan & Levin (1993) find that while doing prize-
winning work does not require extraordinary youth, the odds decrease markedly in midlife. In more
recent -and highly influential- work, Jones (2010) also documents an inverse U-shaped between age
and great scientific achievement, but emphasizes changes over time: Nobel Prize-winning research
is performed at an average age that is 6 years older at the end of the 20th century than it was at
the beginning. Jones and Weinberg (2011) further document that theorists tend to make Nobel
prize-winning discoveries at an earlier age than empiricists in physics, chemistry, and medicine.

Overall, the literature suggests that while life-cycle effects tend to be modest when considering
publishing, they may be larger for patenting and great achievements. A smaller and more recent
literature has documented interesting patterns in how the relationship between age and output has
evolved over time, with age at great achievement rising.

4.2 Age-output relationship in our data

We start by investigating the relationship between age and scientific output in our data. We have
the advantage of having large and comprehensive data on individuals, albeit in a single discipline.
However, as discussed above, there is a long tradition of estimating the relationship between age
and scientific output, so this is not our main focus.

For simplicity, we use the number of published papers as the measure of output.8 Figure 3
plots the mean productivity by age. Consistent with prior literature, we find an inverse U rela-
tionship between age and productivity: productivity increases in the beginning before reaching a
long plateau, roughly between the ages of 40 and 60, and subsequently declining. These results,
along with those of previous studies as described in the previous subsection, provide prima facie

8Note that we only count publications in a set of 500 journals that includes all major chemistry journals, as well as
top multidisciplinary journals such as Science, Nature or Proceedings of the National Academy of Sciences, and top
journals from neighboring disciplines (e.g. physics, biology). See the Data section for details.
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evidence that the age distribution of scientists matters for how much science is produced in the
aggregate.

(Insert Figure 3 about here)

4.3 Productivity differences across cohorts

We now move on to study productivity differences across cohorts of scientists. These may
arise for at least two reasons. First, the quantity and quality of human capital acquired during the
training (and, in particular, the doctoral degree) that scientists go through before becoming fac-
ulty may vary over time. Relatedly, even if the quantity and quality of training stayed constant,
the knowledge frontier shifts over time, which affects the relevance of the human capital acquired
(Jones 2009). Second, over time, the underlying talent of individuals entering academia may have
changed. Both Ph.D. admission and faculty hiring are centered around assessing an individual’s
potential to produce new knowledge. It seems likely that the competitiveness of these processes
may have increased over time. For instance, based on our own data, in the 1960s one in five grad-
uate students became faculty in a research-intensive university. By 2015, this figure has dropped
to around five percent (Ganguli, Gaule & Vuletic 2022). Similarly, the number of talented foreign
students who come to the United States has increased over time. For example, there were virtually
no Chinese doctoral students in the US before 1985 (Doran & Yoon 2018). By the 2000s, around 1
in 6 doctoral students in US doctoral programs were Chinese, and they tended to outperform native
students (Gaule & Piacentini 2013).

(Insert Figure 4 about here)

Figure 4 displays the output over age distinguished by birth cohorts (in 10-year bins). A clear
trend emerges from the figure: each cohort appears more productive than the previous one at the
same age.9 In Table 1, we report the results of formal hypothesis tests and reject the null of equal
productivity between cohorts at a given age. This finding contrasts with Levin & Stephan (1991)
who did not find differences across cohorts, but we have both a considerably larger sample and a
longer time coverage.

One difficulty in interpreting productivity differences between cohorts is that they may reflect
general trends in the difficulty of producing and publishing research over time. Advances in in-
strumentation and computing technology, for example, may facilitate the production of scientific

9Moreover, over time it seems that productivity tends to peak earlier
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knowledge over time. Relatedly, the number of outlets where scientists can publish has increased
over time, including among the restricted set of journals we consider. To address this difficulty, we
residualize individual output by year fixed effects (Figure A-2), or by a linear time trend (Figure
A-3). When we remove time trends in this way, we find essentially the same pattern.

We perform a number of additional robustness checks. One may be concerned about the pro-
ductivity measure we have chosen, particularly given that research has become more collaborative
over time (Wuchty, Jones & Uzzi 2007). To address this, we implement fractional counting (where
each author of a 2-authored article would receive a credit of 0.5) and find similar results (Figure
A-4). Finally, one might prefer an output that places a greater emphasis on quality. Although
journal impact factors are not readily available for our entire time period, we do have citations. We
define highly cited papers as those belonging to the top centile in terms of the number of citations
received among papers published in a given year. When considering these highly cited papers as
the measure of productivity, we obtain similar (albeit noisier) results on productivity differences
between cohorts (see Figure A-5).

4.4 Taking stock

The well-known relationship between age and scientific output suggests that a scientific work-
force with a large share of older scientists would tend to be less productive. In our data, we find
that while middle-aged chemists are productive, scientific productivity decreases markedly after
the age of 60. Moreover, apart from the individual age-output relationship, more recent cohorts
appear to be systematically more productive than previous ones at the same age, possibly due to
tighter selection to enter the scientific and academic workforce. When an older faculty gets re-
placed by a younger one, the scientific output would tend to go up not just because scientists tend
to be more productive when young (or middle-aged), but also because the younger scientist would
be from a more recent cohort and have either higher human capital or higher intrinsic talent. Over-
all, the evidence in this section suggests that the age composition of scientists matters for how
much scientific knowledge is produced.

5 Simulation Methodology

Overview. We build a demographic model simulating the evolution of the age of the US aca-
demic workforce. We use the model to quantify the importance of three channels: changes in entry
age; retirement dynamics; and ratio of new hires to exits, to the aging of the workforce.
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Data inputs. The model leverages the fact that we observe (close to) the population of US aca-
demic faculty in chemistry over 50 years. The simulation starts with the sample of 3,250 scientists
who were active as of 1961 in the data. Six editions of the directories are used with an interval of
ten years between consequential snapshots, leading us to have a range of years between 1961 and
2011. For the purposes of the simulation, we focus only on one attribute of the individuals, their
birth years.

Modeling the distribution of the entry age and the retirement probabilities. In each decade,
we observe the actual distribution of the age of entrants, and we slightly coarsen (simplify) this
distribution into particular percentiles (10, 50, 75, 95, 100) as described in the Appendix. Then
we keep track of the simplified distribution in each decade. Similarly, for exits, we compute the
share of individuals (in 10-year age bins) who no longer appear in the next edition (a decade later)
of the directory. Finally, for faculty lines, we measure the ratio of new hires in the next decade
to the number of exits in the current decade. We refer to these quantities (the age distribution of
entrants, the exit probabilities by age, and the ratio of new hires to exits between adjacent periods)
as moments.

Running the baseline simulation. In our baseline simulation, we aim to replicate the observed
data. In each period, we retire a random subset of current scientists with the proportion of retire-
ments varying with their age and observed coarsened retirement probabilities (as described in the
previous paragraph). We then determine how many faculty members to hire based on the observed
ratio of new hires to exits.10 Finally, the age distribution of the new hires will be given by the
coarsened distribution of the age of entrants.

An example. To illustrate the procedure described above, let us consider a specific example, the
transition from 1955 to 1965 in our baseline simulation. We have 3,250 scientists listed in 1955
and seek to model the number and age distribution in 1965.11 We start by retiring 95% of 70-year-
olds, 76% of 60-year-olds, 31% of 50-year-olds, 29% of 40-year-olds with 95%, 76%, 31%, 29%
given by observed decade-specific exit probabilities. This yields a total of 1,245 exits. In addition
to the 1,245 exits that we replace, there are also 1,245*2 new faculty lines to fill, since the ratio of
new hires to exits was 3 between 1955 to 1965. Thus, we introduce 1245 * 3 = 3735 new scientists
to the data. We then assign an age to each of these new scientists on the basis of the coarsened
distribution of the age of entrants in the actual data of the corresponding decade. For example, the
youngest 10% are 24 years old, the next 30% youngest are 30 years old, etc. We then reproduce
the same procedure to simulate the 1975 distribution from the 1965 distribution we just created.

10If the ratio of exits to new hires is above one, we fill new faculty lines in addition to replacing the faculty members
exiting. If the ratio is below one, we replace only a portion of faculty members exiting.

11Technically, our first observed data is from the book published in 1961 but we treat it as giving us a snapshot of
the faculty population in 1955. See the Appendix for a detailed discussion of this assumption.
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Running a counterfactual simulation. To run counterfactual simulations, we run the same
procedure as the baseline simulation, but instead of using the moments based on actual time-
varying data, we use one or more moments from the 1960s. We may, for instance, assume that the
ratio of new hires to exits keeps the value it had in the 1960s (i.e., a value equal to 3 whereas, in
reality, it moved down to 1.4 in the 1970s and kept evolving afterward as described in Figure 7).
So, whereas, in the baseline simulation, we would use the actual time-varying ratio (3, 1.4, ...); in
the counterfactual simulations, we would instead hire enough scientists to replace each exit with
three new hirings between 1965 and 1975, as well as between 1975 and 1985, etc.

Switching different channels on or off. In our model, aging can occur for one of three different
reasons: changes in the ratio of entrants to exits, changes in retirement probabilities, and changes
in the age of entrants. By using either the initial value (1960s) or time-varying moments, we can
activate or deactivate each of these channels. For instance, we can activate the change in the ratio
of entrants to exits while leaving the other two channels switched off, thereby shedding light on
the contribution of this particular channel to aging. This would yield the counterfactual evolution
of the age of faculty members in case the ratio of entrants to exits had evolved as it actually did,
while the age of entrants and retirement probabilities stayed at their 1960s levels and thus did not
contribute to aging. In the simulation results section, we consider all possible combinations of
active and inactive channels.

6 Simulation results

6.1 Preliminaries

Our model is meant to replicate the observed increase in the mean age of faculty members from
1965 to 2005. In practice, however, the model may differ from the actual data because we make
a number of simplifying assumptions. Figure 5 shows that our model very closely replicates the
actual data when we activate all three channels.

(Insert Figures 5 and 6 about here)

We also check that the three channels of our model generate most of the aging observed in the
data. Figure 6 shows the result of a simulation in which we turn off all three channels. Reassur-
ingly, the mean age stays flat around 39 from 1965 to 2005.
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6.2 Describing the moments

Before proceeding to the counterfactual simulation results, we briefly describe how our quanti-
ties of interest -the ratio of entrants to exits, the age of entrants, and retirement probabilities- evolve
over time. During our period of interest, we observe substantial changes in the ratio of entrants to
exits (see Figure 7). In the 1960s, the ratio had a value of three, meaning that each was replaced
by three new hires. In the 1970s, the ratio had fallen to just 1.4, corresponding to a much slower
expansion rate. In the 1980s, the ratio fell below one before modestly rebounding in the 1990s.

Regarding the age of entrants, we observe a clear upward trend with the mean age of entrants
increasing from 32 to 36 years of age between 1965 and 2005 (see Figure 7).12 While this upward
trend is consistent with the burden of knowledge hypothesis, we note that in terms of magnitude,
it can only explain part of the aging we observe: the mean age of faculty members increases by
14 years, while the mean age of new applicants only increases by four years. Finally, for exits, we
observe decreases in the probability of exits for individuals in their 60s and 70s (see Figure A-6).
For example, a 60-year-old in 1965 would have a 75% chance of exiting in the next decade, while
the corresponding probability for a 60-year-old in 2005 is 60%.

(Insert Figure 7 about here.)

6.3 Simulations: switching on one channel at a time

We start the simulations by switching on one channel at a time while deactivating the other two,
thus isolating the contribution of the activated channel to the aging of faculty members. Switching
the entry age on explains 26.4% of the observed aging (see Table 2 or Figure A-7) while switching
the retirement age on explains 6.4% (see Table 2 or Figure A-7). Clearly, either of these factors,
while contributing to overall aging trends, only explains a relatively modest share of total aging.

Next, we use our model to investigate the effect of the changing ratio of entrants to exits on the
aging of faculty members. Specifically, we assume that the age at entry and retirement probabilities
stay at their 1960s levels while letting the ratio of entrants to exits evolve as it actually did. Figure
8 shows that the changing ratio of entrants to exits alone generates a substantial share (around half)
of the aging we observe in the data over the whole period.

(Insert Figure 8 and Table 2 about here.)
12Note that, for simplicity, we show the mean age but our simulations take into account various centiles of the

observed age distribution of new entrants in each decade.
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In summary, when considering one channel at a time, the largest effect comes from the chang-
ing ratio of exits to entrants, followed by changing age at entry, and changing retirement patterns
is only a distant third.

6.4 Simulations: switching on two channels at a time

We next consider what happens when we switch two channels on while leaving the third deacti-
vated. The effect of switching on two channels may differ from the sum of the effects of turning on
each channel individually. For instance, the effect of switching on changes in retirement probabil-
ities (i.e. having lower retirement probabilities over time) would matter more if the population of
scientists is older, which in turn depends on whether the other channels are switched on. Because
such interactions are possible, considering two channels at a time may be insightful.

(Insert Figure 9 and Table 3 about here.)

Figure 9 shows how the mean age of faculty members would have evolved -according to our
model- if the age of entrants stayed at 1960s levels, while the ratio of entrants to exits and the
exit probabilities evolved as they actually did. The simulated line follows the actual data relatively
closely, although around 20% of the variation in aging remains unexplained by the conjunction of
changing ratio of entrants to exits, and changing exits probabilities.

Table 3 decomposes how different pairs of channels interact with each other. Each row cor-
responds to a combination of channels, and based on Table 2 we report the ‘main effect’ of each
channel (i.e. the effect of turning on just that particular channel, as per the preceding subsection)
as well as the total effect of turning both channels at the same time. As discussed earlier, the sum
of the main effects may differ from the total effect when the two channels interact with each other.
In our case, this arises when an older population of scientists (due to the large cohort of new en-
trants in the 1960s) combines with changes in retirement policies. Whereas changes in retirement
probabilities alone only explain about 6% of the variation in aging, the interaction with changing
ratio of entrants to exits explains another 20% of the variation in aging.

6.5 Taking stock

Prior literature has focused on the age of entry and changing patterns of retirement to explain
the aging of scientists. However, we find that these channels, either alone or in combination,
explain less than a third of the total variation in aging of chemistry faculty members between 1965
and 2005.
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Instead, a third factor, changes in total faculty employment (which we capture through the
ratio of entrants to exits), seems to explain a major part of the observed aging. In the 1960s, there
were a large number of new entrants to the profession, likely due to the expansion in federal R&D
investment, possibly combined with greater demand for college education by the baby boomer
generation. These entrants were on average young and tended to stay, while the 1960s hiring boom
did not continue. Initially (in the 1970s and 1980s), the large cohorts of new entrants from the
1960s led to a decrease in the mean age; later on (from the 1990s), it led to the opposite pattern.
Meanwhile, changes in retirement patterns in the 1990s, which otherwise would not have been
very important, may have had a disproportionate impact because they coincided with an unusually
large number of faculty members (born in the 1930s, hired in the 1960s) entering retirement age in
the 1990s.

7 Discussion

The US scientific workforce has aged considerably over the last 60 years. This phenomenon has
been noted by many observers, with the rising age of NIH grantees receiving particular attention
(Kaiser 2008; Daniels 2015). However, the causes of the aging of the scientific workforce remain
imperfectly understood.

Previous literature on the causes of aging has focused on the increase in age at entry into science
(Jones 2009), as well as the tendency of scientists to retire later (Blau & Weinberg 2017). Our
work highlights a third distinct reason why the scientific workforce may be aging: compositional
changes arising from a slowdown in hiring over time. In a simulation based on detailed data
on US chemistry faculty members between 1960 and 2010, changes in hiring over time appear
to drive most of the change in the age composition of scientists. In the 1960s, a period when
universities were expanding significantly, new faculty hires outnumbered retirements by a factor
of three. Because new hires tend to be young, this led to a large influx of young people into
the academic profession. However, as hiring slowed down in subsequent decades, the cohorts of
1960s entrants (and to a lesser extent, 1970s entrants) became disproportionally large, resulting in
an aging scientific workforce.

A key theme that emerges from our analysis is that the aging of the scientific workforce is not
the inevitable result of an aging society or of fundamental forces in the production of knowledge.
Rather, much of it could be the reflection of a specific set of historical circumstances and policy
choices, in the US post-WWII era, a massive expansion of the university sector followed by a
period of no growth in faculty numbers.
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Hiring larger numbers of young faculty could increase scientific productivity, as well as poten-
tially shift the direction of research to more novel and relevant directions such as clean energy and
climate change.13 In addition, it may also advance other policy goals such as increasing gender
and racial diversity (as young cohorts tend to be more diverse). Finally, the resulting increase in the
share of graduate students finding positions in academia could strengthen incentives for talented
individuals to pursue doctoral training and reduce excess competition. However, this type of policy
is hardly discussed in policy circles.

We conclude by noting two directions for future research. This paper, and indeed much of the
related literature, has focused on the US scientific workforce. However, much less is known about
other countries. Of particular interest here is the case of China, which has made large investments
in universities in the last two decades. Research on changes in the age of composition of the
scientific workforce outside the US and in China in particular would be welcome. Another area
that deserves attention is the age dynamics in industrial R&D where employment relationships
are quite different from academia. To what extent has the industrial R&D workforce aged and is
that aging also influenced by hiring sprees? Research along either of these lines of inquiry could
further elucidate whether changes in the age composition of the scientific workforce are driven by
fundamental forces or particular historic circumstances.

13Qualitative work by Wray (2003) suggests that scientific revolutions are more likely to be started by young and
middle-age scientists. Einio, Feng & Jaravel 2022 present various pieces of evidence suggesting that entrepreneurs
and innovators create products targeted to consumers like themselves in terms of various demographics, including age.
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Figures

Figure 1: Age structure of the US scientific and labor workforce
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Notes: Source: authors calculations based on NIH data, and bespoke chemistry and math faculty data (based on the
ACS directories and Math Genealogy Project respectively.)
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Figure 2: A sample entry from the ACS directory

Notes: The Figure displays a sample page from the 1971 ACS directory. In the directory, departments list their faculty
members in alphabetical order along with brief standardized biographical information. Among other information,
each entry includes the name, birth year, and education history of the person. Whereas biographical information
about particular famous scientists is often available from many sources, the strength of the directory is that it covers
all faculty members employed in the reporting departments irrespective of their status in their profession.
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Figure 3: Relationship between age and scientific output
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Notes: This Figure plots mean scientific output by age. We use the number of published papers measure of productivity.
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Figure 4: Productivity differences across cohorts
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Notes: This Figure plots mean scientific output by birth cohort (10-year bins) and age (also in 10-year bins). The
underlying data is a longitudinal panel of 11,854 faculty members running from PhD graduation year to age 80. We
use the number of published papers measure of productivity.
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Figure 5: Aging - actual data and model simulation (all aging channels switched on)
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Notes: This Figure assesses the accuracy of the model in simulating the evolution of the aging of faculty members
over time. The dashed blue line denotes the outcome of our simulated model, and the black line denotes the actual
data. In this version of the simulated model, we switch on all aging channels: we assume that retirements, age at
entry, and the number of faculty lines all evolved as they did. However, because our model makes simplifying
assumptions on the distribution of age at entry and retirement probabilities, the two lines may differ.
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Figure 6: Aging - actual data and model simulation (all aging channels switched off, i.e. stay at 1960s
values)
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Notes: This Figure assesses the accuracy of the model in simulating the evolution of the aging of faculty members
over time. The red line denotes the outcome of our simulated model, and the black line denotes the actual data. In
this version of the simulated model, we switch off all aging channels: we assume that exits, age at entry, and the ratio
of entrants to exits all stay as they were in the 1960s.
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Figure 7: Evolution of the age of new entrants and of the ratio of new entrants to exits over time .
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Notes: This Figure shows how the mean age of new entrants (dashed line) and the ratio of new entrants to exits (solid
line) evolved over time. The horizontal dashed line corresponds to a ratio of 1 with the number of new entrants
equaling exits (and the total number of faculty members staying the same). The horizontal dotted line corresponds to
a ratio of 3 with each faculty exiting replaced by three new hires, as was the case in the 1960s.
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Figure 8: Aging - counterfactual where the retirement probabilities and age of entrants stay at 1960s levels,
but the ratio of entrants to exits evolves as it actually did.
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Notes: The blue line shows how the mean age of faculty members would have evolved -according to our model- if the
exit probabilities and the age of entrants stayed at 1960s levels, but the ratio of entrants to exits changed as it actually
did. Therefore, the blue line represents the change in mean age coming exclusively from the changing ratios of
entrants to exits, with the other channels that may drive aging being turned off. The black line denotes the actual data.
The black line denotes the actual data, and the short purple short-dashed line indicates simulation results with all
aging channels turned off.
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Figure 9: Aging - counterfactual where the age of entrants stays at 1960s levels, but the ratio of entrants to
exits and retirement probabilities evolve as they actually did.
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Notes: The blue line shows how the mean age of faculty members would have evolved -according to our model- if the
age of entrants stayed at 1960s levels, but the ratio of entrants to exits changed, as well as exit probabilities, evolved
as they actually did. Therefore, the blue line represents the change in mean age coming from the conjunction of (1)
the changing ratio of entrants to exits and (2) changing exit probabilities, with the remaining channel that may drive
aging (changing age at entry) being turned off. The black line denotes the actual data, and the short purple
short-dashed line indicates simulation results with all aging channels turned off.

30



Tables

Table 1: Productivity differences across cohorts -formal tests

(1) (2)
D.V.=Nr of papers

Age in decade x Decade of birth FE Yes Yes

Hypotheses (reporting p-values):
(1) born in 1930s=born in 1940s < 0.001 < 0.001
(2) born in 1940s= born in 1950s < 0.001 < 0.001
(3) born in 1950s=born in 1960s < 0.001 < 0.001
(4) born in 1960s=born in 1970s 0.001 < 0.001
Joint test of (1), (2), (3) and (4) < 0.001 < 0.001

Year fixed effects Yes No
Linear time trend No Yes

Estimation Poisson Poisson
Obs. 356,640 356,640
Mean of D.V. 0.596 0.596
Pseudo R2 0.1069 0.0950

Notes: This Table investigates productivity differences across cohorts in the spirit of Figure 4. The underlying data is
a longitudinal panel of 11,854 faculty members running from Ph.D. graduation year to age 80. We run a Poisson
regression with the number of papers on the left-hand side and a full set of indicator variables for all possible age
(10-year bins) x decade of birth interactions on the right-hand side. To adjust for the fact that producing research or
publishing may become easier over time, we control for calendar-year fixed effects. We then test whether two
adjacent cohorts had equal productivity at all observed ages (in 10-year bins). For instance, when we test the null
hypothesis that the cohort born in the 1930s has equal productivity to the cohort born in the 1940s, we run a
composite test for the 1930s cohort having equal productivity in their thirties to the 1940s cohort in their thirties, the
1930s cohort having equal productivity in their forties to the 1940s cohort in their forties, etc. See Figure Figure 4 for
a visual representation.
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Table 2: Contribution of different channels to aging-summary of simulation results

Channels (yes=time-varying data, no=keep 1960s level)

Change in the ratio Retirement Entry Contribution
of entrants to exits probabilities age

Yes No No 54.8%

No Yes No 6.4%

No No Yes 26.4%

Yes Yes No 81.8%

Yes No Yes 79.8%

No Yes Yes 30.1%

Notes: This Table summarizes simulation results regarding the contribution of different channels to faculty aging
between 1965 and 2005 (between these years the mean age increased from 38.9 to 52.8). Each row corresponds to a
different scenario where we switch off (keep at 1960s level) one or more channels.

Table 3: Understanding interactions between two channels

Channels Main Main Interaction Total
effect 1 effect 2

Ratio of entrants to exits + Retirement prob. 54.8% 6.4% 20.6% 81.8%
Retirement prob. + Entry age 6.4% 26.4% -2.7% 30.1%
Ratio of entrants to exits + Entry age 54.8% 26.4% -1.4% 79.8%

Notes: This Table highlights the role of interactions between different channels in generating aging. Typically, the
effect of switching on two channels would not be the same as the sum of turning on each channel individually. For
instance, the effect of switching on changes in retirement probabilities (i.e. have lower retirement probabilities over
time) would matter more if the population of scientists is older, which in turn depends on whether the other channels
are switched on.
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Appendix: Details on the simulation methodology

Assumptions. We assume that someone who appeared in a given snapshot s for the first time
actually entered the data set in s = s�6. Due to the left truncation, we cannot make any assump-
tions about the actual entrance time of people who were active as of the initial snapshot s = 1961,
that is, s = 1955. Therefore, after excluding 1955, our range of entry years is: s 2 1965+10k4

k=0.
Similarly, we assume that someone who was active in a given snapshot s for the last time actually
exited the dataset in s = s+4. Due to the right truncation, we cannot make this assumption in the
last snapshot s= 2011, that is, s= 2015. Therefore, we end up with the range: s2 1965+10k4

k=0.14

We refer to the mid-decade points throughout the simulation as the simulated periods t. In
other words, whenever we discuss time periods, we will be referring to these mid-decade points.

Transitions between simulated periods. The dataset, starting from the initial data we have
available for 1961, is subject to hirings and exits over time that lead to changes in the number of
people. Furthermore, we identify three channels that lead to changes in the mean age: (1) Exits;
(2) Hirings; (3) Age composition of hirings. In the following, we will sequentially describe these
three channels.

Exits. For each person who is active in the current simulated period t, we assign an updated
status – “active” or “exited” – for the next period t + 10 based on age-specific and time-specific
exit probabilities eat calculated from the actual data, where a is the age decade (ie, people in their
20s, 30s, etc.) and t is time. This implies that we account for the fact that older scientists are more
likely to exit than younger ones, and that these likelihoods also evolve over time.

For every middle-decade point t and 10-year age group a, we calculate the probabilities eat =

Ne
at/Na

at . The numerator, denoted as Ne
at , is the number of people in the age group a who are active

at time t but are no longer active at time t + 10. The denominator, denoted as Na
at , is the total

number of currently active people in the age group a at time t.15

In our simulations, suppose that a group of individuals (defined by an age range a at time t)
has a likelihood of exit defined by eat , say, equal to 20%. In this case, we randomly pick a fifth of
these individuals and assign them a “exited” status in the next time period.

Hirings. In each simulated period t, we simulate hiring N̂t
h people, which we refer to as the

“extensive” margin of hiring, meaning that we do not account for scientist age.16 It is determined
14In other words, we assume that the hiring of people who appear for the first time in snapshot s and the exit of

people who were active for the last time a decade earlier in snapshot s� 10, actually happen at the middle-decade
point.

15For clarify, the subindex e stands for “exits” and the subindex a stands for “active”.
16The subindex h stands for “hiring” and the hat notation stands for “simulated”.
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by N̂t
h
= N̂t

e ·ht , where N̂t
e is the number of simulated exits including all age groups, and ht is an

expansion rate, i.e. the number of simulated hirings for each simulated exit in the same period. We
define this expansion rate as ht = Nh

t /Ne
t , that is, calculating the ratio from actual data on hirings

and exits in a given time period (Nh
t and Ne

t ).

The exit channel directly affects both the intensive and extensive margins, since each exiting
individual is assigned an age that we track. But the hirings channel only affects the extensive
margin, since no age is assigned to entrants yet. To allocate an age to these hirings, we need to
add a third channel, which will be described below. In other words, we distinguish between the
“extensive” (number of people) and “intensive” (age composition) margins of hiring represented
by two separate channels, while the exit channel is not split into two parts.

Age composition of hirings. In each simulated period t, years of birth of newly hired people
(N̂t

h) are assigned so that the resulting age composition of simulated hirings reconstructs the actual
age composition of newly hired people in the data.17 All parameters calculated from actual data
(i.e., Nh

t and Ne
t , eat , and all Px%

t ) are time-specific data moments.

Extensive vs intensive margins. From these three definitions it follows that exits and hirings
affect not only the total number of scientists but also the age composition of active scientists in
each simulated period t. We justify the asymmetry by which the exit channel does not incorporate
an intensive margin channel as follows.

First, we will show that the results of a simulation relying on time-specific data moments will
be equivalent, independently of whether the exit activity is collapsed into a single channel or rather
decomposed into two different channels – the number and the age composition of exits.

Consider an alternative definition of exits in which we explicitly account for the two channels:
in each simulated period t, we first impose a fixed number of total exits Ne

t and then divide them
into age groups according to age-specific shares of the exits – Eat . We then randomly assign an
“exited” status to a number of people from a given age group according to N̂e

at = Ne
t ·Eat . In this

way, we would explicitly distinguish between the “extensive” and “intensive” margins of exits.

Although this alternative share of exits Eat only relies on one age-specific component, Ne
at , in

our preferred share of exits eat we additionally incorporate a second age-specific component, Na
at .

Thus, without loss of generality, one can replicate the actual data by relying on either a broader
set of data moments in our initial definition or a narrower set of data moments with the alternative
definition.

17In particular, we assign (Pmin
t +P10%

t )/2 to 10% of randomly chosen simulated hires, (P10%
t +P50%

t )/2 to 40%,
(P50%

t +P75%
t )/2 to 25%, (P75%

t +P90%
t )/2 to 15% and (P90%

t +P95%
t )/2 to 10% of hires, where Px%

t is a corresponding
percentile of the actual age composition of hires at the time t.
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Second, it follows from defining the simulated exits as eat = Ne
at/Na

at that we simulate the
number of exits for the age range a in the following way: N̂e

at = Na
at · eat . Summing up across

all age ranges, the total number of exits is therefore N̂e
t = Âa N̂e

at = Âa Na
ateat . Since hirings is a

function of exits, N̂t
h
= N̂t

e · ht , we can rewrite this expression as N̂t
h
= ht(Âa Na

ateat). Thus, our
approach allows us to account for the age-specific stock of active scientists in a given period t, Na

at ,
not only in the exits, but also in the hirings channel.

Counterfactual scenarios. Starting with the initial sample of scientists described above, we
generate transitions to the next periods through the three channels described above by: (1) adding
new people to the dataset; (2) randomly dropping people conditional on each given age group; (3)
randomly assigning age to each newly added people based on statistics coming from actual data.

For the three channels, we differentiate between two modes: (1) “ON” – time-specific data
moments (Nh

t and Ne
t , rat , and Px%

t ) are used in each time period; (2) “OFF” – only the initial 1965
period data moments (Nh

1965 and Ne
1965, ra1965, and Px%

1965) are used for all periods.

For clarification, in our baseline scenario “ALL ON”, all three channels are simulated in the
“ON” mode. Simulated data moments (ht = Nh

t /Ne
t , rat , and Px%

t ) for a given time period are
generated based on the statistics of the actual data in that same time period. Instead, in the baseline
scenario “ALL OFF” only actual data from 1965 is used to generate the simulated data moments
of all time periods.

We will evaluate alternative counterfactual scenarios by switching on only one channel at a
time. For example, suppose that the time-varying expansion rate is “ON”, while the exits and
age distribution of newly hired are “OFF”. In this scenario, actual data is used for the parameter
ht = Nh

t /Ne
t across all decades. Instead, data from 1965 (ra1965, Px%

1965) is used for the exits and
moments of the age distribution of newly hired across all decades.

The other two counterfactual scenarios will be switching on either the exits or the age distri-
bution of the newly hired channel. That is, we will use actual data from all decades only for the
parameters rat or Px%

t , respectively, while the remaining channels will be in the “OFF” mode, and
only data from 1965 will be used.
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Appendix Figures

Figure A-1: US Federal R&D funding over time
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Source: AAAS

Notes: This Figure is based on data from American Asssociation for the Advancement of Science “Historical Trends
in Federal R&D” https://www.aaas.org/programs/r-d-budget-and-policy/historical-trends-federal-rd.
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Figure A-2: Productivity differences across cohorts -accounting for calendar year effects
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Notes: This Figure shows average output (residualized by year fixed effects) by birth cohort and age. We first regress
individual output (the number of published papers) on year fixed effects and generate the residuals from that
regression. We then compute the average of these residuals by birth decade and age.
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Figure A-3: Productivity differences across cohorts -accounting for a linear time trend
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Notes: This Figure shows average output (residualized by a linear time trend) by birth cohort and age. We first
regress individual output (the number of published papers) on a linear time trend and generate the residuals from that
regression. We then compute the average of these residuals by birth decade and age.
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Figure A-4: Productivity differences across cohorts- fractional counting of output
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Notes: This Figure shows average scientific output by birth decade and age using fractional counting to adjust for the
number of coauthors. Under fractional counting, the author of a paper with n coauthors receives 1/n of the credit for
the paper.
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Figure A-5: Productivity differences across cohorts- highly cited papers
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Notes: This Figure shows average scientific output by birth decade and age using an alternative measure of
productivity: highly cited papers. We refer to a paper as highly cited if it is in the top centile of the citation
distributions of papers published in any given year.
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Figure A-6: Age-specific probabilities of exits across time
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Notes: This Figure shows how the probabilities of exits in each age group evolved over time. There is a clear trend
only in groups of 60s and 70s.
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Figure A-7: Time-varying age distribution of newly hired is “ON”, expansion rate and exits are “OFF”
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Notes: This Figure shows how the changes observed during the last 50 years in the age distribution of newly hired
(the difference between the blue and red dashed lines) contributed to the increasing mean age of scientists (solid
black line).
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Figure A-8: Time-varying exits are “ON”, age distribution of newly hired and expansion rate are “OFF”
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Notes: This figure shows how the changes observed during the last 50 years in the probability of exits (the difference
between the blue and red dashed lines) contributed to the increasing mean age of scientists (solid black line).
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