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1 Introduction

An increasing tendency of individuals to marry their like in terms of educational attainment,

a phenomenon known as positive assortative mating (PAM, sorting), potentially increases in-

equality between households (e.g., Kremer, 1997; Fernández and Rogerson, 2001; Breen and

Salazar, 2011; Chiappori et al., 2020a). However, the literature disagrees on whether PAM has

increased over time (e.g., Greenwood et al., 2016; Eika et al., 2019; Almar et al., 2023). Shifting

distributions of education-based types constitute a measurement challenge. While recent pa-

pers acknowledge this (e.g., Liu and Lu, 2006; Eika et al., 2019; Chiappori et al., 2020b, 2021),

how changing type distributions distort commonly-used sorting measures is an open question.

To answer this question, we provide an in-depth analysis of a prominent sorting measure. We

formally analyze how changing type distributions a↵ect the measure and propose a strategy to

minimize the distortion. Using weights, we take into account that the distribution of educational

attainment has evolved in di↵erent ways for men and women. In Danish data, educational

outcomes of females increased relatively more in recent decades (consistent with, e.g., Goldin,

2006). The optimal weights according to our decision rule eliminate the dominating e↵ect of

female-type-distribution changes on the sorting measure. We find that PAM has increased

while alternative measures suggest flat or decreasing trends.

We conclude that it is important to take gender-specific trends in the underlying type

distributions into account. The optimal choice of weights is context-dependent and matters for

conclusions about sorting trends.

2 Data and Trends

We use Danish data to illustrate how evolving type distributions a↵ect the measurement of

PAM. The population register contains demographic variables and person IDs for all residents

and their (married or cohabiting) partners (Statistics Denmark BEF, 1980–2018).1 We study

the period 1980–2018 and observe on average 1,800,866 individuals in the age range 19–60

per year who are either married to or cohabiting with an individual of the opposite sex. The

combined stock of couples is stable over time.2

We use the education register (Statistics Denmark UDDA, 1980–2018) to distinguish be-

tween highly-educated individuals (bachelor’s degrees and above, ISCED 6–8) and individuals

1Cohabitation is identified based on a number of criteria: opposite-sex, joint children, shared address, less
than 15 years age di↵erence, no family relationship.

2Figure A.1 depicts the evolution of the stocks of couple types and their age composition.

2



Figure 1: Assortative Matches and Marginal Distributions

(a) Couple Shares and Correlation
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(b) Marginal Distributions
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Note: Panel (a) shows how the shares of couples in which both spouses have either high or low educational attainment, (H,H) or
(L,L), have evolved over time, along with the cross-sectional correlation of spousal types. Panel (b) shows the evolution of the
fraction of highly-educated males and females. Section 2 explains how the sample and the education-based types are constructed.
The symbols a, d, m(H,M), and m(H,F ) are introduced in Section 3 and link the data series to the formal analysis of sorting
measures.

with lower educational attainment (compulsory schooling, high school, vocational training,

short-cycle tertiary programs, ISCED 1–5). Thus, the education-based type T is either H

(high) or L (low). Gender is indexed M (male) and F (female).

Figure 1a shows that the share of (H,H) couples (blue, solid line) increased between 1980

and 2018. Thus, it has become more common to observe couples in which both partners

are highly educated. However, the share of (L,L) couples (red, dashed line) has decreased.

Moreover, Panel (b) shows the shift toward higher education. In 2018, more than 40% (30%)

of women (men) are highly educated, compared to around 15% in 1980. This shift in the

marginal distribution of types a↵ects the share of (H,H) couples as it became more likely to

meet highly-educated individuals. Thus, couple-type shares alone cannot provide evidence for

PAM.

The cross-sectional correlation of couple types in Panel (a) (green, dotted line) is essentially

flat. Note that the correlation coe�cient conflates changes of couple shares and changes of

marginal distributions. We show in appendix B that the correlation responds to such changes

in a highly nonlinear way, which makes the trend of the correlation coe�cient uninformative

about PAM.3

In summary, we need a formal framework to measure PAM and disentangle it from changes

of the marginal type distributions.

3See also Eika et al. (2019) and Chiappori et al. (2021).
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Table 1: Contingency tables

(a)

M\F H L Marginal
H a b a+ b
L c d c+ d

Marginal a+ c b+ d 1

(b)

M\F H L Marginal
H a m(H,M) � a m(H,M)

L m(H,F ) � a d 1�m(H,M)

Marginal m(H,F ) 1�m(H,F ) 1

3 Measurement and Optimal Weights

3.1 The Setup

The contingency table 1a summarizes the marriage market allocation. a > 0 (d > 0) denotes

the share of couples in which both spouses have high (low) education. a + d is the share of

sorted couples. b > 0 and c > 0 denote the shares of couples with di↵erent levels of education.

Intuitively, the higher a+ d relative to b+ c, the more pronounced is PAM.

To investigate how changing marginals a↵ect sorting measures, we substitute the share of

high-type men m(H,M) for a+ b and the share of high-type women m(H,F ) for a+ c in table 1b.

3.2 The Weighted Sum of Likelihood Indices

Based on table 1, the weighted sum of likelihood indices is defined as follows:

IS =
a

m(H,M)m(H,F )
⇥ wH +

d

(1�m(H,M))(1�m(H,F ))
⇥ wL. (1)

The measure fulfills the formal criteria for sorting measures outlined by Chiappori et al. (2020b,

2021). PAM is captured by the ratio of the actual shares of sorted couples and the expected

shares based on the “supply” of di↵erent types.

wH and wL are weights used to aggregate along the diagonal. Chiappori et al. (2020b)

suggest that these weights can be thought of as a convex combination of the shares of males and

females with the same level of education, which depend on the respective marginal distribution.

Let IconvexS denote the measure with these weights applied, where � 2 [0, 1] is the coe�cient on

the male marginal distribution:

I
convex

S =
a

m(H,M)m(H,F )
⇥ (�m(H,M) + (1� �)m(H,F )) (2)

+
d

(1�m(H,M))(1�m(H,F ))
⇥ (�(1�m(H,M)) + (1� �)(1�m(H,F ))).
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To investigate the impact of changing shares of sorted couples and marginal distributions,

we totally di↵erentiate (2):

�I
convex

S =

✓
�m(H,M) + (1� �)m(H,F )

m(H,M)m(H,F )

◆

| {z }
>0

�a+

✓
�(1�m(H,M)) + (1� �)(1�m(H,F ))

(1�m(H,M))(1�m(H,F ))

◆

| {z }
>0

�d

+(1� �)

 
d

(1�m(H,M))2
� a

m
2
(H,M)

!

| {z }
R0

�m(H,M) + �

 
d

(1�m(H,F ))2
� a

m
2
(H,F )

!

| {z }
R0

�m(H,F ).

(3)

I
convex

S is increasing in the shares of sorted couples (a, d) because the coe�cients in the first

line are positive. However, the impact of changing marginal distributions depends on both

the configuration of the contingency table and �. Thus, the choice of � allows us to take into

account the importance of gender di↵erences in the e↵ect of changing marginals on measured

sorting.

We plot the likelihood index I
convex

S for di↵erent values of � in figure 2a. It indicates PAM

in all cases because I
convex

S > 1. However, di↵erent values of � lead to di↵erent trends. With

weight on changes in the male type distribution (� = 1), sorting is decreasing. With weight on

changes in the female type distribution (� = 0), sorting is increasing. For � = 0.5, the trend is

flat. Thus, the choice of � is crucial for conclusions about the trend of PAM.

Figure 2: Sorting Trends Depend on Measures and Weights

(a) Likelihood Indices
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(b) Odds Ratio
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Note: Panel (a) depicts the evolution of the weighted sum of likelihood indices as defined in equation (1) for three di↵erent values
of �. Panel (b) depicts the evolution of the odds ratio as defined in equation (5). Section 2 explains how the sample and the
education-based types are constructed.
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The choice of �

We propose to choose � to minimize the impact of marginal-distribution changes on the sorting

measure. This can be achieved by setting � 2 [0, 1] such that the absolute value of the sum of

the �m(H,M) and �m(H,F ) terms in equation (3) is minimized:

min
�

����������

(1� �)

 
d

(1�m(H,M))2
� a

m
2
(H,M)

!
�m(H,M)

| {z }
=�1

+ �

 
d

(1�m(H,F ))2
� a

m
2
(H,F )

!
�m(H,F )

| {z }
=�2

����������

.

This objective function is a convex combination of the two endpoints �1 and �2. If sign(�1) 6=

sign(�2), then zero lies between the two endpoints and the optimal �⇤ solves (1��)�1+��2 = 0.

If, on the other hand, sign(�1) = sign(�2), then the optimal �⇤ is the endpoint with the smallest

absolute value, either |�1| or |�2|. In summary:

�
⇤ =

8
>>><

>>>:

0 if sign(�1) = sign(�2), |�2| > |�1|
�1

�1��2
if sign(�1) 6= sign(�2)

1 if sign(�1) = sign(�2), |�1| > |�2| .

(4)

From figure 1, we know that �m(H,F ) > �m(H,M) > 0 and that in the base year 1980

m(H,M) ⇡ m(H,F ). Thus, sign(�1) = sign(�2) for all years. �⇤ must be either zero or one. In the

data, |�2| > |�1| because of the bigger change in the female marginal type distribution. Thus,

�
⇤ = 0 is optimal for all years.

�
⇤ = 0 implies increasing sorting, see figure 2a. This is due to the fact that the positive

contribution of more sorted high-type couples (term one in equation (3) is positive) outweighs

the negative contributions from fewer sorted low-type couples (term two in equation (3) is

negative) and changing marginal type distributions (term three is negative and term four drops

out with �
⇤ = 0 in equation (3)).4

An advantage of the weighted sum of likelihood indices is that it can be defined for any

number of types. In appendix C, we generalize the decision rule (4) for more than two types.

4Totally eliminating the e↵ect of changing marginal distributions on the sorting measure—the sum of terms
three and four in equation (3)—would require �⇤ to be outside the unit interval. The measure would no longer
fulfill the monotonicity property stated in Chiappori et al. (2021) because the measure would decrease in the
share of sorted couples, see terms one and two in equation (3).
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3.3 Alternative Measures

The odds ratio

An alternative measure that also fulfills the formal criteria for sorting measures outlined by

Chiappori et al. (2021) is the (log) odds ratio. Based on table 1, it is defined as follows:

Iodds = ln

✓
ad

bc

◆
= ln

✓
ad

(m(H,M) � a)(m(H,F ) � a)

◆
. (5)

It can be written in terms of the marginal distributions using m(H,M) and m(H,F ). As before,

we totally di↵erentiate Iodds.

�Iodds =

✓
m(H,M)m(H,F ) � a

2

a(m(H,M) � a)(m(H,F ) � a)

◆

| {z }
>0

�a+

✓
1

d

◆

| {z }
>0

�d (6)

�
✓

1

m(H,M) � a

◆

| {z }
>0

�m(H,M) �
✓

1

m(H,F ) � a

◆

| {z }
>0

�m(H,F ).

Increasing shares of sorted couples a and d imply higher sorting while increasing shares of high-

type individuals mH,M and mH,F imply lower sorting. Thus, Iodds can decrease over time if the

increase in the shares of high-type men or women is su�ciently large.

We plot Iodds in figure 2b. Iodds > 0 indicates PAM. However, the odds ratio is decreasing

over time. The increasing share of (H,H) couples (�a > 0) is dominated by a decreasing

share of (L,L) couples (�d < 0) and increasing shares of highly-educated males and females

(�m(H,M) > 0, �m(H,F ) > 0), recall figure 1. Note that the coe�cients of the male and female

high-type shares are symmetric in (6). Therefore, the measure does not allow for gender-specific

e↵ects of changing marginals on measured PAM. Another limitation is that the odds ratio is

defined for two types only.

Alternative Weights

Greenwood et al. (2016), Eika et al. (2019), and Almar et al. (2023) use versions of measure

(1) with alternative weights. In appendix D, we show that those weights are not necessarily

a convex combination of the male and female marginals. The e↵ect of more sorted couples is

thus not guaranteed to be positive. In our data, conclusions based on the optimal � and the

alternative weights used in the literature are similar, i.e., sorting is increasing. However, this

is coincidental and not guaranteed to hold in other settings.
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4 Conclusion

We show how to use gender-specific weights, which compensate changes of the underlying

type distributions, to improve the measurement of education-based marriage market sorting.

Because the female type distribution has changed more than the male one in recent decades,

attaching the weight to the female side minimizes the distortion of the sorting measure.

We find increasing PAM while alternative weights and measures suggest flat or decreas-

ing trends. Thus, both the sorting measure and the weighting scheme are important, and

researchers should use weights like ours that are disciplined by the data.
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Online Appendix

(not for publication)

A Additional Results

Figure A.1: Marriage, Cohabitation, Age Composition

(a) Stocks of Couples
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(b) Age Composition of Couples
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Note: Panel (a) reports the development in numbers of individuals by marital status. Panel (b) plots the age distribution of
individuals who are either legally married or cohabiting. Section 2 explains how the sample and the education-based types are
constructed.

B The correlation coe�cient

Following Chiappori et al. (2021), the correlation coe�cient in the 2 ⇥ 2 case as described in

Table 1b can be written in the following way:

Icorr =
ad� (mH,M � a)(mH,F � a)p

mH,M(1�mH,M)mH,F (1�mH,F )
. (A.1)

Applying the same approach as in Subsections 3.2 and 3.3, we totally di↵erentiate (A.1),

define ⇥ =
p

mH,M(1�mH,M)mH,F (1�mH,F ), and obtain the following:
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�Icorr =

✓
d� 2a+mH,M +mH,F

⇥

◆

| {z }
>0

�a+
⇣
a

⇥

⌘

| {z }
>0

�d (A.2)

+

0

BB@
�(m(H,F ) � a)⇥�

p
m(H,F )(1�2m(H,M))

p
1�m(H,F )

2pm(H,M)

p
1�m(H,M)

(ad� (m(H,M) � a)(m(H,F ) � a))

⇥

1

CCA

| {z }
R0

�m(H,M)

+

0

BB@
�(m(H,M) � a)⇥�

p
m(H,M)(1�2m(H,F ))

p
1�m(H,M)

2pm(H,F )

p
1�m(H,F )

(ad� (m(H,M) � a)(m(H,F ) � a))

⇥

1

CCA

| {z }
R0

�m(H,F ).

As can be seen from Equation (A.2), the impacts of the changing marginal distributions

m(H,M) and m(H,F ) are ambiguous and highly nonlinear.

C Generalization

An advantage of the I
convex

S sorting measure is its generalizability to more than two types.

Consider a marriage market with N types of males and N types of females. Table A.1 shows

the generalized contingency table for this case.

Table A.1: Generalized contingency table

M\F 1 2 · · · n� 1 n Marginal

1 a11 a12 · · · a1,n�1 m1M �
P

n�1
i=1 a1i m1M

2 a21 a22 · · · a2,n�1 m2M �
P

n�1
i=1 a2i m2M

...
...

...
. . .

...
...

...

n� 1 an�1,1 an�1,2 · · · . . .
... mn�1,M

n m1F �
P

n�1
i=1 ai1 m2F �

P
n�1
i=1 ai2 · · · · · · ann 1�

P
n�1
i=1 miM

Marginal m1F m2F · · · mn�1,F 1�
P

n�1
i=1 miF 1

The generalized version of IconvexS can be written as follows:

I
convex

S =
n�1X

i=1

aii

miMmiF

(�miM + (1� �)miF )

+
ann

(1�
P

n�1
i=1 miM)(1�

P
n�1
i=1 miF )

 
�

 
1�

n�1X

i=1

miM

!
+ (1� �)

 
1�

n�1X

i=1

miF

!!

(A.3)
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Like the 2⇥2 case in (2), we take the weighted sum over all the diagonal cells of the contingency

table divided by the product of the respective male and female marginal distributions.

Next, we totally di↵erentiate equation (A.3):

�I
convex

S =
n�1X

k=1

✓
�mkM + (1� �)mkF

mkMmkF

◆

| {z }
>0

�akk

+

 
�
�
1�

P
n�1
i=1 miM

�
+ (1� �)

�
1�

P
n�1
i=1 miF

�
�
1�

P
n�1
i=1 miM

� �
1�

P
n�1
i=1 miF

�
!

| {z }
>0

�ann

+ (1� �)
n�1X

k=1

 
ann

�
1�

P
n�1
i=1 miM

�2 � akk

m
2
kM

!
�mkM

| {z }
=⇠1R0

+ �

n�1X

k=1

 
ann

�
1�

P
n�1
i=1 miF

�2 � akk

m
2
kF

!
�mkF

| {z }
=⇠2R0

.

(A.4)

We apply the same logic as in the 2⇥ 2 case (Equation (4)) to derive a decision rule for �

in the general case:

�
⇤ =

8
>>><

>>>:

0 if sign(⇠1) = sign(⇠2), |⇠1| < |⇠2|
⇠1

⇠1�⇠2
if sign(⇠1) 6= sign(⇠2)

1 if sign(⇠1) = sign(⇠2), |⇠1| > |⇠2|

(A.5)

Here, the objective function is a convex combination of the two endpoints ⇠1 and ⇠2 defined in

Equation (A.4) which are equivalent to �1 and �2 in the 2⇥ 2 case.

In addition to �
⇤ and I

�
⇤

S for N = 2 (H = Tertiary, L = Non-tertiary), we compute the

optimal weights and the sorting measure for N = 3 (Tertiary, Secondary, Primary), and N = 4

(Master/PhD, Bachelor, Secondary, Primary). We show the development of IconvexS for all cases

in figure A.2, Panel (a). The values for �⇤ are shown in Panel (b).

Sorting is positive irrespective of the number of types because the indices in figure A.2a are

always greater than one. For the two-type case (blue solid line), we get the exact same trend

as in figure 2a with � = 0 (green dash-dotted line) because the �
⇤ = 0 in the two-type case

(blue solid line in figure A.2b). Interestingly, in the three-type case, we see a slightly decreasing

extent of sorting (although almost flat) and some intermediate values for �⇤ (red dashed lines

in figure A.2). Hence, the increasing extent of sorting is not driven by sorting trends within the
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Figure A.2: Marriage Market Sorting and Optimal Weights with Multiple Types

(a) Sorting Trends with Multiple Types
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(b) Optimal � with Multiple Types
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Note: Panel (a) shows the development of the sorting measure I
�
⇤

S for N = 2, N = 3, and N = 4. Panel (b) shows the values of
�
⇤ according to the derived decision rule (A.5). Section 2 explains how the sample and the education-based types are constructed.

lower levels of education, i.e., primary and secondary education. Instead, increasing sorting is

driven by more sorting among highly-educated individuals. This is evident from the increasing

trend for the four-type case (green short-dashed line) in figure A.2a. In this case, �⇤ is zero

or close to zero throughout (see figure A.2b), which is consistent with the more pronounced

changes in the female type distribution.

One could speculate that the higher level of sorting with more types is due to a mechanical

e↵ect of adding more types. This is not the case. The overall level of sorting increases because a

higher extent of sorting among high types is uncovered with more granular types. To understand

why there is no mechanical e↵ect, consider the following example. Using the notation from the

generalized contingency table A.1, in which the highest type has index 1, we compare the

sorting measures for N = 2 and N = 3 cases under �⇤ = 0

I
convex

S (N = 2) =
a11

m1M
+

a22

1�m1M
, (A.6)

and

I
convex

S (N = 3) =
a11

m1M
+

a22

m2M
+

a33

1�m1M �m2M
. (A.7)

Let the top category be split up into two separate categories when we go from N = 2 to

N = 3. The terms related to the bottom category remain unchanged, so the second terms in

Equation (A.6) and the third term in Equation (A.7) can be ignored when comparing sorting

levels. For N = 2, assume, as in Table A.2, that two-thirds of men are in the top category

and that all top-category men are married to top-category women: Thus, ignoring the bottom

13



Table A.2: The 2⇥ 2 case - Example

Male\Female 1 2 Marginal
1 2/3 0 2/3

category, we get IconvexS (N = 2) = a11
m1M

= 1. Now, what happens to I
convex

S when we split up the

top category into two separate categories depends on the extent of sorting within the previous

top category. Consider two cases. First, there could be no sorting within the previous top

category, so the two-thirds of men would be uniformly distributed across matches in categories

1 and 2, see Panel (a) of Table A.3. However, there could also be perfect sorting within the

Table A.3: The 3⇥ 3 case - Example

(a) No sorting within (b) Perfect sorting within
Male\Female 1 2 3 Marginal Male\Female 1 2 3 Marginal

1 1/6 1/6 0 1/3 1 1/3 0 0 1/3

2 1/6 1/6 0 1/3 2 0 1/3 0 1/3

previous top category, see Panel (b) of Table A.3. In this case, the third of men in the new

category 1 would be matched with category-1 women and the third of men in the new category

2 would be matched with category-2 women.

If no sorting is revealed within the top category, the sorting measures IconvexS (N = 2) and

I
convex

S (N = 3) are identical: I
convex

S (N = 3) = a11
m1M

+ a22
m2M

= 1
2 + 1

2 = 1 = I
convex

S (N =

2). This proves that there is no mechanical e↵ect of adding another type that increases the

sorting measure. In contrast, if perfect sorting is revealed within the top category, IconvexS (N =

3) is twice as high as I
convex

S (N = 2): I
convex

S (N = 3) = a11
m1M

+ a22
m2M

= 1 + 1 = 2. The

examples considered here are two extreme cases but they show that introducing another type

can either leave the sorting measure unchanged or increase it, depending on the configuration

of the contingency table and the sorting patterns within categories. In our setting, going from

N = 2 to N = 4 indeed uncovers positive sorting within the tertiary-education subgroup, i.e.,

among graduates with Master/PhD degrees. This explains the ranking of sorting measures in

Figure A.2a.

D Alternative Weights

In this appendix, we first show the equivalence of the weights used in Greenwood et al. (2016),

Eika et al. (2019), and Almar et al. (2023). Second, we show how these alternative weights

compare to the ones derived in this paper.
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Greenwood et al. (2016) divide the sum of the diagonal elements (trace) of the matrix formed

by the contingency table by the trace of the counterfactual matrix under random matching.

They do not use an explicit weighting scheme. In our notation, their sorting measure is

I
trace

S =
a+ d

m(H,M)m(H,F ) + (1�m(H,M))(1�m(H,F ))
. (A.8)

We first show that I
trace

S is mathematically equivalent to the weighted sum of likelihood

indices used in Eika et al. (2019) and Almar et al. (2023). In our notation and for the 2 ⇥ 2

case, their weights are

wH =
m(H,M)m(H,F )

m(H,M)m(H,F ) +m(L,M)m(L,F )
(A.9)

and

wL =
m(L,M)m(L,F )

m(H,M)m(H,F ) +m(L,M)m(L,F )
=

(1�m(H,M))(1�m(H,F ))

m(H,M)m(H,F ) +m(L,M)m(L,F )
. (A.10)

We plug these weights into the definition of the weighted sum of likelihood indices according

to Equation (1). The products of the marginal distributions cancel out, and we are left with

the sorting measure

a+ d

m(H,M)m(H,F ) +m(L,M)m(L,F )
=

a+ d

m(H,M)m(H,F ) + (1�m(H,M))(1�m(H,F ))
= I

trace

S , (A.11)

which is exactly the Greenwood et al. (2016) measure. Although their weighting is not explicit,

the random matching counterfactual in the denominator takes the marginal distributions and

their changes over time into account.

Next, we rewrite this sorting measure as a weighted sum of likelihood indices with the

weights of the same form as in equation (2):

I
trace

S =
a

m(H,M)m(H,F ) + (1�m(H,M))(1�m(H,F ))
⇥

m(H,M)m(H,F )

m(H,M)m(H,F )

+
d

m(H,M)m(H,F ) + (1�m(H,M))(1�m(H,F ))
⇥

(1�m(H,M))(1�m(H,F ))

(1�m(H,M))(1�m(H,F ))

=
a

m(H,M)m(H,F )
⇥

m(H,M)m(H,F )

m(H,M)m(H,F ) + (1�m(H,M))(1�m(H,F ))

+
d

(1�m(H,M))(1�m(H,F ))
⇥

(1�m(H,M))(1�m(H,F ))

m(H,M)m(H,F ) + (1�m(H,M))(1�m(H,F ))
.

This result can be generalized to the n⇥ n case as described in Appendix C.

We now turn to comparing the weights implied by I
trace

S to the ones used in I
convex

S . The
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implied weights of I
trace

S are not necessarily a convex combination of the male and female

marginals. To see this, we define �
trace as the � that equalizes I traceS and I

convex

S :

�
trace =

✓
m(H,M)m(H,F )

m(H,M)m(H,F ) + (1�m(H,M))(1�m(H,F ))
�m(H,F )

◆
1

m(H,M) �m(H,F )
. (A.12)

Evidently, �trace can lie outside the unit interval. In the data, �trace
< 0 holds until 1987,

which is the last year in which males had a higher share of high types than females (m(H,M) >

m(H,F )). From 1988, �trace
> 1 holds. For these values of �, the e↵ect of more sorted couples

on the measure is not necessarily positive, see equation (3).

In our case, conclusions based on I
convex

S with �
⇤ and I

trace

S turn out to be similar, i.e., sorting

is increasing, but this is coincidental and not guaranteed to hold in other settings. To scrutinize

this finding, we compare the weights used in I
�
⇤

S and I
trace

S . w
�
⇤

H
> w

trace

H
holds, which implies

that I�
⇤

S > I
trace

S . The reason is that the likelihood index for (H,H) couples is larger than for

(L,L) couples, i.e., a

m(H,M)m(H,F )
>

d

(1�m(H,M))(1�m(H,F ))
. However, we see a stronger increase in

I
trace

S compared to I
�
⇤

S because the increase in wH is larger for I traceS , i.e., 0 < �w
�
⇤

H
< �w

trace

H
.

Thus, both I
trace

S and I
�
⇤

S increase over time.
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