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1 Introduction
To form a match in the labor market, workers and firms have to spend time and re-
sources. Costly job search explains the coexistence of unemployed workers and vacant
jobs and is the core of search-matching models of the labor market (specifically, the DMP
model, following Diamond, 1982; Mortensen, 1982; Pissarides, 1985). Intuitively, costly
job search can be understood as a result of heterogeneity: if workers and firms di�er in
terms of their skills and productivity, finding the right match is costly. Yet, the textbook
DMP model (Pissarides, 2000) exhibits representative workers and firms. Shimer (2005)
shows that this model fails to match time-series moments of labor market data because
it does not generate su�cient amplification in response to shocks.

Existing solutions to this so-called “unemployment-volatility puzzle” reduce the re-
sponsiveness of wages to shocks. This leads to increased vacancy-posting of firms (Hall,
2005; Hall and Milgrom, 2008; Hagedorn and Manovskii, 2008). However, there is lit-
tle empirical support for rigid wages of new hires (Pissarides, 2009). In this paper, I
propose an alternative mechanism to amplify shocks in a search-matching model. The
combination of worker and firm heterogeneity, a production complementarity that induces
positive sorting, and free entry of firms amplifies job creation because the incentives to
sort increase disproportionately in a boom.

I extend a DMP equilibrium search model by two-sided heterogeneity and sorting in
the spirit of Shimer and Smith (2000). In the Shimer and Smith (2000) model, the equi-
librium allocation exhibits positive assortative matching (PAM) if worker and firm types
are complements (as in Becker, 1973). With free entry of firms (as in the DMP model
but conditional on type), PAM is no longer guaranteed to arise. The reason is that firms
have no incentive to wait for a better match upon meeting a worker. Conversely, workers
trade o� matching against their positive option value of continued search. Thus, not all
meetings lead to matches. In equilibrium, an endogenous and type-specific productivity
threshold determines which firms workers are willing to match with.

I link a production function from the sorting literature with a stochastic process for
aggregate labor productivity and find that a calibrated version of the model matches time-
series (volatility) and cross-sectional moments (wage dispersion, sorting) of U.S. labor
market data. In response to a positive shock, the incentives to be optimally matched
increase. All firms—and high-type firms in particular—post additional vacancies. This
increases the value of continued search for workers. The availability of unemployed high-
type workers further amplifies job creation. Thus, in the short-run, workers’ and firms’
choices mutually reinforce one another.1 The distribution of unemployed workers adjusts
slowly due to search frictions and meetings with unacceptable types. In the long run, the
pool of unemployed workers shifts towards low types, which curtails the firms’ response.

1
They are strategic complements (Bulow et al., 1985) because the surplus function is supermodular.
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To decide how many vacancies to post, firms solve a dynamic problem. They form
expectations about the future match surplus, the set of worker types willing to match
with them, and the rates at which they meet these worker types. Thus, firms’ vacancy
posting decisions are dynamic and depend on the distribution of unemployed worker
types, which is part of the model’s state space. To e�ciently compute the adjustment
paths of the match surplus, acceptance sets, the endogenous distributions, and aggregate
labor market variables in response to shocks, I follow the perturbation approach (Reiter,
2009). Specifically, I linearize the model around its steady state and define an auxiliary
state variable that represents the integral term in the firms job creation condition. Using
an e�cient external function to compute the log deviation of the intergral term from its
steady state value in response to the shock, I can simulate the dynamic sorting model’s
response to shocks e�ciently on a relatively fine grid with 100 discrete worker and firm
types. Details are provided in a computational appendix.

Related Literature

In the literature on the macro-dynamics of labor markets, a closely related recent paper is
Lise and Robin (2017). These authors build on Postel-Vinay and Robin (2002) and Robin
(2011) to combine a model of on-the-job search with heterogeneity, sorting, and aggregate
shocks. Using sequential auctions considerably simplifies the computation because the
distribution functions drop out of the surplus and, thus, the model’s state space. However,
the firms’ entry decision is static, so vacancy postings immediately adjust in response to
shocks and do not depend on the distribution of unemployed worker types.

The contribution of this paper is complementary to Lise and Robin (2017). I abstract
from on-the-job search and focus on the role that the distribution of unemployed worker
types plays for the firms’ dynamic job creation condition. My model is fairly stylized,
and the primary goal of this paper is to develop theoretical intuitions for amplification in
the sorting model. Future work should combine sorting, on-the-job search, and dynamic
firm entry to study the macro-dynamics of labor markets.

In contrast to the canonical sorting model (Becker, 1973; Shimer and Smith, 2000),
sorting is not guaranteed to arise in the model considered in this paper although worker
and firm types are complements and the production function induces PAM. The reason
is that—due to free entry conditional on the firm’s type—firms have no option value of
continued search and are willing to match with all worker types. The calibrated stationary
equilibrium of the model does not feature a strong degree of PAM. This is in line with
recent findings in the empirical literature, which documents low to moderate degrees of
PAM using German, Swedish, Danish, and US data (Card et al., 2013; Bagger et al.,
2013; Lise et al., 2016; Hagedorn et al., 2017; Bonhomme et al., 2019; Bagger and Lentz,
2019; Lochner and Schulz, 2022).
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Other related papers in the literature on unemployment and business cycles with
worker heterogeneity are Mueller (2017) and Baley et al. (2022). Mueller (2017) doc-
uments that the pool of unemployed shifts toward workers with high wages in their
previous job in recessions. This observation is compatible with pro-cyclical sorting, i.e.,
less mismatch in booms. Baley et al. (2022) find evidence for counter-cyclical sorting
and explain it with mismatch due to information frictions in a directed search model.
As I explain below, the change of the surplus function in response to shocks in my styl-
ized model is compatible with both pro-cyclical (higher incentives to sort in booms) and
counter-cyclical (workers are less picky in booms) sorting. Furthermore, this paper is
related to earlier work that studies the macro-dynamics of labor markets using models
with heterogeneity but no sorting (e.g., Pissarides, 1985; Pries, 2008; Mukoyama, 2019).

The theoretical literature on sorting considers two types of models. Depending on the
functional form of the production function, sorting can arise based on comparative advan-
tage or absolute advantage. In comparative-advantage sorting models, the worker/firm
type does not matter in itself; only the interaction of the types determines output (e.g.,
Marimon and Zilibotti, 1999; Gautier et al., 2010; Gautier and Teulings, 2015). In sorting
models with absolute advantage (e.g., Shimer and Smith, 2000), high-type workers (firms)
produce more than low types, no matter what type of firm (worker) they are matched
with. In such a model, the production function implies an unambiguous ranking of worker
and firm types. I focus on the hierarchical sorting model because it is empirically more
appealing: absolute advantage implies a global ranking of workers and firms, and the
data typically used to rank workers and firms in the empirical literature, e.g., education,
job tenure, firms size, or value added, are inherently hierarchical.

The remainder of this paper is structured as follows: Section 2 discusses the model
and its stationary equilibrium, including comparative statics. Section 3 adds aggregate
uncertainty to the model and analyzes the dynamic firm entry problem and (briefly)
wage formation. Section 4 discusses the computational strategy and presents results
from numerical simulations of the sorting model in comparison to a baseline search and
matching model and U.S. labor market data. Section 5 concludes.

2 The Model

2.1 Setup

Time is discrete. Infinitely-lived workers and firms maximize their future discounted
income and profit streams, respectively. The common discount factor is —. Workers and
firms are characterized by ex-ante heterogeneity of skills and productivity, respectively.
Worker skills and firm productivity are assumed to be complements in production.
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Table 1: Distribution functions of matched and unmatched worker and firm types

Distribution of Relation Aggregate Stock

Active matches gm(x, y) M =
ss

gm(x, y) dxdy

Employed workers ge(x) =
s

gm(x, y) dy E =
s

ge(x) dx

Unemployed workers gu(x) = gw(x) ≠ ge(x) U =
s

gu(x) dx

Producing firms gp(y) =
s

gm(x, y) dx P =
s

gp(y) dy

Vacant firms gv(y) æ free entry V =
s

gv(y) dy

I focus on one-to-one matches between workers and firms.2 Thus, I abstract from
firm size and coworker complementarities.3 There is full information about the types and
availability of potential matching partners.

Worker and Firm Heterogeneity

A continuum of workers is endowed with heterogeneous skills x œ [0, 1] that are distributed
according to a probability density function (pdf) gw(x). Similarly, a continuum of firms is
endowed with heterogeneous productivity y œ [0, 1] with pdf gf (y). Both gw(x) and gf (y)
are exogenous and uniform. gm(x, y) is the endogenous two-dimensional joint distribution
of active (i.e., producing) (x, y) matches. The distributions of employed workers, ge(x),
and producing firms, gp(y), can be obtained by integrating out the respective dimension
of gm(x, y). The distribution of unemployed worker types, gu(x), is obtained by sub-
tracting the distribution of employed workers from gw(x). The distribution of vacancies,
gv(y), is governed by free entry and a cost function, specified below. The distributions
of active matches, employed/unemployed workers, and producing/vacant firms are equi-
librium objects. They integrate to the stocks of active matches, M , employed workers,
E, unemployed workers, U , producing firms, P , and vacancies, V . Table 1 summarizes
how the endogenous distributions of (in)active worker and firm types are related to the
exogenous densities.

Production

F (x, y) is a non-negative and twice continuously di�erentiable production function. I
assume supermodularity of F (x, y), i.e., the cross-partial derivative, Fxy(x, y), is positive.
The implied complementarity of worker skills x and firm productivity y is the force
towards PAM in the model (Becker, 1973). Supermodularity of F (x, y) is not su�cient
for equilibrium existence in this setting (Shimer and Smith, 2000). Both F (x, y) and the

2
This is a common simplifying assumption that follows Pissarides (1985).

3
Herkenho� et al. (2018) and Freund (2022) are two recent studies that focus on coworker comple-

mentarities.
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derivatives Fx(x, y) and Fxy(x, y) need to be log-supermodular.4 The following parametric
form fulfills these conditions (Shimer and Smith, 2000; Teulings and Gautier, 2004):

F (x, y) = exy. (1)

To study the amplification of shocks, I introduce labor productivity z, which augments
output multiplicatively:

F (x, y, z) = z exy. (2)

Labor productivity z is a time-varying technology parameter that is common to all
matches. The strength of the production complementarity increases in labor produc-
tivity, i.e., both the first derivatives and the cross-parital derivative of (2) scale with z.5

This implies that, given worker skills, the marginal gain from working at a better firm
increases in labor productivity. Similarly, given firm productivity, the marginal gain from
hiring a better worker increases in labor productivity. Thus, the incentive to be optimally
matched in the sense of the sorting model increases with labor productivity.

For the description of the model, z is assumed to be fixed and therefore omitted.

Matching and Separations

Only unemployed workers search for jobs, and search is random. Meetings are governed
by a Cobb-Douglas function with constant returns to scale, m(U, V ) = ËU ›V 1≠›, where
› (1 ≠ ›) is the elasticity of new matches with respect to unemployment (vacancies).6 Ë

represents the e�ciency of the meeting process. The Poisson meeting rates are functions
of aggregate labor market tightness ◊ = V/U. qv(◊) = M(U,V )/V is the rate at which vacant
firms meet unemployed workers and, correspondingly, qu(◊) = M(U,V )/U is the rate at
which unemployed workers meet vacancies. qv(◊) is decreasing, and qu(◊) increasing in ◊.

Not all meetings lead to matches in a sorting model. If the option value of continued
search is higher than the discounted income stream from matching for at least one party,
the surplus will be negative and the match not consummated.

Matches end for two reasons. First, idiosyncratic separation shocks arrive at rate ”.
Second, matches may end endogenously when labor productivity z changes. The reason
is that the surplus of marginally profitable matches may become negative in response to
an aggregate produtivity shock.

4
For any xÕ > x and yÕ > y, F (xÕ, yÕ

)F (x, y) Ø F (xÕ, y)F (x, yÕ
), Fx(xÕ, yÕ

)Fx(x, y) Ø Fx(xÕ, y)Fx(x, yÕ
),

and Fxy(xÕ, yÕ
)Fxy(x, y) Ø Fxy(xÕ, y)Fxy(x, yÕ

). These conditions also imply that the acceptance strate-

gies can be summarized by nonempty, closed, and convex matching sets (Shimer and Smith, 2000).

5
That is,

ˆF (x,y,z)
ˆx = Fx(x, y, z) = z x e

xy
and

ˆFx(x,y,z)
ˆy = Fxy(x, y, z) = z e

xy
(x y + 1).

6
Note that using a linear search technology with heterogeneous workers and firms implies congestion

e�ects between di�erent worker and job types. I stick to the Cobb-Douglas matching function for

simplicity and comparability to other studies. A quadratic search technology, as used in Shimer and

Smith (2000), eliminates this congestion externality. Nöldeke and Tröger (2009) extend Shimer and

Smith (2000) to models with linear search technologies.
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Surplus

The willingness to match is captured by the match surplus for any (x, y) combination.
It is defined as the sum of the di�erences between the values of being matched and
unmatched for both workers and firms:

S(x, y) = E(x, y) ≠ U(x) + P(x, y) ≠ V(y), (3)

where E(x, y) is the value of an employed worker, U(x) is the value of unemployment,
P(x, y) is the value of a producing firm, and V(y) is the value of a vacancy. All value
functions are spelled out below. When the surplus is positive, both parties agree to form
a match. When the surplus is negative, both parties prefer to continue their search. The
decisions to match (or not) are always mutually consistent. The indicator function µ(x, y)
denotes whether match between a worker with skills x and a firm with productivity y is
acceptable. This is the case if and only if the match surplus is positive:

µ(x, y) =

Y
_]

_[

1 if S(x, y) > 0

0 if S(x, y) < 0.
(4)

Bargaining

Nash bargaining determines how the match surplus is shared between workers and firms.
The respective surplus shares are equal to the di�erence of the matched values and the
outside options, which are the threat point in the bargaining game. The workers’ bar-
gaining power parameter is – œ (0, 1).

–S(x, y) = E(x, y) ≠ U(x) (5)

(1 ≠ –)S(x, y) = P(x, y) ≠ V(y) (6)

This sharing rule also determines the wage. However, wages play no allocative role in the
model, and specifying them is therefore not necessary to characterize the equilibrium.
I relegate the derivation of the wage equation to Appendix C and briefly discuss the
dynamic properties of wages in Section 3.

Value Functions

The value of employment of a worker with skills x at a firm with productivity y is

E(x, y) = W (x, y) + —”U(x)
¸ ˚˙ ˝
separation

+ —(1 ≠ ”) max{E(x, y), U(x)}
¸ ˚˙ ˝

continued employment

, (7)
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which consists of the payment flow of the match-specific wage, W (x, y), and the dis-
counted value of two contingencies in the next period. With probability ”, the match is
hit by a separation shock and the worker receives the value of unemployment U(x). With
probability (1 ≠ ”), the match survives and the worker receives the maximum of the val-
ues of unemployment and employment at firm y. The max operator captures endogenous
separations when labor productivity is stochastic.

The value of unemployment for a worker with skills x is

U(x) = b(x) + —(1 ≠ qu(◊))U(x)
¸ ˚˙ ˝

no meeting

+ —qu(◊)
⁄ 1

0

gv(y)
V

µ+(x, y)E(x, y)dy
¸ ˚˙ ˝

successful match

+ —qu(◊)U(x)
⁄ 1

0

gv(y)
V

µ≠(x, y)dy
¸ ˚˙ ˝

meet unacceptable firm

.
(8)

Unemployed workers receive the type-specific value of home production b(x) with ˆb(x)
ˆx >

0. In the following period, the unemployed worker does not meet any firm and remains
unemployed with probability 1 ≠ qu(◊). With probability qu(◊), a meeting occurs. The
firm’s productivity y can either be acceptable for the worker (µ+(x, y) : µ(x, y) = 1) or
not (µ≠(x, y) : µ(x, y) = 0).

Equation (8) separates the option value of meeting a firm into two parts: (i) meetings
that lead to the formation of an employment relationship (successful match). Here,
µ(x, y) = 1 and gv(y)/V represents the probability of meeting an acceptable firm among
all vacancies. (ii) Meetings that do not lead to a match (meet unacceptable firm). Here,
µ(x, y) = 0 and gv(y)/V represents the probability of meeting unacceptable firms. Note
that the integration includes all firm productivity levels in both terms.

The flow payo� of a matched firm is the match-specific output F (x, y) minus the
wage, W (x, y). In the next period, the match breaks up with probability ” or continues
with probability (1 ≠ ”). Similar to the value of employment (7), the max operator is
included to capture endogenous separations in response to labor productivity shocks.

P(x, y) = F (x, y) ≠ W (x, y) + —”V(y)
¸ ˚˙ ˝
separation

+ —(1 ≠ ”) max{P(x, y), V(y)}
¸ ˚˙ ˝

continued production

(9)

Finally, the value of a vacancy is defined by

V(y) = ≠c(gv(y)) + —(1 ≠ qv(◊))V(y)
¸ ˚˙ ˝

no meeting

+ —qv(◊)
⁄ 1

0

gu(x)
U

µ+(x, y)P(x, y)dx
¸ ˚˙ ˝

successful match

+ —qv(◊)V(y)
⁄ 1

0

gu(x)
U

µ≠(x, y)dx
¸ ˚˙ ˝

meet unacceptable worker

.
(10)
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The value of a productivity-y vacancy depends on a flow cost of holding it open, c(gv(y))
where c(.) is monotonic function and gv(y) the measure of vacancies posted, and the
option value of meeting workers with di�erent skill levels. The firm either meets no
worker, a suitable worker, or an unsuitable worker. Again, µ+(x, y) (µ≠(x, y)) indicates
that a match will (not) be formed and gu(x)/U represents the probability of meeting an
unemployed worker with skills x.

The value functions (7)–(10) can be simplified by adding and subtracting on both
sides either U(x) or V(y). The surplus sharing rules (5) and (6) can then be plugged in
and the surplus function along with a max operator appears under the integral signs.7

E(x, y) = W (x, y) + — (U(x) + –(1 ≠ ”) max{S(x, y), 0}) , (11)

U(x) = b(x) + —

A

U(x) + –qu(◊)
⁄ 1

0

gv(y)
V

max{S(x, y), 0}dy

B

, (12)

P(x, y) = F (x, y) ≠ W (x, y) + — (V(y) + (1 ≠ –)(1 ≠ ”) max{S(x, y), 0}) , (13)

V(y) = ≠c(gv(y)) + —

A

V(y) + (1 ≠ –)qv(◊)
⁄ 1

0

gu(x)
U

max{S(x, y), 0}dx

B

. (14)

2.2 Stationary Equilibrium

Characterization

The stationary equilibrium of the sorting model is characterized by the surplus S(x, y)
with free entry imposed, which pins down the acceptance strategy µ(x, y), and the distri-
butions of unemployment workers and vacancies across skills and productivities, respec-
tively. These equilibrium objects are jointly determined by the surplus value function, a
steady state flow equation, and the job-creation condition.

Surplus under Free Entry

The surplus under free entry is obtained by plugging equations (11)–(13) into (3) and
setting V(y) = 0:

S(x, y) = F (x, y) + —(1 ≠ ”) max{S(x, y), 0}

≠
A

b(x) + —–qu(◊)
⁄ 1

0

gv(y)
V

max{S(x, y), 0} dy

B

.
(15)

The match surplus depends positively on output and the future discounted surplus (first
two terms on the RHS). It depends negatively on the type-dependent outside option of
the worker, which has two parts: (i) the type-specific value of home production b(x)
(third term on the RHS); (ii) the option value of continued search (fourth term on the

7
Note that

s 1
0

gv(y)
V max{S(x, y), 0}dy is equivalent to

s 1
0

gv(y)
V µ(x, y)S(x, y)dy.
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RHS), which depends on the worker’s bargaining power –, the meeting rate qu(◊), and
the integrated surplus, weighted with the respective probabilities of meeting a vacancy
of a productivity-y firm, gv(y)/V . Note that the worker’s outside option depends on an
integral over the endogenous distribution function gv(y) but not directly on the firm type
because y is integrated out.8 Firm productivity y directly a�ects the surplus only via the
production function F (x, y).

Free entry in a sorting model has two important implications. First, there is no
option value of continued search for the firm. Conditional on entering, firms are willing
to match with every worker they meet. However, production is not always high enough to
compensate the worker for his outside option. Thus, workers of a given skill level choose
an endogenous productivity threshold (as in, e.g., Pissarides, 1985) and match with all
firms above this threshold.9 Across worker types, this productivity threshold corresponds
to the acceptance strategy summarized in µ(x, y).

Second, PAM does not necessarily arise although the production function is log-
supermodular. In Shimer and Smith (2000), sorting arises because there is an option
value of continued search for both the worker and the firm. With free entry conditional
on firms’ productivity type, sorting is not guaranteed to arise because the option value
of continued search for firms becomes zero.10

Steady-State Flows

The steady-state flow condition of the model pins down the distribution of unemployment
workers across types, gu(x):

”gm(x, y) = gu(x) qu(◊) gv(y)
V

µ(x, y). (16)

The LHS of equation (16) captures exogenous separations, i.e., the flow from active
matches into unemployment for all (x, y) combinations. The RHS captures the work-
ers’ flow into employment, which depends on the meeting rate, qu(◊), the probability of
meeting a specific firm type y, gv(y)/V , and the acceptance strategy µ(x, y).

After integrating out the firm dimension and rearranging, we get the following ex-
8
This is an important property because it implies that the distribution of vacancies is part of the

model’s state space. In Lise and Robin (2017), who develop a sorting model with on-the-job search and

sequential auctions, the workers outside option of continued search does not reduce the surplus because

the worker can move from job to job.
9
Compared to Pissarides (1985), there are two di�erences: (i) the acceptance threshold varies across

heterogeneous worker types; (ii) as we shall see below, the acceptance threshold falls in response to

positive shocks (due to the incentive to sort), while it increases in Pissarides (1985).
10

Hagedorn et al. (2017) sustain the Shimer and Smith (2000) sorting result by adding an ex-ante entry

stage in which firms pay a cost to learn about their productivity type. In that case, the distribution of

firm productivity remains exogenously fixed, while it is endogenous in this paper. The calibrated model

produces a small degree of PAM, which is in line with empirical evidence, see Section 4.2.
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pression for gu(x):

gu(x) = ”gw(x)
” + qu(◊)

s 1
0

gv(y)
V µ(x, y)dy

. (17)

The integral term in the denominator reflects that not all meetings lead to matches.
Consequently, the density of unemployed workers may di�er across workers with di�erent
skill levels. In fact, steady-state unemployment is higher in the sorting model than in
the textbook model (Pissarides, 2000) for identical meeting and separation rates if there
exists at least one (x, y) combination with negative surplus.11

For workers with a relatively low acceptance threshold in terms of firm-productivity y

(and with su�ciently many vacancies), the density of unemployed workers is going to be
low. In turn, for picky workers, i.e., high-skill workers that produce a large surplus with
high-productivity firms, unemployment can be relatively high. Unemployed high-type
workers, in turn, encourage job creation at high-productivity firms.

I study the properties of the stationary equilibrium for a calibrated version of the
sorting model in the next subsection. In line with the considerations here, the unem-
ployment rate will be relatively high for picky high-type workers in the calibrated steady
state. I discuss the calibration in Section 4.2.

Job Creation

The job creation condition, which follows from (14) under free entry (V(y) = 0), deter-
mines how many vacancies firms post depending on their productivity y and the avail-
ability of unemployed worker with di�erent skill levels:

c(gv(y)) = —(1 ≠ –)qv(◊)
⁄ 1

0

gu(x)
U

µ(x, y)S(x, y)dx. (18)

Given gu(x), µ(x, y), S(x, y), and the monotonic cost function c, equation (18) can be
solved for the density of vacancies at firms with productivity y. Firms post vacancies
until the discounted value on the RHS is lower than the cost implied by c(gv(y)). The
RHS depends on meeting probabilities with workers of all skill levels (qv(◊) and gu(x)/U),
their acceptance strategies (µ(x, y)), and the firm’s surplus share ((1 ≠ –)S(x, y)).

In the sorting model, the surplus is especially high for matches between high-productivity
firms and high-skill workers. For this reason, the availability of high-skill workers is an
important factor in the firm’s job creation decision, and this importance is increasing in
firm productivity. Suppose there are relatively few unemployed high-skill workers. In
that case, the high surplus that a high productivity firm could produce with a high-skill
worker receives a relatively low weight in the integral expression (gu(x)/U is relatively low

11
To see this, integrate out the worker dimension x in (17). The resulting expression U =

”/
!

”+qu(◊)
ss

gv(y)
V µ(x,y)dydx

"
is equal to the textbook “Beveridge Curve” equation if the integral is 1,

cf. equation (1.5) in Pissarides (2000).
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for high x), and vacancy posting is diminished. If, however, high-skill workers are rel-
atively picky and, thus, more likely to be unemployed than low-skill workers, then job
creation is amplified because high-productivity firms are more likely to meet high-skill
workers (gu(x)/U is relatively high for high x).

In line with these considerations, I show below that the measure of vacancies posted
is indeed increasing in firm productivity in the calibrated model (see Section 4.2). To
ensure that the distribution of vacancies is non-degenerate in equilibrium, I assume that
c(.) is convex.12 Once gu(x) and gv(y) are known, integrating over worker and firm types
yields the aggregate stocks of unemployed workers and vacancies, which in turn determine
labor market tightness ◊ and the meeting rates qu(◊) and qv(◊).

There are important di�erences in the timing of adjustments to the three components
of the job creation condition in response to a shock. These di�erences matter for the firms’
vacancy posting responses in the dynamic model. In response to a positive productivity
shock, output and surplus increase instantaneously and firms post more vacancies. The
distribution of unemployed workers across skill types gu(x) and aggregate unemployment
U , however, adjust slowly because search frictions and meetings with unacceptable types
hinder match formation. As time progresses, the change in gu(x) curtails the firms’
incentives to post vacancies. I study this mechanism in detail in Section 2.3.

Properties of the Stationary Equilibrium

To study the properties of the sorting model’s stationary equilibrium, I solve the model
for 1000 discrete worker and firm types using the computational approach described in
Section 4.1 and Appendix A.1. The calibration of the parameter values is discussed in
Section 4.2.

Panel (a) of Figure 1 plots the surplus plane across all (x, y)-type combinations.
Negative values are omitted. Towards the top, the surplus reflects the properties of the
production function F (x, y), which increases in both the worker and firm type. However,
the surplus decreases towards the lower right corner. The intersection of the surplus plane
with zero pins down the workers’ acceptance strategy (firm-productivity thresholds). No
matches are formed between high-type workers and low-type firms because output is too
low relative to the workers’ outside option. In turn, the workers’ outside option increases
in x due to both the increasing value of home production b(x) and the increasing value
of continued search. Based on the calibration, the most skilled workers match only with,
roughly, the top quarter of firm types. In contrast, high-type firms are willing to match
with low-type workers because, conditional on entering, their option value of continued
search is zero.

12
Due to the assumed production function, high-type firms produce more than low-type firms irrespec-

tive of the worker type they are matched with. The convexity helps to discipline the vacancy posting of

highly productive firms.
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Figure 1: Stationary Equilibrium

(a) Surplus (b) Partial Derivative w.r.t. Firm Type y

(c) Partial Derivative w.r.t. Worker Type x (d) Cross-Partial Derivative
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Consider how the derivatives of the surplus function (15) depend on the worker and
the firm type. Due to free entry, the surplus is a�ected by firm productivity exclusively
through the production function F (x, y). Thus, the partial derivative of the surplus
function with respect to the firm type y is positive everywhere and increasing in x,
see Panel (b). The sign of the partial derivative with respect to the worker type x,
however, depends on the combination of types, see Panel (c). Here, the red line marks
the intersection with the zero plane. The derivative is positive when the firm type is
relatively high. In this case, the increase of output in x dominates the increase of the
outside option in x due to the high firm type. Conversely, if the firm type is relatively low,
the slope of the surplus in the direction of the worker type becomes flatter and eventually
even negative for very low firm types.

The cross-partial derivative of the surplus function is both positive and increasing
in x and y, see Panel (d). The derivative of the outside option drops out because firm
productivity is integrated out. Thus, the surplus function inherits the supermodular-
ity property from the production function F (x, y). The cross-partial derivative is also
increasing towards the top, which suggests that the supermodularity of the surplus is
particularly relevant for matches between high-type workers and high-type firms.

In game theory, supermodularity of the payo� function implies that players’ choices
are strategic complements, i.e., they mutually reinforce one another (Bulow et al., 1985).
In the sorting model, workers and firms are the players but the arguments of the surplus
function are not choices but immutable types. Still, the analogy is helpful to clarify why
workers’ and firms’ decisions mutually reinforce one another and, thus, contribute to the
amplification of shocks in the sorting model. Due to the random search assumption,
firms and workers cannot control which type of worker or firm they meet. But firms
generate more meetings by posting vacancies and can in this way increase their chances
of meeting the right worker type. The more vacancies firms post, the more picky workers
are due to the increased option value of continued search. In turn, picky workers provide
incentives for firms to post even more vacancies because picky workers are more likely
to be unemployed and, thus, available for firms to match with. This is the mutual
reinforcement. Strategic complementarity is a well-known property of sorting models
that follows from the supermodularity assumption these models typically rest upon.13

To show how workers’ acceptance strategies and firms’ vacancy posting interact in
shaping the distributions of unmatched types, I plot the unemployment rate across worker
types in Panel (e) and the measure of vacancies across firm types in Panel (f). The unem-
ployment rate increases in the worker type. In the calibrated model, the unemployment
rate per worker type is below 8% for low-type workers who are willing to match with all
firm types. For high-type workers, however, the unemployment rate extends to 12%.14

13
See Shimer and Wu (2021) for a recent application.

14
An important question is whether the pickiness of high-type workers is driven by the utility flow
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The measure of vacancies in Panel (f) also increases in the firm type. As explained
above, it is more profitable for high-type firms to post vacancies for two reasons: (i)
the surplus and, thus, the incentives to sort are particularly high at the top; (ii) high-
type workers have a valuable outside option, are more likely to be unemployed, and
are therefore available to match with high-type firms. In other words, as the firm type
increases in Panel (f), firms “get access to” workers who are willing to match with them
and relatively likely to be unemployed. Low-type firms match only with the 10–20% of
worker types at the bottom, while high-type firms in the top 20% can match with every
worker they meet.

Taken together, the acceptance strategy of high-type workers, who are willing to wait
for high-surplus matches, and the job creation decisions of high-type firms, which have
particularly strong incentives to post vacancies when high-type workers are available,
mutually reinforce one another, and this mechanism allows the sorting model to amplify
the response to productivity shocks.

2.3 Comparative Statics

To explore the quantitative implications of a change in labor productivity, I analyze how
the model responds to a positive productivity shock. In a two-step comparative-statics
exercise, I first increase the labor productivity parameter z by 5% and keep the distri-
bution of unemployed worker types gu(x) fixed. This highlights the short-run response
in the model because surplus and vacancy posting increase instantaneously but forming
new matches takes time. Second, I let the gu(x) distribution adjust to the new steady
state level to show how the vacancy-posting response of firms is curtailed in the long run
due to fewer available high-type workers.

In Panels (a) and (b) of Figure 2, I compare the surplus with z = 1 and with z = 1.05
and gu(x) fixed (short run). As anticipated based on the production function, the change
of surplus gets bigger toward the top. For low-type workers, who are willing to match
with all firm types, the surplus increases by roughly 0.25. For picky high-type workers,
however, the surplus change is more than five times bigger, it extends to 1.3 at the very
top. The reason is that the strength of the production complementarity in F (x, y, z),
which the surplus reflects, increases in the worker and the firm type, recall Figure 1d.
The fact that the incentive to be optimally matched increases with labor productivity
induces pro-cyclical sorting, consistent with empirical findings by Mueller (2017).15

from home production during unemployment, which we allow to be increasing in x, or the option value of

continued search, which is related to sorting. To investigate this, I recompute the stationary equilibrium

with a constant b and find that the properties of the equilibrium do not change much, see Appendix

Figure A.3. The matching cuto� hardly di�ers between the constant-b and increasing-b case, so the

surplus is not a�ected much by the specification of b, although unemployment is higher for all worker

types when b increases with the type x.
15

Mueller (2017) documents that in recessions the pool of unemployed workers shifts toward workers
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Figure 2: Comparative Statics of a Change in z

(a) Surplus with z=1 (b) Short run: Surplus with z=1.05, gu(x) fixed

(c) Short run: Matching Cuto�
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(d) Short run: Vacancies across Firm Types
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(e) Long run: Unemp. across Worker Types
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with high wages in their previous job. This is consistent with more sorting (and less mismatch) in booms.

16



The change to the workers’ acceptance threshold, summarized by the match indica-
tor function µ(x, y, z), is depicted in Panel (c). It shifts toward the lower-right corner,
which means that more matches between high-type workers and low-type firms become
acceptable.16 This is the net e�ect of two counteracting forces. First, due to increased
output, more matches can compensate workers for their outside option. Workers are less
picky and the firm productivity threshold decreases (the surplus shifts up for all (x, y)-
combinations). Second, the outside option of workers increases because the incentives
to sort rise and firms post more vacancies, especially at the top (see Panel (d)). This
makes workers more picky and tends to increase the firm productivity threshold. This
mechanism reinforces vacancy posting (strategic complementarity). The net e�ect is a
downward shift of the firm-productivity threshold, and this is in line with counter-cyclical
sorting, i.e., less positive sorting in booms and pro-cyclical mismatch. Baley et al. (2022)
present empirical evidence for counter-cyclical sorting based on U.S. data.

Whether sorting is pro or counter-cyclical is ultimately an empirical question. Baley
et al. (2022) and Mueller (2017) use di�erent models and measurement strategies. The
adjustment mechanism in response to higher productivity in the stylized model discussed
here is compatible with both pro and counter-cyclical sorting.

Panel (d) shows how the density of vacancies across firm types changes with higher
labor productivity in the short run. That is, the distribution of unemployed worker types
is held fixed. High-type firms have strong incentives to post additional vacancies because
the surplus and the incentives to sort are disproportionately higher and relatively many
unemployed high-type workers are available (recall Figure 1e). Consequently, the e�ect of
higher labor productivity on vacancy posting is moderate for low-type firms but strongly
increasing in firm productivity. For example, for firms with the highest productivity the
absolute increase in the measure of vacancies posted increases roughly four times more
than for productivity 0.5.

Panel (e) and (f) show the response to higher productivity in the long run, i.e., when
the distribution of umemployed workers gu(x) has adjusted to higher output. In line with
the lower firm-productivity threshold, the unemployment rate decreases most at the top
(about one percentage point), see Panel (e).17 The unemployment rate does not change
for workers who are willing to match with all firm types (flat density). However, the
number of worker types that are not picky at all increases with higher labor productivity.
In the long run, the measures of vacancies posted by firm type go back almost entirely
to their initial level, see Panel (f). Vacancy posting remains elevated at the top where
higher output has the strongest impact on the surplus, but for low-type firms there is
almost no e�ect once the distribution of unemployed worker types has adjusted.

16
The additional surplus covered by the extended acceptance set is relatively small, so this adjustment

is not quantitatively important for the response to shocks.
17

This is again qualitatively consistent with the empirical findings of Mueller (2017).
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Taken together, the comparative statics exercises show that one can expect a signifi-
cant short-run amplification of aggregate productivity shocks in a dynamic sorting model.
Over time, as unemployment falls (especially for high-type workers), firms’ vacancy post-
ing decreases but remains elevated at the top.

3 The Dynamic Sorting Model
In the dynamic sorting model, z is stochastic. Let zt denote the realization of aggregate
labor productivity z in period t. I assume that z follows a Markov process, which is
specified and calibrated in Section 4.2. To simplify notation, let zÕ be next period’s
realization (t + 1). Time subscripts are omitted in the following to avoid notational
clutter. I define the state of the system to be �(gm(x, y, z), z). This state contains the
exogenous state variable z and the endogenous state, which can be summarized in the
distribution of active matches gm(x, y, z). All endogenous objects depending on the state
have � as an argument in the following.

The timing of the model is as follows: a period begins when the state of aggregate labor
productivity z is revealed. Workers form their acceptance strategies, and firms decide
about job creation based on the exogenous state z and the primitives of the model. Both
endogenous and exogenous separations take place, and new matches are formed. Workers
and firms separated in the same period do not start their search until the next period.
Finally, production commences and wages are paid.

Based on these assumptions, the dynamic surplus value function becomes

S(x, y, �) = F (x, y, z) + — [(1 ≠ ”) max{S(x, y, �Õ), 0}]

≠ —

C

b(x) ≠ –qu(◊(�Õ))
⁄ 1

0

gv(y, �Õ)
V (�Õ) µ(x, y, �Õ)S(x, y, �Õ) dy

D

.
(19)

F (x, y, z) depends on the exogenous state only. Home production b(x) does not depend
on z. is the expectation operator regarding the future aggregate state. It includes all
information available in the period the expectation is formed.

3.1 Job Creation

The firms’ dynamic job creation problem is pivotal for the amplification result. A firm
of type y will post vacancies as long as the expected discounted value of production is at
least as high as the flow cost implied by c(.):

c(gv(y, �)) = —(1 ≠ –)
C

qv(◊(�Õ))
⁄ 1

0

gu(x, �Õ)
U(�Õ) µ(x, y, �Õ)S(x, y, �Õ) dx

D

. (20)
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Thus, job creation depends on an expectation over the meeting rate and the firm-specific
integral in (20). It includes the match indicator function µ(x, y, �Õ), the surplus function
S(x, y, �Õ), and the probabilities of meeting specific worker types, gu(x,�Õ)

U(�Õ) . In contrast
to the standard model and Lise and Robin (2017), this is a dynamic problem because
the firm forms an expectation over the slow-moving distribution of unemployed worker
types.18

As argued above, all endogenous objects on the RHS change in response to shocks
but the adjustment of gu(x,�Õ)

U(�Õ) , and hence ◊(�Õ), is delayed by search frictions (as in, e.g.,
Pissarides, 1985) and meetings with unacceptable types (due workers’ incentives to sort).
In contrast, the surplus and workers’ acceptance decisions change instantaneously. Thus,
firms immediately post more vacancies, especially at the top where the surplus increases
disproportionately. Moreover, as discussed in Section 2.2, high-type workers have higher
unemployment rates in the sorting model which provides further incentives for high-type
firms to post vacancies. This e�ect is most pronounced in the short run due to the delayed
adjustment of unemployment.

3.2 Wages

I derive the wage equation of the dynamic sorting model in Appendix C.

W (x, y, �) = –

A

F (x, y, z) + c(y)
C s 1

0 gv(y, �Õ)µ(x, y, �Õ)S(x, y, �Õ) dy
s 1

0 gu(x, �Õ)µ(x, y, �Õ)S(x, y, �Õ) dx

DB

+ (1 ≠ –)b(x).

(21)
An interesting property is that the match-specific wage W (x, y, �) does not depend on
aggregate labor market tightness. Instead, the ratio of the firm’s integral term (the
denominator of the expectation) and the worker’s integral term (the numerator of the
expectation) determines the wage. This feature can disconnect match-specific wages from
fluctuations in aggregate tightness in the sorting model. Intuitively, what matters for the
wage bargain is not the stocks of vacancies and unemployed workers but the alternative
matching opportunities of both parties that are summarized by the integral terms.

4 Numerical Simulations and Empirical Analysis
I study the model’s ability to match aggregate time-series moments from U.S. labor mar-
ket data. To this end, I run numerical simulations of a calibrated model in a stochastic
environment. Aggregate shocks to labor productivity z drive the business cycle. I com-
pare the responses of the dynamic sorting model to Shimer (2005).

18
The static job creation condition in Pissarides (2000) is c = —(1≠–) [qv(◊(zÕ

))S(zÕ
)]. Here, vacancy

posting costs are a constant and without heterogeneity the firm does not consider di�erent worker types

or type-specific meeting probabilities.

19



4.1 Computation

I first discuss how the stationary equilibrium considered in Section 2.2 is computed.
Second, I explain how i analyze this heterogeneous-agent model with aggregate shocks
out of steady state. Details are relegated to Appendices A.1–A.3.

Stationary Equilibrium

I approximate the stationary equilibrium of the sorting model using value function itera-
tion on a discrete grid. After initialization, the first step is to compute the fixed point of
(15). In practice, it is necessary to allow for some smoothing of the acceptance strategy
µ(x, y) along the cuto� to ensure convergence. I allow for mixed strategy solutions close
to the cuto�, following Hagedorn et al. (2017). In the second step, knowing S(x, y) and
µ(x, y), I use the steady-state flow condition (16) to solve for the endogenous distribution
of unemployed worker types, gu(x). The third and final step is to calculate the measure
of vacancies gv(y) along with the stocks U , V , and the meeting rates. I solve (18) numer-
ically and integrate over gu(x) and gv(y) to compute the stocks of unemployment workers
and vacancies.

The solution algorithm alternates between computing the fixed point of the surplus
function for all (x, y) combinations and updating the distributions until convergence is
achieved.19 Due to vectorization and fast solvers, the stationary equilibrium can be
computed in a matter of seconds for a grid of 100 ◊ 100 types. Performance is critical
for computing the model’s response to shocks in Section 4. Note that uniqueness is not
guaranteed in the Shimer and Smith (2000) class of models. I verify that the surplus
function is contracting in the parameter space I consider by repeatedly solving the model
for di�erent initial conditions.20

Out-of-Steady-State Dynamics

The dynamic sorting model has a complex state space �, which consists of the exoge-
nous state z (labor productivity) and the endogenous state gm(x, y, z) (joint distribution
of active matches). All other endogenous objects—the surplus, the matching sets, the
distributions of unmatched worker and firm types, the stocks U and V , the arrival rates
qu(◊) and qv(◊), and aggregate labor market tightness ◊—follow from the state of the sys-
tem �. Keeping track of �’s evolution is computationally challenging because it contains
endogenous distributions and is thus infinite-dimensional.

I use perturbation following Reiter (2009) and log-linearize the model around its
steady state. I simulate the model for all x and y combinations separately in Dynare

19
That is, until the absolute di�erence of the surplus between two iterations is less than 10

≠6
.

20
This approach is similar to Shimer and Smith (2000), Lise and Robin (2017), and Hagedorn et al.

(2017), among others. I would like to thank Robert Shimer for sharing the code used to produce the

numerical results in Shimer and Smith (2000).
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(Adjemian et al., 2022) and aggregate in the end. Using Dynare is very helpful for the
underlying standard computations, e.g., checking stability of the system and computing
policy functions. Furthermore, it is easy to nest simpler models, which I use to reproduce
the results of Shimer (2005) below.

Importantly, some model objects are high dimensional because they depend on distri-
butions across the typespace. Consider the firm’s integral term in equation (20), which
includes the endogenous distribution of unemployed worker types. Computing how this
object changes in response to changing labor productivity is the key challenge. To over-
come it, I use an external function in Dynare to call the solution algorithm described in
Appendix A.1 from within the model block and calculate the integral’s log-deviation from
its steady state value for the current realization of labor productivity. This procedure is
conceptually similar to calculating the numerical derivative of the integral in (20) with
respect to labor productivity for a specific firm type.21

In summary, I define auxiliary state variables for the integral terms and calculate their
adjustment manually but e�ciently outside of Dynare. This allows me to keep track of the
evolution of the integral terms when labor productivity is stochastic. In the present model,
this concerns in particular the RHS of equation (20), which determines vacancy posting.22

The key to success for this method is a fast and reliable solver to calculate the high-
dimensional objects’ adjustment to shocks. Using the algorithm sketched in Appendix A,
simulating data from the dynamic sorting model is still time-intensive because I loop over
all combinations of worker and firm types. It takes several days on a desktop computer
to complete the simulations.

Log-linearizations around the steady state are error prone in nonlinear systems. Fortu-
nately, the calibrated labor productivity process used in the context of U.S. labor market
dynamics is not very volatile. The standard deviation of z is small, so the model always
remains relatively close to the steady state. To check the reliability of my computational
approach, I plug simulated data back into the Bellman equations to see whether the sim-
ulated data solve them. The mean computational error I make is quite small at 3.8%.
This value is very close to the error one makes when solving simple dynamic search and
matching models using log-linearization and perturbation, so my method of dealing with
the additional complexity of the sorting model’s state space does not appear to signifi-
cantly increase computational errors.23 Figures A.1 and A.2 in the Appendix show the
distribution of computational errors and their positive correlation of the errors with z.

21
In related work, Boppart et al. (2018) show how to use impulse response functions (IRFs) to e�ciently

calculate numerical derivatives of complicated functions in heterogeneous-agent models with aggregate

shocks.
22

In an earlier version of this paper that focused on wage dynamics in addition to firm entry, I addition-

ally defined auxiliary state variables for the two integral terms that show up in the wage equation (21).
23

Petrosky-Nadeau and Zhang (2016) show that solving the representative agent search and match-

ing model in Hagedorn and Manovskii (2008) via log-linearization and perturbation creates a mean

computational error of 3.75%. I find a mean error of 3.84% with slightly more dispersion.
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4.2 Calibration

As in Shimer (2005), a time period is set to be one quarter. Table 2 shows the calibration
of the model based on the U.S. labor market data used for the simulation exercise and for
the analysis of the stationary equilibrium in Section 2.2. To ensure comparability with the
results in Shimer (2005), identical parameter values are used whenever possible. A value
of 0.1 for the separation rate translates into an average employment spell of about 2.5
years during the relevant period (1951–2003). The quarterly discount rate is set to 0.012,
representing an annual interest rate of roughly 5%. The discount factor (as it appears
in the model equations) is thus — = 1/1.012 ¥ 0.99. The matching function elasticity
is set to 0.72, in line with Shimer (2005), which is within the empirically supported
range (Petrongolo and Pissarides, 2001). I set the bargaining parameter equal to the
matching function elasticity, that is, I follow the Hosios (1990) condition for socially
e�cient vacancy posting in the decentralized equilibrium.24

Several parameters need to be recalibrated in the sorting model. I allow the value
of nonmarket activity b(x) to increase in the worker type. I calibrate it to be 0.223 ◊
max

x
F (x, y). This implies that home production b(x) has a mean of 40% of the output a

worker of type x can produce in his optimal match. This assumption is a natural extension
of Shimer (2005), who assumes a constant b of 0.4 when output is normalized to 1. The
e�ciency parameter of the aggregate matching function (Ë) needs to be increased in the
sorting model to take into account that not all meetings result in matches. A value of
2 implies, along with the other parameter values, that the net job finding rate, that is,
the rate of matches that are formed after a meeting, is close to the value Shimer (2005)
constructs from the data, which is 1.355 (quarterly). The calibrated economy has a
steady-state unemployment rate of about 7.8%.

The convex vacancy posting cost function takes the following form:

c(gv(y)) = c0
1 + c1

gv(y)1+c1 .

c0 and c1 are set to the values shown in Table 2 to target a steady-state aggregate labor
market tightness of 1.25

The stochastic labor productivity process z is normalized to 1 in steady state and
calibrated to resemble empirical labor productivity in the U.S. over the relevant period of
time. I follow Hagedorn and Manovskii (2008) and set it up as a first-order autoregressive
process:

zt = fl zt≠1 + ‘t, ‘t ≥ N (0, ‡2
‘ ). (22)

fl œ (0, 1) captures the degree of first-order autocorrelation of the AR(1) process. In-
24

I do not adapt the Hosios condition for the sorting model, i.e., this parametrization does not neces-

sarily imply that vacancy posting is socially e�cient.
25

In practice, I set c0 to the value estimated in Lise and Robin (2017) and adjust c1 to target ◊ = 1.
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Table 2: Parameter values for the quarterly calibration of the search and matching model
for the U.S. labor market (1951–2003)

Parameter Symbol Value Source

Discount factor — 0.99 Shimer (2005)
Separation rate ” 0.1 Shimer (2005)
Workers’ bargaining power – 0.72 Shimer (2005)
Matching function elasticity › 0.72 Shimer (2005)

Matching function constant Ë 2 Calibrated to match
Value of nonmarket activity b(x) 0.223 ◊ max

x
F (x, y) steady-state unemp.

Vacancy posting costs c0 0.03 Calibrated to match
c1 0.4 steady-state ◊.

First order autocorrelation fl 0.765 Hagedorn
Standard deviation ‡‘ 0.013 & Manovskii (2008)

novations are drawn from a Gaussian distribution with mean 0 and standard deviation
‡‘. Both parameters are set to match quarterly U.S. labor productivity.26 All values in
Table 2 are based on quarterly data. Shimer’s (2005) simulation results as well as my
own results are reported as deviations from a HP trend, which is conventional in the
literature.27

Using the calibration in Table 2, the model produces wage dispersion and labor market
sorting of magnitudes that are comparable to benchmarks reported in the literature.
The mean-min ratio is 1.35, which is close to the empirically-supported range of 1.5–2
identified in Hornstein et al. (2011) and much higher than the value that can be generated
with the canonical search-matching model.28 Spearman’s rank correlation coe�cient, a
measure of sorting, is 0.095. That is, the extent of positive sorting is not high despite the
production complementarity. Mismatch is substantial. This is in line with the finding
that sorting breaks down in a Shimer and Smith (2000) model with free entry conditional
on firm type because firms have no incentive to wait for better matches. A small degree
of PAM is also in line with the empirical literature. For the U.S., Lise et al. (2016) report

26
Shimer (2005), Hornstein et al. (2005), and Hagedorn and Manovskii (2008) report the parameter

values necessary to represent U.S. labor productivity “as seasonally adjusted quarterly real average

output per person in the non-farm business sector constructed by the BLS” (Hagedorn and Manovskii

(2008), p. 1694).
27

The Hodrick-Prescott (HP) filter is a technique for decomposing the trend and the cyclical component

of a time series (Hodrick and Prescott, 1997). Shimer (2005) sets the smoothing parameter of the filter

to ⁄ = 10
5

instead of to the more common value of ⁄ = 1600 for quarterly data. This makes the cyclical

component less volatile and more persistent. I use the same value as Shimer to generate comparable

moments. Hornstein et al. (2005) point out that a more volatile trend, using the common smoothing

parameter ⁄ = 1600 for quarterly data, “has almost no e�ect on the relative volatilities” (p. 23).
28

The canonical model generates a mean-min ratio of at most 1.05 according to Hornstein et al. (2011).
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Table 3: Actual and simulated standard deviations of labor market variables

Standard deviations U V ◊ qu(◊) z F (x, y, z)
1. U.S. data 0.190 0.202 0.382 0.118 0.02 -
2. Results of Shimer (2005) 0.009 0.027 0.035 0.010 0.02 -
3. No sorting, no heterogeneity 0.009 0.026 0.035 0.010 0.02 -
4. Sorting, hierarchical model 0.102 0.277 0.380 0.168 0.02 0.06

Note: Rows 1 & 2: Based on Tables 1 and 3 in Shimer (2005), pp. 28, 39. Calculated based on quarterly

U.S. data, 1951–2003. Rows 3 & 4: Standard deviations of simulated data from my model with and

without sorting. All moments come from HP-filtered data with ⁄ = 10
5.

a small degree of PAM.29 For Germany, Lochner and Schulz (2022) measure sorting by
correlating firm types based on estimated firm productivity and worker types based on
estimated worker ability. They find a correlation of 0.07.

4.3 The Amplification E�ect of Sorting

The Shimer Puzzle revolves around the canonical search-matching model’s ability (or lack
thereof) to explain the volatility of the unemployment rate, the vacancy rate, aggregate
labor market tightness, and the job-finding rate over the business cycle. The search-
matching model with sorting produces su�cient amplification in response to shocks and
can match the data. Second moments of simulated time series data are of the same order
of magnitude as the volatility observed in U.S. labor market data for the relevant period of
time. In particular, the simulated standard deviations of unemployment, vacancies, labor
market tightness, and the job-finding rate are much closer to empirical second moments
than simulated data from standard search and matching models. Table 3 compares my
results to those of Shimer (2005) and the empirical data moments.

The first two rows of Table 3 show the well-known unemployment-volatility puzzle
emphasized by Shimer (2005). The standard deviations of unemployment, U , vacancies,
V , labor market tightness, ◊, and the job-finding rate, qu(◊), in simulated time series data
miss the empirical standard deviations by a factor of 10 to 20. I first replicate Shimer’s
results by simulating a model from without worker/firm heterogeneity and sorting. That
is, I set output to 1 and use the same calibration as Shimer (2005). Vacancy posting
costs c and the value of home production b are constants in this case. Reassuringly, the
results in the third row of Table 3 are nearly identical to Shimer’s results.

My main result is reported in the fourth row of Table 3. The second moments of
simulated time series data from the model with sorting are much closer to the data than
are those from the standard model without sorting. The standard deviation of the HP-

29
Lise et al. (2016) make a parametric assumption about the production function (CES) and estimate

the elasticity of substitution, which is not directly comparable to the correlation reported here.
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Figure 3: Impulse Response Functions
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filtered time series of labor market tightness (0.380) is very close to the data (0.382).
The standard deviations of vacancies (V ) and the job-finding rate (qu

t ) are also much
higher than in the baseline model; they even overshoot their empirical counterparts to
some extent. This is evidence for strong amplification through firms’ vacancy posting,
as conjectured in Section 2.3. The standard deviation of unemployment (U) is amplified
as well but remains somewhat lower than the empirical value. This is unsurprising in a
sorting model. As shown in Section 2.3, the response of the unemployment rate di�ers
across worker types. For high-type workers, unemployment falls disproportionately in
response to a positive shock because their outside option changes the most. In contrast,
low-type workers are willing to match with all firm types, so the outside-option e�ect is
muted. To improve upon the sorting model’s ability to fully match the dynamics of the
unemployment rate, one promising approach would be to drop the assumption that the
underlying exogenous distribution of worker types, gw(x) is uniform.

Finally, note also that overall match-specific output, F (x, y, z)), fluctuates more in
the sorting model than z. This is due to the fact that, as explained in Section 2.3, the
production function implies that a higher z increases the incentive to sort (procyclical
sorting). It becomes relatively more valuable to be optimally matched as z increases, so
F (x, y, z) is more volatile in response to shocks than z alone.

To illustrate the dynamics of the sorting model, Figure 3 shows impulse response
functions of six key variables: unemployment, vacancies, aggregate labor market tight-
ness, and the job-finding rate, as well as the autoregressive labor productivity process
and wages. In response to a positive shock to labor productivity, unemployment falls
by about 6 percentage points initially and shows a hump-shaped return to steady state.
Vacancy posting, job finding, and aggregate tightness of the labor market show strong
positive reactions directly after the shock. All impulse responses show a high degree of
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Figure 4: Simulated Time Series
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persistence as well as realistic correlations and cyclical properties. For instance, unem-
ployment and vacancies move in opposite directions in response to the shock and are thus
highly negatively correlated (Beveridge Curve). Note also the less-than-proportional ad-
justment of wages in response to the labor productivity shock: the initial adjustment of
wages is roughly 85% of the jump in labor productivity in the depicted example, so in
contrast to the textbook model, wages do not increase one-to-one with labor productivity.
This is due to the fact that wages are partly shielded from aggregate fluctuations in this
model, recall Section 3.2.

Finally, to compare the extent of amplification in the standard and the sorting model,
Figure 4 contains simulated time-series data over 250 periods for vacancies, unemploy-
ment, labor market tightness, and the job-finding rate. The red time series (baseline) are
simulated using the (no sorting, no heterogeneity) model, see row 3 of Table 3 above. The
blue time series, simulated with the sorting model, exhibit large and persistent swings in
response to shocks. In comparison, the fluctuations generated by the baseline model are
hardly visible. Note both simulations are based on a similar series of productivity shocks.
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5 Conclusions
This paper studies the amplification of aggregate productivity shocks in a search-matching
model with two-sided heterogeneity, sorting, and free entry of firms. The model combines
key elements of the DMP equilibrium search model (Pissarides, 2000) with the production
complementarities and sorting à la Becker (1973); Shimer and Smith (2000).

A first interesting finding is that the stationary equilibrium of the model does not
necessarily produce positive sorting although worker skills, and firm productivity are
complements in production. The reason is that firms enter conditional on their pro-
ductivity. They have no incentive to wait for a better match once they meet a worker
because their outside option is zero with free entry. The stationary equilibrium of the
model exhibits a small degree of positive sorting, which is in line with recent empirical
evidence (e.g., Lise et al., 2016; Lochner and Schulz, 2022).

The main result is that the model amplifies aggregate productivity shocks. The volatil-
ity of simulated time series data is of the same order of magnitude as the volatility of
unemployment, vacancies, and labor market tightness in U.S. data. Thus, sorting provides
a new way to solve the “unemployment-volatility puzzle” (Shimer, 2005). The reason for
amplification is that the surplus is supermodular. The incentives to sort increase dis-
proportionately after a positive shock. Firms’ vacancy posting and workers’ acceptance
choices reinforce one another because both parties want to form high-surplus matches. At
the same time, unemployment adjusts slowly due to search frictions and meetings with
unacceptable types. This leads to a strong vacancy-posting response of firms in the short
run, particularly for those with high productivity. In the long run, the adjustment of the
distribution of unemployed worker types curtails the firms’ vacancy-posting response.

The paper seeks to develop theoretical intuitions, and the model is therefore fairly
stylized. In future research, many simplifying assumptions like the absence of on-the-
job search and firm size should be relaxed. Furthermore, the model’s ability to match
cross-sectional facts in addition to time-series facts needs to be scrutinized, e.g., the
composition of the pool of unemployed workers over the business cycle and the cyclicality
of sorting.
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A Computational Appendix
In the following, I describe the computational procedure used to solve the model and sim-
ulate its response to productivity shocks. I also consider the magnitude of computational
errors. I use Matlab with Dynare (Adjemian et al., 2022).

A.1 Stationary Equilibrium

Step 1: this describes the Matlab code used to calculate the stationary equilibrium.

1. Setup

• Set parameter values and density of the grid.

• Compute the value of output for all (x, y)-combinations based on equation (1).

2. Initialization

• Set seed for random number generator.

• Set options for solver of firm’s job creation condition (18) (Levenberg–Marquardt
algorithm).

• Create pre-allocations for all matrices and vectors (for speed).

• Set initial values for all densities listed in Table 1 as well as U and V by
integrating the respective densities.

3. Surplus Solution Algorithm: while di�erences between last and current surplus for
all (x, y)-combinations are bigger than some threshold:

• Update workers’ outside option, see equation (15).

• Update surplus according to (15).

• Compute acceptance sets by checking where surplus is positive.

• Smooth along the acceptance cuto� using “mixed strategies” based on random
numbers. The goal is to have no discrete jump from 0 to 1 to allow the
algorithm to converge more easily.

• Update distribution of unemployed worker types gu(x) and aggregate U based
on equation (17).

• Update firms’ integral term in the job creation condition, see equation (18).

• Solve job creation condition (18) for gv(y) and calculate V and tightness ◊.

• Repeat until di�erences between iterations of the surplus become smaller than
the threshold.
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A.2 Model with Shocks

Step 2: This describes the Matlab/Dynare code used to simulate the sorting model with
shocks. It makes use of the solution algorithm described in Step 1 to compute numerical
derivatives in external functions. This is described further in Section A.3

1. Run Step 1.

2. Set number of periods for stochastic simulations.

3. Create pre-allocations for all matrices and vectors (for speed).

4. For all combinations of discrete worker types x and firm types y run in Dynare:

• Set seed for random number generator.

• Declare endogenous variables (E, U , V , m(U, V ), ◊, qu(◊), z, F (x, y, z)).

• Declare exogenous variable (the shock).

• Declare parameters.

• Load and set parameter values from current Matlab workspace.

• Declare external functions to keep track of integral terms.

• Declare model equations in log deviations from steady state (8 equations for
8 endogenous variables).

(a) Accounting identify for employment and unemployment.
(b) Law of motion for employment including external function for endogenous

separations.
(c) Individual labor productivity.
(d) Aggregate labor productivity.
(e) Meeting function.
(f) Job-creation condition including external function for integral expression.
(g) Labor market tightness.
(h) Job-finding rate.

• Computational checks.

• Declaration of the stochastic shock.

• Initialize stochastic simulations.

• Store simulated time series and HP-filtering.

5. Aggregation based on stored simulated time series for all (x, y) combinations.

6. Make Table 3, Figure 3, Figure 4, etc.
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A.3 External Functions

Step 4 in A.2 is run for all x and y combinations separately. The challenge is that some
model objects depend on distributions over the whole typespace, e.g., the firm’s integral
term in equation (18). To address this challenge, I use an external function in Dynare to
call the solution algorithm described in A.1 from within the model block. This allows me
to keep track of the evolution of the integral terms and the adjustment of the distribution
functions when labor productivity is stochastic.

1. External function is called by Dynare to compute the integral expression’s deviation
from steady state. Current value of labor productivity (in log deviations from steady
state) is handed over.

2. Calculate the actual value of labor productivity using the steady state value.

3. Use the surplus solution algorithm in A.1 to update the value of the firm’s integral
term based on the current value of labor productivity.

4. Calculate log deviation from the steady state value of the integral.

5. Hand solution over to Dynare.

A.4 Computational Errors

To check the accuracy of the computational method described in Section 4.1, I plug
simulated data from the dynamic sorting model back into the Bellman equations of the
model. Ideally, the simulated data would solve these equations exactly. However, I make
heavy use of discretization and approximation techniques, so it is reasonable to expect
some imprecision. For convenience, I use the wage equation for this test because it
contains both the firms’ and the workers’ integral terms:

W (x, y, �) ≠ –

A

F (x, y, z) + c(gv(y, �))
C s 1

0 gv(y, �Õ) max{S(x, y, �Õ), 0} dy
s 1

0 gu(x, �Õ) max{S(x, y, �Õ), 0} dx

DB

≠ (1 ≠ –)b(x) ?= 0.

Solving the dynamic sorting model by log-linearization and perturbation results in
a mean computational error of 3.84%. The 2.5th, 50th, and 97.5th percentiles of the
distribution are ≠15.0%, 4.67%, and 17.6%, respectively. This distribution is slightly left
skewed due to the fact that the model’s response to shocks is not symmetric around the
steady state, for example, because of endogenous separations, which only happen after
negative shock. Figures A.1 and A.2 show a histogram of the computational errors and
a scatter plot that shows the positive correlation of the errors with z.

33



A recent paper by Petrosky-Nadeau and Zhang (2016) can serve as a benchmark for
the size and distributions of the errors. The authors show that solving a representative
agent search and matching model via log-linearization and perturbation—they use Hage-
dorn and Manovskii (2008) as an example—creates a mean computational error of 3.75%
with the 2.5th, 50th, and 97.5th percentiles of the distribution being ≠11.1%, ≠3.66%,
and 8.76%, respectively. I conclude from this that the errors resulting from the computa-
tional approach in this paper lead to errors of an expectable magnitude, even though the
errors I find are slightly more dispersed than what Petrosky-Nadeau and Zhang (2016)
find for a representative agent search and matching model.
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Figure A.1: Histogram of Computational Errors
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0.94 0.96 0.98 1 1.02 1.04 1.06

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Stochastic Labor Productivity z

C
o

m
p

u
ta

tio
n

a
l E

rr
o

r:
 W

(x
,y

,z
)−

W
si

m
u
la

te
d
(x

,y
,z

) 
in

 %

35



B Additional Results

B.1 Stationary Equilibrium with constant b

Figure A.3: Stationary Equilibrium with constant b
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C Wage Formation
To derive match-specific wages in the sorting model, I start with the Nash bargaining
solution and impose free entry (V(y) = 0):

E(x, y, �) ≠ U(x, �) = –

1 ≠ –
P(x, y, �). (23)

Plugging in the value functions and maximizing the Nash product yields an expression
for the match-specific wage in the dynamic model, W (x, y, �):

W (x, y, �) = –F (x, y, z) + (1 ≠ –)b(x)

+ (1 ≠ –)—–

C

qu(◊(�Õ))
⁄ 1

0

gv(y, �Õ)
V (�Õ) µ(x, y, �Õ)S(x, y, �Õ) dy

D

.
(24)

As in the standard model, the wage is a convex combination of match-specific output,
F (x, y, z), and the worker’s outside option. In the sorting model, the integral term
deserves attention: the outside option depends on the expected value of the surplus with
all other potential employers in the matching set, weighted by the distribution. Thus,
the higher the surplus and the higher the probability of meeting other firm types that the
worker is willing to match with, the higher the outside option and the bargained wage.
After factoring out –, Equation (20) can be used to bring the firm’s integral term into
the denominator of the expectation:

W (x, y, �) = –

Q

aF (x, y, z) + c(gv(y, �))
S

U◊(�Õ)
s 1

0
gv(y,�Õ)
V (�Õ) µ(x, y, �Õ)S(x, y, �Õ) dy

s 1
0

gu(x,�Õ)
U(�Õ) µ(x, y, �Õ)S(x, y, �Õ) dx

T

V

R

b

+ (1 ≠ –)b(x).
(25)

Now, the same logic applies from the firm’s perspective: the expected value of the surplus,
the matching set, and the distribution of other unemployed worker types influence the
negotiated wage negatively through the denominator: the more workers are available for
the firm to match with and the higher the surplus, the lower is bargained wage with a
specufic worker type x. Note that aggregate labor market tightness ◊(�Õ) in front of the
quotient cancels out with 1/V (�Õ) in the numerator and 1/U(�Õ) in the denominator:

W (x, y, �) = –

A

F (x, y, z) + c(y)
C s 1

0 gv(y, �Õ)µ(x, y, �Õ)S(x, y, �Õ) dy
s 1

0 gu(x, �Õ)µ(x, y, �Õ)S(x, y, �Õ) dx

DB

+ (1 ≠ –)b(x),

(26)
so the match-specific wage W (x, y, �) does not depend on aggregate labor market tight-
ness in the sorting model. The ratio of the two integral term determines how changes in
the aggregate state a�ect the wage.
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