
DISCUSSION PAPER SERIES

IZA DP No. 16594

Badi H. Baltagi
Sergi Jiménez-Martín
José M. Labeaga
Majid al Sadoon

Consistent Estimation of Panel Data 
Sample Selection Models

NOVEMBER 2023



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 16594

Consistent Estimation of Panel Data 
Sample Selection Models

NOVEMBER 2023

Badi H. Baltagi
Syracuse University and IZA

Sergi Jiménez-Martín
Universitat Pompeu Fabra

José M. Labeaga
UNED

Majid al Sadoon
Durham University



ABSTRACT

IZA DP No. 16594 NOVEMBER 2023

Consistent Estimation of Panel Data 
Sample Selection Models
The properties of classical panel data estimators including fixed effect, first-differences, 

random effects, and generalized method of moments-instrumental variables estimators in 

both static as well as dynamic panel data models are investigated under sample selection. 

The correlation of the unobserved errors is shown not to be sufficient for the inconsistency 

of these estimators. A necessary condition for this to arise is the presence of common (and/

or non-independent) non-deterministic covariates in the selection and outcome equations. 

When both equations do not have covariates in common and independent of each other, 

the fixed effects, and random effects estimators in static models with exogenous covariates 

are consistent. Furthermore, the first-differenced generalized method of moments estimator 

uncorrected for sample selection as  well as the instrumental variables estimator uncorrected 

for sample selection are both consistent for autoregressive models even with endogenous 

covariates. The same results hold when both equations have no covariates in common but 

are correlated once we account for such correlation. Under the same circumstances, the 

system generalized method of moments estimator adding more moments from the levels 

equation has moderate bias. Alternatively, when both equations have common covariates 

the appropriate correction method is suggested. Serial correlation of the errors being a key 

determinant for that choice. The finite sample properties of the proposed estimators are 

evaluated using a Monte Carlo study. Two empirical illustrations are provided.
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1 Introduction

The problems of self-selection, non-response and attrition are common in datasets containing eco-

nomic variables. Their presence is well researched in cross-section studies. However, correlated

heterogeneity together with endogenous attrition, non-response or sample selection complicate mat-

ters with unbalanced panel data (Baltagi, 2021). The increasing availability of large longitudinal

databases has produced many studies simultaneously dealing with unobserved heterogeneity and

selectivity. Moreover, the development of new methods make these approaches more likely to be

used in the future. In this context, we believe that it is important to highlight the advantages

and disadvantages of various commonly used panel data estimators and to draw the researchers’

attention to potential pitfalls in using them in empirical studies.

In this paper we focus on the estimation of a very general class of panel data sample selection

models. We consider a variety of cases for the outcome of interest and a simple form for the

selection equation. We also allow for a very general correlation structure in the error components

of both equations. Departing from the simplest situation, we present an exercise which includes

some important features in the model to test their individual and joint e↵ects on the bias of some

of the classical estimators (fixed e↵ects -FE-, random e↵ects -RE-, and first di↵erences -FD-) as

well as the generalized method of moments (GMM) estimators.

In more detail, we consider four cases of increasing complexity: (a) panel data sample selection

models without common covariates, and independent on each other; (b) models without common

covariates, but dependent on each other; (c) models with at least one common covariate but not

serially cross-correlated time-variant errors; and, (d) models with at least one common covariate

and time variant serially cross-correlated errors.

The first two cases are less common than others. They typically involve sample selection re-

lated to involuntary factors, not linked to the individual characteristics (the Covid-19 crisis or the

increasingly common empirical studies based on an experimental or quasi-experimental designs, for

example). In this context, the determinants at the extensive margin are completely di↵erent from

those at the intensive margin. Some examples of standard economic models imposing identification

restrictions that exclude from the observability rule variables included in the outcome equation

include Rochina-Barrachina (1999), or Knoef and Been (2015). Under these assumptions, sam-
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ple selection corrections are not necessary for consistent estimation of the parameters of interest.

However, sample selection corrections (a la Heckman) are necessary in the last two more common

cases. Finally, correlation between the unobserved components can also cause endogenous sample

selection.

For cases (a) and (b) we distinguish between static and dynamic sample selection models. In the

static model without common (and independent) covariates between the outcome and the selection

equations (let us call them x and z respectively), we show that the classical panel data estimators

(FE, FD, RE GLS and GMM) are all consistent. Similarly, in dynamic models without common

time-varying covariates such as the purely AR(1) as well as the Monte Carlo study in Raymond

et al. (2007), the GMM estimator proposed by Arellano and Bond (AB, 1991) as well as the

less e�cient Anderson and Hsiao (AH, 1982) estimators, both uncorrected for sample selection,

are consistent regardless of the exogenous or endogenous nature of the selection. An immediate

implication of this result is that GMM estimators are not consistent in the uncorrected model when

the lagged outcome is part of the selection equation.

Furthermore, we show that the additional orthogonality restrictions implied by the system GMM

estimator (Arellano and Bover, 1995; Blundell and Bond, 1998) are not valid under endogenous

selection. However, the bias of the system GMM estimator is small especially when the time-

invariant heterogeneous components in the outcome and selection equations are not correlated.

This also applies to models with exogenous, predetermined or endogenous covariates, which are, in

turn, not present in the selection equation.

For models with at least one common covariate (case (c)), which could be the lagged outcome

as in Gayle and Viaurous (2007), we unify and extend some of the most popular approaches. In

particular, we propose an extension of Wooldridge (1995) and Rochina-Barrachina (1999) based on

either the simple estimation of year-by-year probits or the adjustment of bivariate probits to build

the corrections since our model, contrary to Wooldridge (1995) and Rochina-Barrachina (1999),

is dynamic and the selection imposes the condition on three consecutive positive events to have a

usable observation. In static models in levels, we follow Wooldridge (1995) and correct for selection

bias by adding the current selection term. In first-di↵erenced models and, in general, in dynamic

models, the complexity of the correction critically depends on the serial correlation of the errors.

In the simplest case (no serial correlation and stationarity) we show that the Wooldridge’s proposal

4



can be applied and, more importantly, extended to dynamic models with the necessary adjustments.

Finally, when both equations have common covariates and the time varying errors are serially

cross-correlated (case (d)), we suggest, following Rochina-Barrachina (1999), a multivariate cor-

rection adapted to the dynamic case. In models with predetermined or endogenous covariates the

selection terms need to be instrumented accordingly.

Testing between the alternative cases described above is not complicated. For example, a simple

t-test or Wald test allows checking for the significance of x in the selection equation. In case it

is not detected, a test of the E(x|z) checks for the need to correct for the correlation between x

and z. Finally, to distinguish between (c) and (d) we can test the correlation between the time-

varying errors in the outcome and the lagged (once and twice if necessary) time-varying errors in

the selection equations.

The performance of these estimators is evaluated using Monte Carlo methods, relaxing or im-

posing a variety of assumptions. In models without common covariates in both equations, our

results suggest that there is no need for correcting the classical panel data static estimators or

the first-di↵erences dynamic panel AB estimates in the selected sample. In models with common

covariates, we show that our suggested estimator is able to control for selection bias. This pa-

per highlights the advantages and disadvantages of various methods. This should prove useful for

applied work in this area.

Our work contributes to the literature in several dimensions. First, it shows that it is unnec-

essary to correct for selectivity (even with a high degree of correlation) when both equations do

not have common time-varying covariates. Second, it suggests simple methods to correct the out-

come equation when both equations have common covariates. Combining these contributions, we

conclude that a key factor of the necessity of sample selection correction a la Heckman is the pres-

ence of common covariates in both equations along with correlation of the errors and not whether

the errors of both equations are correlated alone. Overall, we believe that these results could be

especially relevant for practitioners in cases involving sample selection of unknown form, when the

selection process is di�cult to model, when exclusion restrictions are not available, or in experi-

mental or quasi-experimental settings where the selection and outcome equations contain di↵erent

sets of determinants.

The outline of the paper is as follows: Section 2 presents a general framework and the estimation
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strategies. Section 3 shows under what conditions many standard panel data estimators remain

consistent under sample selection. The performance of the proposed estimators is studied in Section

4. We present Monte Carlo results showing the finite sample average bias in many relevant cases.

In Section 5, we present two empirical applications to illustrate several features or our theoretical

and simulation results. Section 6 concludes.

2 A general framework

In this section, we consider a flexible framework that nests all the cases we study. We focus a

dynamic panel data model with unobserved heterogeneity. We must note that the first proposals

appeared in a static context (see Verbeek and Nijman, 1992, Wooldridge, 1995, Rochina-Barrachina,

1999 and Kyriazidou, 1997, for models with strict exogeneity and Vella and Verbeek, 1998, and Se-

mykina and Wooldridge, 2010 allowing for endogenous explanatory variables). In another strand of

research, theoretical papers have explored bias-corrected estimators for the static case (Fernández-

Val and Vella, 2011). More recently, Sasaki (2015) discussed non-parametric identification of panel

data selection models and Lai and Tsay (2018) proposed maximum simulated likelihood methods

in a static set-up. In particular, we consider the following model:

y
⇤
it = ⇢y

⇤
it�1 + �xit + ↵i + "it, (1)

for i = 1, ..., N and t = 1, ..., T, where y⇤ is the latent outcome, which is observed when d
⇤, the

observability criteria (defined below) is greater than zero. Furthermore x is a vector of covariates

which, for ease of exposition, we simplify as a single covariate, that can be either exogenous,

predetermined or endogenous, and ↵i is an individual heterogeneous component independent of

the idiosyncratic error "it but potentially correlated with x. A model like (1) appeared for the first

time in Arellano et al. (1999) and Kyriazidou (2001). More recently, Semykina and Wooldridge

(2013) introduced new two-stage random e↵ects strategies for estimating panel data models in the

presence of endogeneity, dynamics and selection.

Di↵erent values of ⇢ and � lead to di↵erent models. For example, ⇢ = 0 leads to a static panel

data model; |⇢| < 1 and � = 0 yield a purely stationary AR(1); of course, when both parameters

are di↵erent from zero we have an autoregressive model with covariates.
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We assume the following process for x:

xit = ⇢xxit�1 + �x}it + ↵
x

i + "
x

it, (2)

where �1 < ⇢x < 1, } is a strictly observed exogenous covariate, ↵x

i
is a heterogeneity compo-

nent and "x
it
is a time-variant error component. Note that the process for x can be easily generalized

without a↵ecting any fundamental result in this paper. In case x is exogenous both error compo-

nents are uncorrelated with other errors components in the model; when x is predetermined we

allow correlation with "it�1; and finally, when x is endogenous we allow correlation between the

error components in (1) and (2).

In the case of selection, the variable of interest is partially observed, and it is usual to specify

an observability or selection rule of the form:

d
⇤
it = zit� + �xit + ⌘i + uit, (3)

where ⌘i is a term capturing unobserved individual heterogeneity that can be correlated with

both z and x, zit is a vector of strictly exogenous regressors including a constant and xit is the same

(vector of) regressor(s) that appears also in the outcome equation. Our framework also allows the

case where x is the lagged outcome yt�1. While this makes identification more di�cult, it fits well

in our general argument. Regarding the correlation structure of the covariates, we assume that

z and x do not have variables in common and so, z represents exclusion restrictions. For ease of

exposition, we assume that z and x are not correlated with ⌘i. However, none of the main results

of the paper are a↵ected in case we allow correlation of z or x with ⌘i or x with ↵i (as we show in

Appendix B, if there is correlation, we can express ⌘i = g(zi, xi) and add this function as additional

regressors following either Mundlak, 1978, or Chamberlain, 1984). Finally, uit is a time varying

error. The observed indicator dit is given by:

dit = 1[d⇤it > 0] = 1[zit� + �xit + ⌘i + uit > 0], (4)

such that dit = 1 if y⇤
it
= yit, when the latent outcome is observed, and zero otherwise.

The error components in equation (1) are related to the error components in the selection
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equation as follows:

↵i = ↵
0
i + ✓0⌘i, (5)

and

"it = "
0
it + #0uit + #1uit�1 + #2uit�2, (6)

where, for simplicity, ↵0
i
and "0

it
are assumed to be normally distributed and ✓0 and #j ; j = 0, 1, 2

are the parameters introducing correlation. In case they are all zero, there is exogenous sample

selection. Alternatively, when any of them is di↵erent from zero, there is endogenous sample

selection. We distinguish between two cases: A) the contemporaneous correlation case, when

#0 6= 0 and #j = 0; j = 1, 2; and, B) the more complex case of serial cross-correlation, when

#j 6= 0; j = 0, 1, 2.

It is well known that in the absence of endogenous selection and for the typical situation of N

large and T small, the outcome equation can be estimated with standard methods. In the static

case, (⇢ = 0), with exogenous regressors, FE and RE estimators are consistent under the additional

assumption that ↵i and x are not correlated. In case x and ↵i are correlated, i.e., ↵i = g(xi) + ↵
⇤
i

where ↵⇤
i
is an error term independent of xi, we can, following Wooldridge, add to (1) the control

function g(xi). Alternatively, for the purely AR(1) or the dynamic model with covariates, these

are consistently estimated using IV methods including Anderson and Hsiao (1982), Arellano and

Bond (1991), Arellano and Bover (1995) and Blundell and Bond (1998).

2.1 Estimation of the model

2.1.1 The static case, ⇢ = 0

Estimation in levels: Equation (1) could be estimated in levels by RE. In the case xit is strictly

exogenous, a su�cient condition for the RE estimator to yield consistent estimates is the following:

E(↵i + "it|xit, dit = 1) = E(↵i|xit, dit = 1) + E("it|xit, dit = 1) = 0 8t. (7)

As a general rule, RE estimates on the selected subsample are inconsistent if selection is non-

random, and/or if there is correlated individual heterogeneity.
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Estimation in time di↵erences: Again, if xit is strictly exogenous, a su�cient condition for

the di↵erenced estimator to be consistent is the following:

E("it � "it�s|xit, xis, dit = dis = 1) = 0 s < t. (8)

If condition (8) is satisfied, the di↵erenced estimator (also the within-groups estimator which

also wipes out the individual e↵ects) provide consistent estimates. Alternatively, if this condition is

violated consistent estimation requires considering the selection process. In this sense, Dustmann

and Rochina-Barrachina (2007) compare the methods proposed by Wooldridge (1995), Kyriazidou

(1999) and Rochina-Barrachina (1999) in the estimation of static females’ wage equations.

2.1.2 The AR(1) and dynamic cases

In the small T dynamic case, IV methods are in general necessary (as is well-known, when T

is su�ciently large, we can consistently estimate the parameters of the model using the within-

groups estimator, see Nickell, 1991). As pointed out above, we consider the following estimation

options: 2SLS-IV (AH: Anderson & Hsiao, 1982) and, more generally, GMM (AB: Arellano & Bond,

1991; System GMM: Arellano & Bover, 1995; Blundell & Bond, 1998). All of these estimators

require first di↵erencing the data (and using also the equations in levels in the case of the system

GMM estimator). They also use internal instruments lagged at least twice, which implies that

the selected sample is conditional on observing the outcome for at least three consecutive periods

(dit, dit�1, dit�2 = 1). Although the AH and AB estimators are two well-known methods, the

system GMM ones deserves further explanations, first, because it is not as common in empirical

applications and, second, to relate the four IV methods used.

Arellano and Bond (1991) propose a dynamic panel data estimator that generalizes the Anderson

and Hsiao (1981) estimator by using more orthogonality conditions that exist between the lagged

values of the dependent variable and the error component disturbances. Both estimators di↵erence

the model to eliminate the unobserved heterogeneity, see Baltagi (2021, pp.189-191) for details.

Arellano and Bover (1995) stack a system of equations, one averaged over time and hence a levels

equation, on top of a forward orthogonalized equation eliminating the individual error component

and generalize the Hausman and Taylor (1981) estimator to obtain an e�cient GMM estimator
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of a dynamic panel data model using more moments than the Arellano and Bond estimator, see

Baltagi (2021, pp.194-198) for details.

Blundell and Bond (1998) exploit an additional mild stationarity restriction on the initial con-

ditions to generate a system GMM estimator that uses more moment conditions than Arellano

and Bond (1991). Essentially, they use lagged levels of the dependent variable as instruments for

the equation in first di↵erences as in Arellano and Bond (1991). Additionally, the stationarity

restriction on the initial condition allows the use of lagged di↵erences of the dependent variable as

instruments for an equation in levels, see Baltagi (2021, pp. 201-203) for details.

For the AH and the AB to be consistent, we need the following orthogonality condition to hold:

E(�"ityit�2|dit = dit�1 = dit�2 = 1) = 0, (9)

which is stronger than the orthogonality condition imposed in the standard case. Note that

when this restriction holds, it also holds for t � 3 and backward lags. For the consistency of the

system GMM estimator, we need the following condition:

E[(↵i + "it)�yit�1|dit = dit�1 = dit�2 = 1)] = 0, (10)

which is also stronger than the orthogonality condition imposed in the standard case.

Arellano et al. (1999) proposed the estimation of sample selection models conditioning on

exogenous positive past outcomes for at least three consecutive previous periods and showed that

the degree of selection is significantly reduced in economic models with persistence.

2.2 Estimation under endogenous sample selection

In the presence of endogenous sample selection in the standard static case, researchers usually

proceed using the method developed by Wooldridge (1995). It is worth mentioning that his esti-

mator for static linear unobserved components panel data models allows correlation between the

unobserved component (FE) and observable explanatory variables, without imposing distributional

assumptions on the unobserved e↵ect. The idiosyncratic errors in the regression equation can have

serial dependence of unspecified form. Wooldridge’s (1995) estimator goes a step further than pre-

vious methods, which considered RE under the assumptions of normality and serial independence
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of the idiosyncratic errors in both the selection and regression equations, and the time-constant

unobserved e↵ects in the selection and regression equations. The latter are assumed to be nor-

mally distributed (see Verbeek and Nijman, 1992). First, one corrects the problem of endogenous

selection induced by the correlation of the errors in both equations, and, then, one estimates the

outcome equation. Since, contrary to Wooldridge (1995), we also propose dynamic models, we need

to distinguish between two cases:

A. When there is some feedback between the (time variant non-deterministic) covariates (when

the common covariates are deterministic or time-invariant there is no need to correct estimates

in first-di↵erences and, as we will see later on, little necessity to correct estimates in levels),

in the outcome and the selection equation. The need for sample selection correction varies

with the sampling condition and the correlation structure of the errors in both equations. We

consider two cases:

A1. Contemporaneous correlation: #0 6= 0 and #j = 0; j = 1, 2;

– Step 1. Following Wooldridge (1995), we estimate year-by-year probit models and

compute univariate correction terms (Heckman’s lambda).

– Step 2. Add the appropriate selection terms as additional regressor(s) to the relevant

outcome equation. In Appendix B we show that when the errors are not serially cor-

related, univariate corrections are su�cient regardless of the observability condition:

one observation in static level models (see equation (A12) in Appendix B), two and

three consecutive observations in, respectively, first-di↵erenced static models (see

Rochina-Barrachina, 1999) or dynamic models (equation (A9) in Appendix B). We

estimate the equation of interest including the appropriate correction(s) using one

of the methods described in Table 1.

For example, in the case of a pure AR(1) model, the sample has to be selected in

three consecutive periods to have a usable observation in the current period. Then,

the appropriate correction involves the current lambda in the equation in levels and

the first-di↵erenced lambda in the first-di↵erenced equation (see Jiménez-Mart́ın,

1999, 2006). Under contemporaneous correlation, standard software can be used

(see, for instance, Roodman, 2006). Corrected standard errors need to be computed
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anyway. This can be done by means of the delta method or bootstrapping.

We must also note that Rochina-Barrachina (1999), in the context of a static model,

proposed an estimator that relaxes some of the assumptions in the Wooldridge

(1995) method. Specifically, the estimator allows for an unknown conditional mean

of the individual e↵ects in the main equation. This allows the use of an alternative

set of identifying restrictions to overcome the selection problem. In particular,

the estimator imposes that the joint distribution of the time di↵erenced regression

equation error and the two selection equation errors, conditional upon the entire

vector of (strictly) exogenous variables, is normal.

A2. Cross serial correlation: #j 6= 0; j = 0, 1, 2;

– Step 1. When the correlation structure of the errors is complex, a more sophisticated

bivariate or trivariate correction is required, either in static models with endogenous

regressors or in dynamic models. Following Rochina-Barrachina (1999) and Jiménez-

Mart́ın et al. (2009), we propose estimating bivariate and trivariate probit models

of, respectively, the probability that dit = dit�1 = 1 and dit = dit�1 = dit�2 = 1 (see

Appendix B).

– Step 2. Under stationary correlation and exchangeability (Kiriadizou, 1997), the

first-di↵erenced equations require two correction terms obtained, under normality,

from the previous estimated trivariate probit model (equation (A8) in Appendix B).

Alternatively, the equation in levels requires also two correction terms but, in this

case, obtained from a bivariate probit (equation (A11) in Appendix B). Note that,

since the equations in first di↵erences and levels require di↵erent corrections, we

suggest either using the Stata gmm routine.

B. When there is no feedback between the outcome and the selection equations, i.e., when x?z

and x is not part of the selection equation. This is the case of the purely AR(1) model as

well as models of attrition or missing variables where the reason for selecting the sample is

correlated with the object of study but unrelated to other determinants of the model. These

assumptions are not going to be maintained in labor supply models, wage equations, etc. In

this context the following results hold:
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Result 1: Under endogenous selection and absence of feedback from the outcome equa-

tion to the selection equation it is feasible to show that the AH and the AB estimators

are both consistent. In fact, for the AB estimator

E[�✏ityit�k|dit, dit�1, dit�2 = 1] = 0 k > 1,

and, for the AH estimator

E[�✏ityit�2|dit, dit�1, dit�2 = 1] = 0.

Furthermore, the AH and the AB estimators are consistent (with the same asymptotic

distribution as the original AH and AB estimators) in the model with either exogenous,

predetermined or endogenous covariates.

An implication of Result 1 is that it applies to the case in which a deterministic or

time-invariant covariate x is included in the selection equation.

Result 2: Under the same conditions above (correlation of the time-variant and time-

invariant error components) the system GMM estimator is not consistent since

E[✏it�yit�1|dit, dit�1, dit�2 = 1] 6= 0.

However, our Monte Carlo results show that the bias is small, especially when the

individual heterogeneous components are not correlated. Moreover, in the model with

covariates, the system GMM estimator has a small bias under the same conditions,

regardless of the nature of the covariates.

Follow-up to result 2: To correct the bias of the system GMM estimator, we need to

correct for selection only in the levels equation. If the correlation between the time-

invariant error components is zero and there is no feedback between both equations, the

bias of the system GMM estimator is small (but not zero). So, when the AB estimator

does not work well (smallN , large autoregressive coe�cient), the system GMM estimator

is highly recommended.

Result 3: The previous results can be extended to static panel data models regardless of
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the nature of the covariates. This implies that, when there is no feedback between the

outcome and the selection equations (x?z and x is not part of the selection equation), we

can recover consistent estimates using either FE, FD or RE (GLS) methods (consistency

of the GLS estimator requires a preliminary step in order to account for the possibility

that cov(xi,↵i) 6= 0)).

Result 4: When x is not present in the selection equation but is not independent from

z it is still possible to avoid bias correction a la Heckman by accounting for the relation

between x and z, E(x|z) say, in the outcome equation.

In Table 1 we summarize all the cases considered and the suggested solutions. We distinguish

between four static and five dynamic models. As we show in the next section, when there are no

common covariates between both equations and they are independent, there is no need to correct

for sample selection for the static estimators and some of the dynamic ones (AH and AB). In case

they are not independent, a control function approach (based on the E(x|z)) can account for any

potential bias induced by the selection process. Alternatively, when at least a time-varying covari-

ate is included in both equations sample selection corrections (either univariate or multivariate,

depending on the serial cross-correlation of the errors) are required to get consistent estimates.

Table 1: Models considered under endogenous sample selection: Cases and solutions1

Model AR x in x x in Correction Estimation
param outcome endog selection needed methods

Static ⇢ = 0 Yes No No No FE, RE(GLS)2, FD
Static ⇢ = 0 Yes Yes No No FD-IV, FD-GMM
Static ⇢ = 0 Yes No Yes Yes FE, RE(GLS)2, FD
Static ⇢ = 0 Yes Yes Yes Yes FD-IV, FD-GMM
AR(1) |⇢| < 1 No — nr No FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes No No No FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes Yes No No FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes No Yes Yes FD-IV, FD-GMM
Dynamic |⇢| < 1 Yes Yes Yes Yes FD-IV, FD-GMM

Notes.

1. We assume x?z. When this assumption does not hold and x is not present in the selection equation we

will follow a control function approach to consider this correlation.

2. Consistency of the GLS estimator relies strongly on the assumption that cov(xi,↵i) = 0. When this

assumption does not hold we follow either Chamberlain (1984) or Mundlak (1978) approach to account for

the correlation between x and ↵ or ⌘ as well as the correlation of z and ⌘.
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3 Consistency under endogenous sample selection

In this section we analyze the consistency of potential estimators as a function of a key factor:

the presence of common time-varying covariates in the outcome and selection equations. We show

that many standard estimators are consistent regardless of the correlation between the errors in

the selection and the outcome equations when there are no common covariates between them. For

example, for dynamic models the AH and AB estimators are consistent when the outcome and

selection equations have no regressors in common, i.e., when all the regressors in the selection

equation are exclusion restrictions. The system GMM estimator is an exception and has a small

bias, mainly induced by the correlation between the time-invariant heterogeneous components in

the outcome and the selection equation.

3.1 Consistency in the pure autoregressive model

Let us start with a minor modification of the AR(1) model presented in equations (1) and (2):

y
⇤
it = ↵i + ⇢0y

⇤
it�1 + "it, (11)

dit = 1(⌘i + �0zit + uit > 0), (12)

↵i = ↵
0
i + ✓0⌘i, (13)

and

"it = "
0
it + #0uit. (14)

The exogenous random variables zit, ↵0
i
, "0

it
, ⌘i, and uit are assumed to be i.i.d. and independent

of each other with finite second moments. We assume that E("0
it
) = E(uit) = 0. The observed data

is the set of y⇤
it
for which dit = 1.

Let�"it(⇢) = �y
⇤
it
�⇢�y

⇤
it�1. The natural moment conditions to consider would be E(y⇤

is
�"it(⇢))

= 0 for s + 2  t i↵ ⇢ = ⇢0. However, because y
⇤
it
is not always observed, the moment cannot be

estimated. The next best option is to show E(sisty⇤is�"it(⇢)) = 0 i↵ ⇢ = ⇢0, where sist is defined as

sist = ditdit�1dit�2dis. (15)
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Thus, sist = 1 if and only if all y⇤
is

and �"it(⇢) are observed.

E(sisty
⇤
is�"it(⇢)) = E(sisty

⇤
is(�y

⇤
it � ⇢�y

⇤
it�1)) (16)

= E(sisty
⇤
is(⇢0�y

⇤
it�1 +�"it � ⇢�y

⇤
it�1))

= (⇢0 � ⇢)E(sisty
⇤
is�y

⇤
it�1) + E(sisty

⇤
is�"it).

Identification requires that E(sisty⇤is�y
⇤
it�1) 6= 0 and E(sisty⇤is�"it) = 0. A classic su�cient

condition that ensures exogeneity is E(�"it|sist, y⇤is) = 0. However, it is not feasible to verify this

condition in our context. A simpler su�cient condition derived in the Appendix A is the following

E(ditdit�1dit�2�"it|dis, y⇤is) = 0. (17)

To see that this condition holds, substitute into �"it and write

E(ditdit�1dit�2�"it|dis, y⇤is) = E(ditdit�1dit�2(�"
0
it + #0�uit)|dis, y⇤is)

= E(ditdit�1dit�2#0(uit � uit�1)|dis, y⇤is). (18)

because �"0
it
is independent of dit, dit�1, dit�2, dis, and y

⇤
is

and therefore it is independent of

dit, dit�1, and dit�2, conditional on dis and y
⇤
is
. Now, conditioning additionally on ⌘i and dit�2,

E(ditdit�1dit�2�"it|dis, y⇤is) = #0E(dit�2E(ditdit�1(uit � uit�1)|⌘i, dit�2, dis, y
⇤
is)|dis, y⇤is). (19)

Notice that ditdit�1(uit�uit�1) is independent of dit�2, dis, and y
⇤
is
conditional on ⌘i. Therefore,

E(ditdit�1(uit � uit�1)|⌘i, dit�2, dis, y
⇤
is
) = E(ditdit�1(uit � uit�1)|⌘i). It su�ces then to show that

E(ditdit�1(uit � uit�1)|⌘i) = 0. Using conditional independence again, we obtain

E (ditdit�1(uit � uit�1)|⌘i) = E (ditdit�1uit|⌘i)� E (ditdit�1uit�1|⌘i)

= E (dituit|⌘i)E (dit�1|⌘i)� E (dit|⌘i)E (dit�1uit�1|⌘i) = 0, (20)
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because E (dituit|⌘i) = E (dit�1uit�1|⌘i) and E (dit|⌘i) = E (dit�1|⌘i). We have proven that

E(sisty
⇤
is�"it(⇢)) = (⇢0 � ⇢)E

�
sisty

⇤
is�y

⇤
it�1

�
. (21)

Thus, we will have identification if and only if E
�
sisty

⇤
is
�y

⇤
it�1

�
6= 0, that is, the same identifi-

cation restriction as in the AB setting, except that here attention is restricted to observed data.

In sharp contrast with the case of the AB estimator, the system GMM estimator is not consis-

tent. To illustrate this, we consider the unfeasible level moment conditions E((y⇤
it
�⇢0y⇤it�1)�y

⇤
it�1) =

0. The feasible analogue is E(ditdit�1dit�2(y⇤it � ⇢0y
⇤
it�1)�y

⇤
it�1) and we cannot guarantee that the

expected value conditional on dit = dit�1 = dit�2 = 1 equals 0. This condition implies that in the

first stage equations ⌘i + �0zit + uit > 0, ⌘i + �0zit�1 + uit�1 > 0 and ⌘i + �0zit�2 + uit�2 > 0. This

implies that ⌘i and uit, uit�1, uit�2, and, therefore, ↵i and "it, "it�1, "it�2 are correlated.

Since dit are discrete 0-1 variables, the events {dit = 1, dit�1 = 1, dit�2 = 1} and {ditdit�1dit�2 =

1} are equivalent, and we have:

0 = E[(y⇤
it
� ⇢0y

⇤
it�1)�y

⇤
it�1] = E[E[(y⇤

it
� ⇢0y

⇤
it�1)�y

⇤
it�1 | ditdit�1dit�2] = E[(y⇤

it
� ⇢0y

⇤
it�1)�y

⇤
it�1 |

ditdit�1dit�2 = 1]P{ditdit�1dit�2 = 1}+ E[(y⇤
it
�⇢0y⇤it�1)�y

⇤
it�1 | ditdit�1dit�2 = 0]P{ditdit�1dit�2 =

0}.

So, the expectation takes value 0 through a weighted combination of E[(y⇤
it
� ⇢0y

⇤
it�1)�y

⇤
it�1 |

ditdit�1dit�2 = 1] and E[(y⇤
it
� ⇢0y

⇤
it�1)�y

⇤
it�1 | ditdit�1dit�2 = 0],

with probabilities P{ditdit�1dit�2 = 1} and P{ditdit�1dit�2 = 0} as weights.

Although the weighted combination is 0, we cannot ensure that any of its components is 0, so we

cannot provide a bound for the bias of the estimator.

Our Monte Carlo experiments show that this is generally not equal to zero. However, these

simulation exercises also show that E(ditdit�1dit�2(y⇤it � ⇢0y
⇤
it�1)�y

⇤
it�1) is, for all reasonable com-

bination of the parameters of the model, very small and so is the induced bias (see Table C1 for

an illustration).

The previous results for the AB estimator in the pure autorregressive model provide validity

to the orthogonality restrictions of the first di↵erenced equations, E(�"ityit�s/zi, dit = dit�1 =

dit�2 = 1) = 0; for s � 2. If we test the orthogonality restrictions of the level equations E((↵i +

"it)�yit�1/zit, dit = dit�1 = dit�2 = 1) = 0, we have a standard Hansen/Sargan (see Sargan, 1988)
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to check for sample selection.

3.2 Consistency in the dynamic model with covariates when � = 0

3.2.1 An exogenous covariate

We extend the previous AR(1) model to a model with a single exogenous covariate not included in

the selection equation. The result can be straightforwardly generalised to many covariates.

y
⇤
it = ↵i + ⇢0y

⇤
it�1 + �

0
0x

⇤
it + "it. (22)

The exogenous random variables x⇤
it
, zit, ↵0

i
, "0

it
, ⌘i, and uit are assumed to be i.i.d. and inde-

pendent of each other with finite second moments. As before, we assume that E("0
it
) = E(uit) = 0.

The observed data is the set of y⇤
it
and x

⇤
it
for which dit = 1.

Now, define �"it(⇢,�) = �y
⇤
it
� ⇢�y

⇤
it�1 � �

0�x
⇤
it
and write

E(sisty
⇤
is�"it(⇢,�)) = (⇢0 � ⇢)E(sisty

⇤
is�y

⇤
it�1) + (�0 � �)0E(sisty

⇤
is�x

⇤
it) + E(sisty

⇤
is�"it), (23)

and

E(sivtx
⇤
iv�"it(⇢,�)) = (⇢0 � ⇢)E(sivtx

⇤
iv�y

⇤
it�1) + (�0 � �)0E(sivtx

⇤
iv�x

⇤
it) + E(sivtx

⇤
is�"it). (24)

It is clear that identification requires that for some t and some v, the matrix

2

64
E(sisty⇤is�y

⇤
it�1) E(sisty⇤is�x

⇤
it
),

E(sivtx⇤iv�y
⇤
it�1) E(sivtx⇤iv�x

⇤
it
).

3

75

is non-singular.

We have already shown that E(sisty⇤is�"it) = 0. It remains to show that E(sivtx⇤iv�"it) = 0.

Now,
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E(sivtx
⇤
iv�"it) = E(ditdit�1dit�2divx

⇤
iv(�"

0
it + #0�uit))

= E(ditdit�1dit�2divx
⇤
iv#0�uit)

= E(dit�2divx
⇤
iv#0E(ditdit�1�uit|⌘i, dit�2, div, x

⇤
iv))

= E(dit�2disx
⇤
iv#0E(ditdit�1�uit|⌘i))

= 0. (25)

The first equality follows from the independence of "0 from all other variables. The second

equality is obtained by conditioning on predetermined variables. The third equality follows from the

conditional independence of ditdit�1�uit from (dit�2, dis, xis) conditional on ⌘i. The final equality

has already been established above.

3.2.2 A predetermined covariate

Now, suppose that x⇤ is predetermined so that x⇤
it
is independent of "0

it+1, "
0
it+2, . . ., uit+1, uit+2, . . .,

and zit+1, zit+2, . . . but not necessarily independent of contemporaneous or past values of these

variables. Then, exogeneity may still be satisfied if v  t� 2. If we can further assume that xiv is

independent of "iv, uiv, and ziv, then exogeneity will be satisfied with v = t� 1 as well.

3.2.3 An endogenous covariate

Finally, suppose x
⇤ is endogenous and we have at our disposal a vector of instruments ⇠. Then, we

may use the following moment conditions

E(sisty
⇤
is�"it(⇢,�)) = (⇢0 � ⇢)E(sisty

⇤
is�y

⇤
it�1) + (�0 � �)0E(sisty

⇤
is�x

⇤
it) + E(sisty

⇤
is�"it), (26)

and

E(sit⇠i�"it(⇢,�)) = (⇢0 � ⇢)E(sit⇠i�y
⇤
it�1) + (�0 � �)0E(sit⇠i�x

⇤
it) + E(sit⇠i�"it). (27)

where sit = ditdit�1dit�2. Thus, we need
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2

64
E(sisty⇤is�y

⇤
it�1) E(sisty⇤is�x

⇤
it
),

E(sivtx⇤iv�y
⇤
it�1) E(sivtx⇤iv�x

⇤
it
).

3

75

to be non-singular, and we need E(sisty⇤is�"it) = 0 and E(sit⇠i�"it) = 0.

3.3 Consistency in the static model

All the aforementioned results hold when ⇢ = 0 and x?z. In particular when x is exogenous, there

is no need to use an IV strategy and either the FE, FD or RE (GLS) estimators are consistent

provided cov(↵i, xit) = 0. The proofs for the FE and FD estimators are straightforward, but we

need to justify it for the RE estimator. Estimation of the uncorrected RE is carried out in the

following selected sample:

y
⇤
it = ↵i + �xit + "it if dit = 1, (28)

where, under endogenous selection, E(↵i+"it|dit = 1) = 0, provided that x?z, x is independent

of any transformation of z, in particular �(z). So, omission of the sample selection correction term

does not a↵ect the consistency of the estimate of �, a result which also applies to cross-sectional

analysis.

In this static model we consider the extension in which x is not present in the selection equation

but x 6? z. The uncorrected estimators are still consistent provided we control for the relationship

between x and, say,  , the covariates in z related to x. So, let us consider the following control

function approach similar to Olsen’s (1980) solution for sample selection in static models.

Consider a vector of covariates  2 z such that cov(x, ) 6= 0. Then, under standard

assumptions, adding E(x| ) [or more generally E(x|z)] to the outcome equation corrects the

bias. So, for the case of the static model estimated in levels, we adjust equation (28) as

follows:

yit = ↵i + �
0
xit + �E(xit|zit) +mit if dit = 1,
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where mit = "it + �E(xit|zit).

A simple test of the coe�cient of E(x|z), �, evaluates the necessity of the correction.

This result can be applied to all models in which the covariates in both equations are distinct

but not independent.

3.4 Consistency in models with covariates and � 6= 0

When at least one covariate is included in both the outcome and the selection equations, the

uncorrected estimator is biased in the presence of endogenous sample selection. As suggested

by Wooldridge (1995), bias correction induced by endogenous sample selection implies adding

univariate selection terms if the sample is conditional on only one observation.

Result: Under the set of assumptions B1 to B3 for the first di↵erenced equations and B1 to

B3’ for the level equations (see Appendix B), Wooldridge’s strategy can be extended to samples

conditional on two observations (first-di↵erenced models) and even to samples conditional on three

consecutive observations (dynamic models) if the correlation structure is stationary and the time-

variant errors are only contemporaneously correlated.

Alternatively, when these conditions fail to hold (also shown in Appendix B), we have to add

bivariate corrections obtained from a bivariate probit model (first-di↵erenced in static models and

level equations in dynamic models) or from a trivariate probit model (first-di↵erenced in dynamic

models).

3.4.1 The correction procedure

We summarize the correction procedures in two steps (see Appendix B for details):

Step 1. Estimation of the selection equation

(i) Errors contemporaneously correlated only under stationary correlation. Un-

der the assumption of normality of the errors in the selection equation, we estimate

year-by-year probit models following the Mundlak/Chamberlain/Wooldridge approach

and compute univariate correction terms. When x is fully exogenous, the specification

includes the covariates z and x. We can solve any problem of correlation between these
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covariates and the heterogeneity component by following either Mundlak or Chamber-

lain strategy, basically adding a correction for such correlation namely g(zi, xi). Alter-

natively, when x is endogenous we replace x with current and lagged values of z.

(ii) Serially cross-correlated errors. We estimate bivariate probit models to correct

equations in levels and first-di↵erences for static models, or trivariate probit models

to correct dynamic models. The order of the appropriate correction needed increases

accordingly in AR(p) models (see Appendix B for details).

Important result: A follow up from cases where there is no need to correct is the fact

that omission of any regressor in the selection equation,  2 z, such that  ?x, does not

a↵ect the consistency of the corrected estimates.

Step 2. Estimation of the outcome equation

(i) Errors are only contemporaneously correlated. In this case, assuming normality,

all the estimators considered in this paper (FE, FD, RE, for the static model, and AH,

AB, system GMM for the dynamic model) require corrections derived after adjusting

univariate year-by-year probits. In the RE strategy and level equations of the system

GMM estimator the corrections are introduced in levels. In first-di↵erenced models, the

corrections are introduced in first-di↵erences. Finally, for the FE estimator, the correc-

tion is introduced using the within-transformation. For example, under the assumption

that xit ? ⌘i, for level and first-di↵erences equations in the dynamic case we have (see

Appendix B for details and notation):

yit = ⇢yit�1 + xit� + �� (Hit) + eit. (29)

�yit = ⇢�yit�1 +�xit + �(� (Hit)� � (Hit�1)) +�eit, (30)

where Hit = zit� + �xit + z̄i✓ and eit = "it + � (Hit) .

(ii) Serially cross-correlated errors under stationary correlation. As described in

Appendix B, in static models estimated by GLS (RE) we only need to add a single

correction; in static models estimated by FD we need to add two correction terms ob-
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tained from a bivariate probit (evaluating the expectation of the first-di↵erenced error

conditional on two errors of the selection equation). In dynamic models estimated using

the AH or the AB estimator, we need to add at least two correction terms obtained from

a trivariate probit (evaluating the expectation of the first-di↵erenced error conditional

on the errors of the selection equation in the current, lagged and lagged twice periods).

Finally, when obtaining the system GMM estimator we combine the solution for the AB

estimator (trivariate corrections) with the solution o↵ered for the level model estimated

in first di↵erences. This means that the correction to the level and first di↵erenced

equations is not the same, so the estimator cannot be obtained using standard software

(as xtabond2 in Stata, for instance).

We provide the corrections needed for the system GMM estimation as an example. We

note that when x is endogenous the corrections need to be instrumented using the same

lag order used to instrument the covariate (details are provided in Appendix B).

yit = ⇢yit�1 + xit� + w̄i + �0� (Hit, Hit�1, %t,t�1) + ��1� (Hit�1, Hit, %t,t�1) + eit. (31)

�yit = ⇢�yit�1 +�xit + �̄(� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

�� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2))

+�̄�2� (Hit�2, Hit�1, Hit, %t,t�1, %t,t�2, %t�1,t�2) +�eit,

(32)

where %t,t�s denotes the correlation between errors in period t and t�s and the functions

involving H and % (the selection corrections) are defined in Appendix B.

In all cases, it is necessary to compute corrected standard errors. This can be done by means

of the delta method or bootstrapping. Finally, one can use a standard t-test for the significance of

the correction term, or a Wald test in case of multiple lambda’s (Wooldridge, 1995).

3.4.2 Construction of the corrections

For a typical static selection model, as described in equation (2), and assuming, for simplicity,

normality of ⌘i + uit = ⌫it, we estimate a probit for each period and then compute the well-known
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selection term �̂it(wit�̂). When we allow correlation between wit (w stands for the combination of

z and x) and ⌘i, we can rely on Mundlak (1978) and assume, for instance, ⌘i = w̃i', where w̃i is

the vector of individual means of wit, and we, again, can estimate a probit for each period and

compute �̃it(zit�̃ + w̃i'̃), which is then introduced in the second step as before.

In the case of a dynamic selection equation, the lagged observed regressor is correlated with

the random e↵ect by construction. If this is the case, we need to rely either on Mundlak’s proposal

or on a less restrictive one such as that of Chamberlain (1984). In the latter case, we can assume

⌘i = ⇡1wi1 + ⇡2wi2 + ...+ ⇡TwiT and recover the corresponding selection terms. However, strictly

speaking, to recover the structural parameters of the selection equation, we should estimate a probit

model for each year based on a reduced form, where d⇤
it
is a function of all exogenous variables (i.e.,

z) and we predict the index d̂
⇤
it
. Then, in a second stage, we estimate the structural parameters

by within-groups, Minimum Distance or GMM and compute the correction terms based on these

two-stage coe�cients (see Bover and Arellano, 1997, or Labeaga, 1999). However, to keep the

exercise as simple as possible, we compute the selection terms using reduced-form estimates for

each period.

The previous univariate corrections do not work if the errors ✏it, ⌫it, ⌫it�1, ⌫it�2 are jointly nor-

mal. In this case, we can estimate bivariate or trivariate probits in order to construct the bivariate

and trivariate corrections. In Appendix B we provide additional details as well as semiparametric

estimates of the correction that can overcome the failure of the normality assumption (see also

Rochina-Barrachina, 1999, Gayle and Viauroux, 2007 and Jiménez-Mart́ın et al., 2009).

4 Monte Carlo experiments

For the Monte Carlo experiment, we consider the following data-generating processes. First, we

assume the following model for the selection equation:

d
⇤
it = a� zit � �xit � ⌘i � uit, (33)

and

dit = 1[d⇤it > 0], (34)
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where a is set so that p(d⇤
it
> 0) = 0.85 and zit ⇠ N(0,�z) with �z = 1. Note that when � = 0,

x is not present in the selection equation. Second, the outcome of interest is generated as follows:

y
⇤
it = (2 + �xit + ↵i + "it)/(1� ⇢) if t = 1, (35)

y
⇤
it = 2 + ⇢y

⇤
it�1 + �xit + ↵i + "it if t = 2, ..., T, (36)

and

yit = y
⇤
it if dit = 1. (37)

We let ⇢ vary between 0 (static model), 0.25, 0.50 and 0.75. We generate all variables for T = 1

to T = 20 and discard the first 13 observations to minimize the e↵ects of the initial conditions. The

results remain unchanged if we use these extra 13 observations and, thus, start the observed sample

with an initial condition for each individual in the sample. We consider the following process for x:

xit = (0.5 + }it + ↵
x

i + "
x

it + 1↵i + 2"it))/0.5 if t = 1, (38)

and

xit = 0.5 + 0.5xit�1 + }it + ↵
x

i + "
x

it + 1↵i + 2"it) if t > 1. (39)

and we let 2 vary between 2 = 0, that is x is fully exogenous, and  = 0.5, which implies x is

either endogenous or predetermined (in which case "it is replaced by "it�1). For ease of exposition,

we assumed that 1 = 0 except when estimating the static level equation by GLS, where we also

consider the case 1 = 0.5. We further assume that cov(xi, ⌘i) = 0 and cov(zi, ⌘i) = 0. Removing

these assumption (that only a↵ect level-based estimates) does not a↵ect any of the relevant results

in the paper. Simulations removing these assumptions are available for the static model case.

Finally, we assume the following structure for z, } as well as the errors:
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}it ⇠ N(0,�}) with �} = 1, (40)

zit ⇠ N(0,�z) with �z = 1, (41)

⌘i ⇠ N(0,�⌘) with �⌘ = 1, (42)

uit ⇠ N(0,�u) with �u = 1, (43)

↵i = ↵
0
i + 0.5⌘i,↵

0
i ⇠ N(0,�↵0) with �↵0 = 1, (44)

"it = "
0
it + #0uit + #1uit�1 + #2uit�2, "

0
it ⇠ N(0,�"0) with �"0 = 1, (45)

↵
x

i ⇠ N(0,�↵x) with �↵x = 1, (46)

and

"
x

it ⇠ N(0,�"x) with �"x = 1, (47)

where, in the case A1 of contemporaneous correlation, we set #0 = 0.5;#1 = #2 = 0. These

assumptions imply that corr("it, uit) = corr(↵i, ⌘i) = 0.5/
p
1 + 0.52 = 0.447. Alternatively, in the

case of serially cross-correlated errors we set # = 0.5;#1 = 0.5/2;#2 = �0.5/3.

4.1 Description of the experiments

For each experiment, we set the initial (before selection) sample size to N = 500 or N = 5000,

and for each i, we draw up to 20 time series observations, from which the initial 13 are discarded.

Once selection is applied, the unbalanced panels are formed. In dynamic models we need at least

three consecutive observations of the same regime to form an observation of the selected panel.

This implies that a large fraction of the observations do not contribute to the identification of

the parameters, even with a small degree of sample selection. For example, a 15 per cent of initial

selection implies loosing around 1/3 of the observations. In static models with exogenous regressors

this loss is not important. For each combination of the parameters we perform 500 replications.

Under the assumption of contemporaneous correlated errors, we simulate the following five

combinations of the parameters of interest, linked to the cases already described in Table 1:

(i) Static model with an exogenous x (with and without correlation with z) not present in the

selection equation: ⇢ = 0, � = 1 � = 0
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(ii) Static model with an exogenous x also present in the selection equation: ⇢ = 0, � = � = 1

(iii) Purely AR(1) model: ⇢ = 0.25, 0.50, 0.75, � = � = 0

(iv) Dynamic model with an endogenous covariate either present or not in the selection equation

and contemporaneously correlated time varying errors : ⇢ = 0.25; ⇢ = 0.75, � = 1, � = 0 or

� = 1, (cov("it, uis) 6= 0; s < t)

(v) Dynamic model with an exogenous covariate either present or not in the selection equation

and serially cross-correlated time varying errors : ⇢ = 0.25; ⇢ = 0.75, � = 1, � = 0 or � = 1,

cov("it, uis 6= 0; s  t)

In each case, we evaluate the performance of the appropriate estimators as described in Table

1. In (i) and (ii) we evaluate the FE, FD and RE estimators. In (iii) to (v) we evaluate two GMM

estimators: AB and system GMM. Selection of the instruments is done as follows: we use lags

from t � 2 backwards for first-di↵erenced equations, although we also evaluate the performance

of the estimates with a restricted set of instruments. We use the lagged first di↵erence of the

outcome as an additional instrument for the equation in levels as well as current values and lags

of the exogenous regressors. Although we are aware of the instrument proliferation issue analyzed

by Roodman (2009), it does not constitute a problem here given the reduced number of periods

(a maximum of 7) remaining for estimation, but we also use Roodman’s proposal to collapse the

number of instruments and we get very similar results.

4.2 Simulation results

Although we have simulated the five combinations previously considered, we are going to present

in this section only the most interesting results and we relegate the rest of results to Appendix C

for interested readers.

Simulations of static models (with an exogenous regressor) either with � = 0 and x?z, � 6= 0

and x?z or � = 0 and x 6? z, all of them under the assumption that the errors in both equations are

contemporaneously correlated are given in Table C2 in Appendix C. The results for � = 0 and x?z,

that is, in the case that correction is not needed, show that the average bias is almost zero, regardless

of the sample size. According to the RMSE criterion (and also confidence interval coverage rates
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(CICR)), since cov(x,↵i) = 0, the RE (either with or without correlated covariates) is our preferred

method, as expected. In the scenario � 6= 0 and x?z we show again that the RE estimator is the

preferred option, attending the RMSE criterion (CICR as well), provided cov(x,↵i) = 0, but the

uncorrected estimates are biased because of the presence of common variables in both equations.

However, the bias is small and we observe minor di↵erences when including correction terms a la

Wooldridge. The most interesting case (reported in panel C) in the static model arise when � = 0

and x 6? z and x is not included in the selection equation but is correlated with some variables

included in the vector z, say  . All the uncorrected estimates are biased, but instead of including

correction terms a la Heckman, we get almost complete bias reduction if we add to the outcome

equation an estimate of E(x| ), especially as the sample size grows.

In all simulations we report the empirical rejection frequency (ERF) of the sample selection test

corresponding to the corrected estimator under the null hypothesis that the selection term is not

necessary in the outcome equation. The ERF computes the percentage of rejection of the null in

500 replications. When there is endogenous selection (the null is false) and the initial N is small,

we reject both the FE and the RE estimators in 95% and 99.8% of the cases, respectively, while

the rejection rate of the FD estimator is smaller, 76.8%. When the sample is large (N is 5000)

we always reject the null. When the null is true (no endogenous selection) we reject the null in

between 3.8% (FE estimator and N large) and 7% (RE and N small) of the cases.

Another set of simulation results that deserves some explanation refer to the experiments with

a pure AR(1) small-T (max T = 7) panel data model. Up to 20 observations are simulated for each

case, the initial sample is obtained after discarding the first 13 observations for each individual.

See Table C3 in the appendix for simulation results using the initial value for each individual and

up to the next six observations of the process for each individual. We present in the main text,

see Table 2, simulations for di↵erent values of the autoregressive parameter under the assumption

that the errors are only contemporaneously correlated, estimating the AB and the system GMM

estimators under alternative assumptions about the selection process: (a) non-endogenous selection;

(b) endogenous selection without correction. The initial degree of sample selection is 15 per cent,

while the fraction of the sample lost is much larger (around 1/3 of the observations on average).

In the case of results without endogenous selection when the initial sample is small (N = 500) the

bias of the AB grows with the autoregressive parameter and becomes sizable from ⇢ = 0.75 (see
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Blundell and Bond (1998) and Hayawaka (2007) for analyses of the small sample bias of the AB and

system GMM estimators in linear models). As we increase the sample size (N = 5000), the average

bias of the AB estimator is reduced substantially and remains noticeable only for ⇢ > 0.75. The

system GMM estimator, which is consistent in this case, shows a very small bias for N = 500 (never

exceeding one per cent), and even smaller when N = 5000. Figure C1 in Appendix C confirms

these results with a sample size varying from N = 200 to N = 5000 in the absence of any sort of

selection (estimators labeled AB all and system all).

When endogenous sample selection is considered, we do not detect any significant change in the

biases for the uncorrected AB estimator for both selection models. Even when the initial sample

is small, the di↵erence between the cases with and without selection is practically undetectable

(although the smaller e↵ective sample size in the selected sample leads to higher RMSE). In contrast,

the system GMM estimator always shows a very small bias (between 1 per cent for ⇢ = 0.25 and

2.25 per cent for ⇢ = 0.75). In terms of RMSE and CICR, when the sample size is small (N = 500),

they favor the system estimator. However, when the sample size grows (N = 5000) the choice

under both criteria is reversed. In fact, with a much large sample size (N = 50000), the choice

under both criteria is much clearer.

Table 2: Average bias, RMSE and CICR in the purely AR(1) model. T=7 (after discarding the
first 13 generated observations); 500 replications

Estimates with the full sample Estimates with the selected sample
AB estimator system AB estimator system

⇢ av. bias RMSE CICR1 av. bias RMSE CICR av. bias RMSE CICR av. bias RMSE CICR

Panel A: N=500

0.25 -0.0057 0.0407 0.940 0.0005 0.0320 0.940 -0.0141 0.7660 0.954 -0.0034 0.7546 0.938
0.50 -0.0117 0.0560 0.944 0.0020 0.0368 0.936 -0.0317 0.5372 0.950 -0.0082 0.5108 0.944
0.75 -0.0425 0.1014 0.944 0.0084 0.0445 0.922 -0.1003 0.3742 0.870 -0.0091 0.2670 0.950

Panel B: N=5000

0.25 -0.0013 0.0119 0.952 -0.0003 0.0094 0.956 -0.0011 0.7513 0.946 -0.0037 0.7538 0.942
0.50 -0.0020 0.0163 0.946 -0.0001 0.0113 0.946 -0.0025 0.5031 0.940 -0.0095 0.5097 0.930
0.75 -0.0045 0.0290 0.938 0.0007 0.0137 0.946 -0.0086 0.2620 0.942 -0.0182 0.2689 0.880

1. CICR. 95 % Confidence intervals coverage rates, ie. CICR=
P

S 1(â � 1.96 ⇤ s.e.(â) < a < â + 1.96 ⇤ s.e.(â))/S, where S is the number of

simulations, a is the true parameter and â is the estimate of a in each simulation.

Some additional conclusions can be drawn when varying the sample size (Figure C1 in Appendix

C). When N = 200, the AB estimator shows sizable bias, which decreases as N increases. The
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system GMM estimator has always very small bias, however. For a given ⇢, it remains stable

(between 1 and 2.5 per cent) as N increases. We detect a threshold for N for each combination of

parameters, the average bias of the system GMM estimator being smaller below this threshold, and

larger above it. Therefore, we conclude that for moderate and small sample sizes (say, below the

range 1000-1500), the system GMM estimator is highly recommended because of the likely smaller

bias as well as smaller variance. Finally, when ↵i and ⌘i are not correlated, the bias of the system

GMM estimator tends to disappear (in comparison with the previous case) due to the fact that the

main source of bias is the correlation between the heterogeneous components of the outcome and

selection equations (Table C1 in the Appendix presents an analysis of the conditional expectation

of the key moment conditions of the model for di↵erent values of N , ⇢ and correlation between the

error components and the autoregressive parameter).

A large fraction of the inconsistency of the system estimator stems from the correlation between

the unobserved heterogeneous components in equations (1) and (2). Because many practitioners

are potentially interested in estimating these models using the system GMM estimator (especially

when the available sample size is small), one is tempted to use a simple procedure as the one

described for the static model following Olsen (1980). However, we should emphasize that methods

based on OLS in dynamic models can only be used as bias reduction approaches (see Han and

Lee, 2022) because as it is well-known it does not provide consistent estimates in linear probability

models as shown by Horrace and Oaxaca (2006).

In addition to the experiments above, we have carried out several Monte Carlo exercises with

cases departing from the basic assumptions of the purely AR(1) model we have simulated (with the

exception of the initial conditions case which is reported in Table C3 in Appendix C, these results

are not reported in the paper, but they are available upon request from the authors). The following

robust checks were performed: (a) In the first panel of Table C3 we present the same experiments

reported in Table 2 using the first seven realizations of the process for each individual (that is

without discarding the first 13 observations). We also used the Han and Phillips (2010) estimator,

which does not su↵er from weak/many instruments problem and works very well regardless of the

magnitude of AR(1) coe�cient to check the sensitivity of our results to alternative dynamic panel

data estimators that perform well when the stationarity assumption is not satisfied; (b) varying the

longitudinal dimension of the panel; (c) increasing the percentage of selection (from 0.15 to 0.25);
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(d) increasing the ratio of the variances to �
2
↵

⇢2"
= 2; (e) reducing the correlation between the errors

(the correlation parameter is reduced from 0.5 to 0.25); (f) and, finally, introducing non-stationary

time varying errors and correlation of the time-varying error components. In particular, we allow

the variance of the time-varying errors in (1) and (2) to vary over time by multiplying either "it

or uit by a time-varying Bernoulli process taking the values 1 or 2. We also allow the correlation

coe�cient between the time-varying errors in (1) and (2) to vary over time by multiplying # by

either 0.5, 1 or 2. All these sensitivity exercises confirm the main lessons drawn from the previous

analysis: the AB (or the AH) estimator is moderately biased when N is small or moderate, and

unbiased when N is large. These additional results by and large recommend the system GMM

estimator for the small N case and the AB for the large N case.

We performed additional Monte Carlo exercises for dynamic models with a covariate that is

either present or absent from the selection equation. This variable can be either exogenous, pre-

determined or endogenous. The key results obtained with an endogenous covariate and contempo-

raneously cross-correlated errors are shown in the first two columns (for ⇢ = 0.25 and ⇢ = 0.75) of

Panels A and B in Table 3. The small biases found for the AB estimator with N = 500 decrease

as sample size increases (they practically disappear when N = 5000). Note that the CICR criteria

also show that the AB is appropriate. The system GMM estimator, although not consistent, has

a very small bias regardless of the sample size. More importantly, the RMSE is smaller (and the

CICR is similar in magnitude) than for the AB, even when the sample is large (N = 5000). Note

however, that for very large samples (say, N = 50000, results not reported) the latter remark is

no longer true, since the bias of the AB estimator goes to zero while the bias of the system GMM

estimator does not. All these results also apply to the case where x is predetermined or exogenous.

We do not report them, but they are available upon request from the authors.

Next, we focus on a dynamic model with a covariate x present in both, the outcome and

the selection equations (simulation results for this case when x is not present in the selection

equation and is not correlated with z are available upon request). We present both uncorrected

and corrected estimates and cov("it, uis = 0); s < t. The uncorrected results are reported in the

third and fourth row and the corrected ones in the next two rows of Panels A and B in Table

3. The uncorrected estimates are biased regardless of the sample size, which shows the need to

correct for sample selection when there is at least a common covariate in both equations. Given
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Table 3: Average bias, RMSE and CIRC in the dynamic model with an endogenous covariate.
(cov("it, uis) 6= 0; s < t) T=7; 500 replications

AB SYSTEM
x in Corrected value ⇢ � � test ⇢ � � test

selection ⇢ av. bias RMSE CICR av. bias RMSE CICR ERF av. bias RMSE CICR av. bias RMSE CICR ERF

Panel A: N=500; endogenous selection

No No .25 -0.0109 0.0323 .94 0.0098 0.0393 0.914 -0.0060 0.0239 .944 0.0074 0.0327 0.934
No No .75 -0.0291 0.0591 .896 -0.0087 0.0505 0.956 -0.0051 0.0224 .952 0.0043 0.0305 0.926
Yes No .25 -0.0236 0.0376 .868 -0.0389 0.0575 0.876 -0.0102 0.0282 .926 -0.0368 0.0551 0.848
Yes No .75 -0.0334 0.0465 .824 -0.0551 0.0714 0.812 -0.0155 0.0357 .896 -0.0441 0.0610 0.824
Yes Yes1 .25 -0.0344 0.0451 .76 0.0235 0.0547 0.924 0.510 -0.0184 0.0321 .896 0.0129 0.0480 0.934 0.420
Yes Yes1 .75 -0.0387 0.0505 .768 -0.0003 0.0529 0.944 0.454 -0.0152 0.0331 .908 0.0044 0.0459 0.938 0.430

Panel A: N=500; exogenous selection

Yes Yes1 .25 -0.0165 0.0383 .906 0.0007 0.0470 0.950 0.038 0.0003 0.0309 .938 0.0009 0.0388 0.966 0.040
Yes Yes1 .75 -0.0245 0.0462 .894 -0.0132 0.0539 0.934 0.040 0.0135 0.0317 .91 0.0023 0.0392 0.960 0.052

Panel B: N=5000; endogenous selection

No No .25 -0.0011 0.0101 .936 0.0007 0.0109 0.962 -0.0020 0.0078 .934 0.0007 0.0093 0.954
No No .75 -0.0041 0.0165 .934 -0.0020 0.0148 0.964 -0.0047 0.0084 .908 -0.0014 0.0091 0.950
Yes No .25 -0.0128 0.0158 .666 -0.0553 0.0568 0.010 -0.0053 0.0100 .898 -0.0493 0.0508 0.022
Yes No .75 -0.0217 0.0239 .394 -0.0637 0.0651 0.004 -0.0179 0.0207 .564 -0.0562 0.0577 0.010
Yes Yes1 .25 -0.0192 0.0212 .4 -0.0076 0.0168 0.932 1.000 -0.0114 0.0140 .666 -0.0049 0.0144 0.942 1.000
Yes Yes1 .75 -0.0233 0.0253 .326 -0.0191 0.0248 0.772 1.000 -0.0148 0.0177 .642 -0.0100 0.0171 0.882 1.000

Panel B: N=5000; exogenous selection

Yes Yes1 .25 -0.0020 0.0108 .948 -0.0005 0.0139 0.958 0.058 -0.0003 0.0088 .944 -0.0008 0.0124 0.950 0.050
Yes Yes1 .75 -0.0028 0.0117 .954 -0.0023 0.0156 0.944 0.062 0.0018 0.0109 .95 -0.0004 0.0129 0.942 0.044

1. In Panels A and B the correction is obtained from a year by year probit with z and } as covariates.

that cov("it, uis = 0); s < t, for GMM-IV estimators, as we show in the Appendix B, this implies

adding univariate correction terms (a la Wooldrigde) to each equation (first di↵erenced corrections

in first di↵erenced equations for both the AB and system estimators, and level corrections in level

equations for the system estimator). Furthermore, since x is endogenous, these additional terms

need to be instrumented using backward lags. The e↵ects of sample correction on the magnitude

of the bias reduction is sizable, especially for �. Reductions in the RMSE are related to the sample

size. When the sample size is small the ERF is small (around 0.50), so the sample selection test

fails to clearly detect the presence of endogenous sample selection for both estimators. As the

sample size increases the performance of the test improves substantially with an ERF close to 1.

When the null is true the ERF has a range of 0.38 (highest) to 0.06 (lowest).

The simulation exercise reported in Table 4 explores a model with a single exogenous covariate

(x and z, respectively) in each equation and time-variant errors that are cross-serially correlated

cov("it, uis 6= 0); s  t. We want to stress the fact that when the two equations do not have

common covariates and they are independent, there is no need to correct the estimates, even when

the correlation structure is very complex. The results from this experiment are reported in the first

two rows of panels A and B in Table 4. In the third and fourth row of panels A and B we report

the case in which x is present in both equation and we do not correct for sample selection. The
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simulation results in Table 4 are in line with prior expectations since the bias of the uncorrected

estimator is sizable, especially for �, a feature shared by many of the results we have presented so

far, and it does not decrease as N grows.

Finally, in the remaining rows of panels A and B, we report corrected estimates. First think to

note is the fact in models were the time-variant errors are cross-serially correlated, i.e., cov("it, uis 6=

0); s  t, and they have an exogenous covariate present in both equations, we show in Appendix B

that the estimation of the model either by FD-GMM or system GMM requires multiple correction

terms. As shown in appendix B, we have to add two correction terms obtained from trivariate probit

models for the first-di↵erenced equations (present in both the AB and the system estimators) and

two additional terms obtained using bivariate probit models for the equation in levels. Moreover,

given the multiplicity of correction terms, we have to use a Wald test instead of a typical t-test to

check for sample selectivity.

When the null of endogenous selection is true (reported in rows fifth and sixth of panels A and

B) the bias of the corrected estimator is very small and decreases with N . Likewise, the CICR

statistic is found around 0.95 in a majority of cases, being the case of CIRC statistic for ⇢ in the

corrected system estimation a notable exception. On the other hand, the ERF of the correction

terms is moderate when N is small and increases to a value close to 1 as N grows. Alternatively,

when the null of endogenous selection is not true the ERF of the sample selection test stabilizes

between 0.06 (N = 500) and 0.04 (N = 5000) both for the AB and system GMM estimators.

Our final Monte Carlo exercise compares univariate tests of selection bias presented in Panels

A and B of Table 4 with multivariate ones. In the presence of sample selection but absence of

longitudinal cross-correlation between the outcome and the selection, i.e., cov("it, uit 6= 0) and

cov("it, uis = 0; s < t), we simulate the GMM estimators with two correction terms. Wooldridge-

like corrections are adequate (Heckman’s lamdba in first di↵erences and levels in the first-di↵erenced

and in the levels equations, respectively). In these cases, it is easy to show that the coe�cient of

the lagged twice trivariate correction term in the first-di↵erenced equations and the coe�cient of

the lagged bivariate lambda in the equation in levels should be zero. Then, a simple t-test for the

corrected AB estimator or a Wald test for the corrected system GMM estimator stand as checks

for the longitudinal correlation between the errors in the outcome and the selection equations. We

obtain the expected results as reported in Panel C of Table 4.
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Table 4: Average bias, RMSE and CICR in the dynamic model with an exogenous covariate.
cov("it, uis 6= 0; s  t) T=7; 500 replications

AB SYSTEM
x in Corrected value ⇢ � �’s test ⇢ � �’s test

selection ⇢ av. bias RMSE CICR av. bias RMSE CICR ERF av. bias RMSE CICR av. bias RMSE CICR ERF

Panel A: N=500; endogenous selection

No No .25 -0.0004 0.0225 0.952 -0.0032 0.0268 0.940 0.0174 0.0274 0.876 0.0068 0.0269 0.924
No No .75 -0.0132 0.0257 0.902 -0.0051 0.0277 0.926 0.0078 0.0198 0.910 0.0108 0.0276 0.918
Yes No .25 -0.0193 0.0345 0.900 -0.0402 0.0506 0.750 0.0023 0.0277 0.946 -0.0316 0.0442 0.824
Yes No .75 -0.0266 0.0377 0.824 -0.0447 0.0545 0.714 -0.0089 0.0257 0.912 -0.0354 0.0475 0.800
Yes Yes .25 -0.0047 0.0412 0.940 -0.0020 0.0450 0.938 0.322 0.0046 0.0380 0.946 -0.0035 0.0436 0.962 0.170
Yes Yes .75 -0.0217 0.0474 0.880 -0.0109 0.0477 0.946 0.312 -0.0175 0.0315 0.898 -0.0094 0.0442 0.966 0.154

Panel A: N=500; exogenous selection

Yes Yes .25 -0.0112 0.0387 0.922 -0.0012 0.0398 0.952 0.062 0.0002 0.0335 0.940 -0.0003 0.0378 0.962 0.070
Yes Yes .25 -0.0124 0.0384 0.920 -0.0043 0.0421 0.948 0.070 0.0052 0.0225 0.932 0.0018 0.0390 0.958 0.076

Panel B: N=5000; endogenous selection

No No .25 0.0061 0.0094 0.852 -0.0015 0.0075 0.960 0.0169 0.0182 0.264 0.0065 0.0096 0.876
No No .75 -0.0050 0.0086 0.864 -0.0019 0.0077 0.950 0.0039 0.0073 0.868 0.0095 0.0118 0.754
Yes No .25 -0.0098 0.0129 0.784 -0.0386 0.0395 0.016 0.0024 0.0084 0.940 -0.0325 0.0336 0.044
Yes No .75 -0.0151 0.0171 0.504 -0.0401 0.0411 0.012 -0.0158 0.0173 0.374 -0.0386 0.0396 0.018
Yes Yes .25 0.0074 0.0137 0.918 -0.0011 0.0134 0.966 0.998 0.0004 0.0106 0.940 -0.0076 0.0153 0.912 0.962
Yes Yes .75 -0.0043 0.0130 0.924 -0.0044 0.0144 0.940 0.998 -0.0259 0.0269 0.068 -0.0131 0.0185 0.826 0.954

Panel B: N=5000; exogenous selection

Yes Yes .252 -0.0020 0.0104 0.956 0.0003 0.0113 0.958 0.048 -0.0010 0.0092 0.966 0.0003 0.0113 0.942 0.044
Yes Yes .752 -0.0021 0.0103 0.954 -0.0003 0.0118 0.956 0.042 0.0002 0.0062 0.956 0.0003 0.0115 0.950 0.040

Testing univariate corrections vs multiple corrections

AB SYSTEM
x in Corrected value ⇢ � xtra�’s test ⇢ � xtra�’s test

selection ⇢ av. bias RMSE CICR av. bias RMSE CICR ERF av. bias RMSE CICR av. bias RMSE CICR ERF

Panel C1: N=500; endogenous selection but cov("it, uis = 0; s < t)

Yes Yes .25 -0.0147 0.0433 0.916 -0.0017 0.0438 0.946 0.306 -0.0025 0.0374 0.944 -0.0010 0.0418 0.952 0.090
Yes Yes .75 -0.0195 0.0452 0.896 -0.0082 0.0468 0.934 0.318 0.0018 0.0253 0.946 -0.0014 0.0422 0.956 0.086

Panel C2: N=5000; endogenous selection but cov("it, uis = 0; s < t)

Yes Yes .25 -0.0030 0.0115 0.954 -0.0007 0.0132 0.954 0.990 -0.0054 0.0113 0.920 -0.0022 0.0132 0.952 0.048
Yes Yes .75 -0.0036 0.0122 0.930 -0.0015 0.0136 0.948 0.988 -0.0053 0.0090 0.888 -0.0032 0.0134 0.948 0.038

1: In Panels A to C the correction is obtained from trivariate probits (for FD equations) and bivariate probits (for

level equations) with z, z(�1) and z(�2) as covariates (in the trivariate case) or z, z(�1) in the bivariate one.

5 Empirical applications

This section presents two applications of the proposed methods. The first uses well-known data

from the Panel Study of Income Dynamics (PSID) to estimate log hourly earnings equations of US

females. This dataset has been employed in several empirical papers with di↵erent purposes, but

we use it to compare our results to alternative methods for selection models proposed by Semykina

and Wooldridge (SW). The second uses consumption data from the Spanish Continuous Family

Expenditure Survey (ECPF from now on) to adjust myopic models of tobacco consumption. This

is the same dataset used by Jones and Labeaga (2003). They were worried about the censoring

nature of the observations and how to handle it in the framework of a rational addiction model of

tobacco consumption (see Becker and Murphy, 1988). Our objective here is to estimate a myopic

model of consumption trying to mimic our autoregressive proposal.
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5.1 Estimating female earnings equations

In this first application, we employ the same data used in SW, which were also used by Lai and

Tsai (2018) (we compare our results with those presented by SW, but, unfortunately, we cannot

compare with Lai and Tsay, 2018, because they estimated a static sample selection model). The

data consists of a panel taken from the PSID covering the period 1980-1992, and we use the same

selection rules (see Section 6 in SW). Since we discuss pure autoregressive models in the paper,

we estimate it on this data and we present the results in Table C4 of Appendix C. We extend the

model in Table 5 to include age, age squared and number of years of education. These variables

together with family size are included in the selection equation. In terms of the notation used in

(3), age, age squared and number of years of education form the vector xit and family size, which

is an exclusion restriction, is included in zit. In the case of family size, we include, as SW, zi1, zi2,

..., ziT . The first column in Table C4 presents first-di↵erenced IV estimates. Alternatively, column

(1) in Table 5 reports the SW estimator. Columns (2) and (3) in both tables report the AB and

system GMM results obtained in the selected sample when we do not correct the earnings equation.

Alternatively, in columns (4) and (5) of Table 5 and column (4) of Table C4 we present year-by-year

probit corrections under the assumption that the errors in both equations are contemporaneously

correlated.

The results for the pure autoregressive model are in line with our simulation results. The

coe�cient of the lagged dependent variable is estimated at 0.103 using the AB estimator and

0.18 using the system GMM estimator without correction. The di↵erence between them may be

attributable to the small sample size in the individual dimension. An example with large N (4739)

small T (6) can be found in Stewart (2007). He presents the results of the estimation of a dynamic

panel data model with unbalanced data using GMM methods (Table V). He finds that the AB and

system GMM results are close. Adding a year-by-year correction in either the equation in levels or

in all equations mildly increases the autoregressive parameter. Note, however, that the selection

terms are found to be jointly significant.

In Table 5, we consider the demographic variables to be strictly exogenous and we instrument

the lagged log of the dependent variable using all available instruments for both equations in

levels and first-di↵erences. The number of overidentifying restriction is 65 in the first-di↵erenced
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model and 76 in the system one. We conduct a sensitivity analysis for changes in the number of

instruments and obtain very robust results (Roodman, 2009). When we use up to the fourth lags

instead of all lags of the log hourly earnings, we obtain the following coe�cients: 0.178, 0.093, 0.020

and -0.0002 for the lagged dependent variable, education, age and age squared, respectively. They

compare with those in column 3 of Table 5. The autoregressive coe�cient (as well as its standard

error) remains very similar in the extended model in Table 5 compared to the pure autoregressive

case, and it is substantially lower than the one obtained by SW. Given that all first stage variables

are either time-invariant (education) or deterministic (age and age square) the uncorrected first

di↵erences estimates are consistent.

The proposed corrections of the system GMM estimator do not imply significant changes in

the key coe�cients of the model. All in all, our estimates of the coe�cient of the lag of log hourly

earnings are in line with the results obtained in a similar context by Arellano et al. (1999) using a

sample of females from the PSID for the 1970-76 period, and correcting for selectivity (see Table

A.3 in Arellano et al., 1999).

It is also important to note that our age and education estimates are very di↵erent from the

results in SW, but they are in line with those found in the previous literature using similar data.

The coe�cients of age, age squared and education have the expected signs, with a quadratic profile

of age showing increasing earnings at a decreasing rate. The return to education is more in line with

the average return to education for females for the US usually found in the literature (see Card,

1999 or Harmon et al., 2003). We do not detect endogenous selection due to the correlation between

the time-invariant heterogeneity components (column (5) and (6) in Table 5). The coe�cient of lag

of log hourly earnings in SW and in our application are di↵erent. Our guess is that the specification

estimated by SW does not control adequately for the correlation between the fixed e↵ects and the

lagged dependent variable (remember that they estimate the model by pooled NLS or GMM).

Our estimator controls for the fixed e↵ects by first di↵erencing. Moreover, the addition of the

equation in levels helps in identifying the e↵ects of education, age and age squared and improves

the e�ciency of the estimates of these coe�cients.

All in all, our opinion is that the similarities among the coe�cients with and without correcting

for selectivity are in line with the results of our Monte Carlo experiment. A lesson for practitioners

is that there is little necessity to correct for endogenous selection in situations similar to the one
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Table 5: Estimates for the dynamic log hourly earnings equation with covariates

(1) (2) (3) (4) (5)

Semykina No No year by year year by year

Wooldridge correction correction correction correction

first dif eq all equations

GMM AB system AB system

Lag log 0.5740*** 0.1047** 0.1850*** 0.1170*** 0.2189**
hourly earnings (0.0400) (0.0374) (0.0436) (0.0379) (0.0447)

Education 0.0290*** — 0.0949*** — 0.0931***
(0.004) (0.0084) (0.0085)

Age 0.0090*** 0.0070 0.0375*** 0.0269** 0.0228***
(0.004) (0.0127) (0.0113) (0.0128) (0.0126)

Age squared -0.0001*** -0.0001 -0.0004*** -0.0001 -0.0003***
(0.000) (0.0001) (0.0001) (0.0002) (0.0001)

Observations 5033 5033 5033 5033 5033

Joint significance 41.3 (10) – – 11.27 (11) 14.80 (11)
selection terms (0.000) (0.421) (0.192)

Notes. 1. N = 550; 2. GMM results obtained using the estimator by Semikyna and Wooldridge (2013); 3. Annual

dummies are included in all specifications; 4. *** significant at 1%; ** significant at 5%; * significant at 10%; 5. The

standard errors have been corrected following Windmeijer (2005); In columns (4) and (5), we also report corrected

standard errors following Terza (2016). 6. The test of significance of the selection terms is a Wald test. Degrees of

freedom and level of significance are in parentheses.

studied in this paper. SW’s proposal is suitable for balanced panels and after making very particular

assumptions about initial conditions. Although it is feasible to adapt SW’s proposal to the more

general unbalanced panel case, there are analytical as well as computational costs, which lead us

to suggest the simple methods we presented in this paper.

5.2 Estimating models of tobacco consumption

The previous application is done on a small sample size in the cross-section dimension of N = 550,

similar to the case with N = 500 in our Monte Carlo exercise. In this second application, we

use a much larger sample size with N = 2500 and larger than the threshold where the di↵erence

between the AB and system GMM estimates converges to zero (see Figure C1). In more detail,

we use the data in Jones and Labeaga (2003), who estimated rational addiction models of tobacco

consumption. We make use of the repeated observations on tobacco expenditure in the ECPF from

the third quarter of 1986 to the fourth of 1994. This is a rotating panel survey conducted by the
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Spanish Statistical O�ce. Each quarter 3,200 individuals were interviewed, with replacement at a

rate of 12.5 percent. Consequently, the maximum number of periods that an individual remains in

the survey is eight and as an initial sample we use the balanced panel. The original size is 48,800

observations N = 6100 and T = 8. We follow Jones and Labeaga (2003) in using sample separation

information to exclude those households who do not purchase tobacco in any of the eight observed

periods since it does not induce endogenous selection. It implies dropping non-smokers (N = 1957).

Those households who report zero and positive purchases may be a↵ected by selection reflecting

an intermittent sequence of quits and take-ups from smoking.

In this subsample Jones and Labeaga (2003) checked for some common pattern for the zeros in

the smoking households’ sample, but they did not find evidence either of corner solutions or clear

sequences of starters-quitters. In these circumstances, they assume that the models underlying the

zeros are type I Tobit specifications (i.e., zeros correspond to corner solutions). They estimated

reduced form Tobit models, assuming normality, and to reduce the influence of distributional

assumptions they adopted a semiparametric approach and estimated each of the T cross-section

equations using Powell’s (1986) Symmetrically Censored Least Squares (SCLS). SCLS is designed

to accommodate standard Tobit-type censoring. The final model with and without correction is

estimated with a sample of N = 4041 (NT = 22520), out of which 52 percent report eight positive

purchases (see Table I in Jones and Labeaga, 2003 for further details).

We do not try to compare our results with Jones and Labeaga (2003), but we only like to compare

the performance of our methods with a much larger sample size than in the previous application.

In this sense, we are only interested in myopic models where only the lag of consumption, the

price of tobacco, some time-varying demographics and time dummies enter the outcome equation

(attending theoretical reasons, the price of tobacco does not enter the selection equation and can

be used as an additional identification restriction). The results for the myopic model are presented

in Table 6 (this is similar to a pure autoregressive model in the sense that the price of tobacco is an

exogenous variable not included in the decision to start-quit smoking). The first column in Table

6 presents first-di↵erenced AB myopic estimates obtained using predictions under censoring as in

Jones and Labeaga (2003). It is important to note that the results of Jones and Labeaga (2003)

and the results in this paper are not directly comparable. Jones and Labeaga (2003) control for

non-smokers and they estimate a rational addiction model compared to our myopic behavior model
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that does not control for non-smokers.

The rest of the columns in the table report the same estimators reported in the results of our

first application. Columns (2) and (3) present AB and system GMM estimates obtained in the

selected sample, but when we do not correct the consumption equation. In columns (4) and (5) we

present AB and system GMM coe�cients using a year-by-year correction for the equations in first

di↵erences (AB) and for all equations (system GMM).

Table 6: Estimates of myopic models of tobacco consumption

(1) (2) (3) (4) (5)

Jones No No year by year year by year

Labeaga correction correction correction correction

first dif eq all equations

GMM AB system AB system

Lag real 0.2049*** 0.1010*** 0.1274*** 0.0874*** 0.0903***
tobacco consumption (0.0147) (0.0263) (0.0189) (0.0235) (0.0203)
Real price -1.0041*** -1.5900*** -0.8497*** -0.8828*** -0.6409***
of tobacco (0.0672) (0.3614) (0.2278) (0.3800) (0.2267)

Observations 22520 22520 22520 22520 22520

Joint significance – – – 39.88 (6) 183.61 (6)
selection terms (0.000) (0.000)

Notes. 1. N = 4104; 2. GMM results obtained in the sample of Jones and Labeaga (2003); 3. Quarter dummies are
included in all specifications; 4. *** significant at 1%; ** significant at 5%; * significant at 10%; 5. The standard
errors have been corrected following Windmeijer (2005); In columns (4) to (6), we also report corrected standard
errors following Terza (2016). The test of significance of the selection terms is a Wald test. Degrees of freedom and
level of significance are in parentheses.

As usual in myopic models, we instrument lagged consumption using previous lags of consump-

tion. However, qualitatively, the results for the autoregressive coe�cient appear to reproduce the

same characteristics found in the Monte Carlo exercises. We do not find big di↵erences between

the AB uncorrected and AB corrected for selection estimates. The interval of the mean plus /

minus two standard errors contains both estimates with very high confidence. The same result oc-

curs when comparing the system GMM uncorrected and corrected for selection coe�cients. These

results seem to suggest little need to correct the model, as suggested both by our theoretical and

simulation results.

Finally, all the tests detect strong selectivity, but again correction does not seem to a↵ect the
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estimate of the lag, see columns (2) to (5). In this sense, the estimate of the lag in the model using

the predicted latent variables in column (1) reports the highest di↵erence, as expected, since the

assumption is that zero purchases are due to censoring, i.e., they are corner solutions (see Jones

and Labeaga, 2003). When the sample size in the individual dimension is su�ciently large, the

AB and system GMM estimates are rather similar. This is true whether we correct the outcome

equation for sample selection or not. Again, this is in line with our Monte Carlo results.

6 Concluding remarks

This paper studied the bias and consistency of classical panel data estimators including FE, RE and

GMM estimators for both static and dynamic panel data models subject to potentially endogenous

sample selection. We show that a la Heckman sample selection corrections are only needed when

both equations have common covariates. In models without common covariates (and uncorrelated),

regardless of the severity and even the complexity of the selection process (either with contempo-

raneous correlation only or with serial cross-correlation), standard estimators for the static model

and the Arellano and Bond (1991) and the Anderson and Hsiao (1982) estimators for the dynamic

model are consistent. Alternatively, the system GMM estimator is moderately biased regardless of

the sample size. The bias is caused by the level orthogonality restrictions of the levels equations

only, thereby implying that to correct the estimator we only need to correct those equations and

not the equations in first di↵erences. In the case the source of the bias is the correlation between

the individual heterogeneous components in the outcome and selection equations, a simple control

approach can handle this bias correction.

Alternatively, when the outcome and the selection equation have common covariates, we show

the validity of simple corrections based on Wooldridge (1995), Rochina-Barrachina (1999) and

Jiménez-Mart́ın et al. (2009). When the errors in both equations are not serially cross-correlated

we extend the proposal of Wooldridge (1995) to more complex cases, such as static models esti-

mated in first di↵erences or dynamic models. Alternatively, when they are serially cross-correlated

(cov("it, uis 6= 0); s < t), we suggest using multivariate corrections.

We evaluate the finite sample performance of the classical panel data as well as GMM estimators

in a Monte Carlo exercise. The results of our experiments confirm the theoretical predictions under
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a variety of assumptions. Since sample size is crucial for the properties of the estimators and for the

magnitude of the bias, we illustrate the properties of the estimators in two empirical applications

di↵ering in the number of individuals observed each period. The first one (N = 550) estimating

female earnings equations using PSID data, and the second one (N = 2500) estimating myopic

tobacco consumption equations using Spanish data. Our empirical studies give results in line with

the results of the Monte Carlo study.

To conclude, as it is well known if the errors of the selection and outcome equations are not

correlated, sample selection is not needed even if the two equations have common covariates. More-

over, the presence of common covariates also appear as a key determinant of the necessity of sample

selection corrections a la Heckman. We believe that our findings could be of particular relevance for

practitioners in situations where there are exclusion restrictions (implied by the theoretical model)

or in increasingly common empirical studies based on experimental or quasi-experimental designs

where the researcher have the control of factors influencing various stages of the experiment.
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Appendices

A Consistency of the estimators when � = 0 and x?z

Consider the linear model

y = Y
0
✓ + u,

where Y is endogenous and y is a response scalar variable. We assume that we have an exogenous

set of instruments z. Define

u(✓) = y � Y
0
✓.

The sample selection process is given by s = szsysY , i.e. a data point (y, Y, z) is available if and

only if all three variables are available. The classical condition for exogeneity is that

E(u(✓0)|s, z) = 0.

See p. 795 of Wooldridge (2010). However, this condition can be di�cult to verify in some contexts,

particularly in a dynamic panel setting such as the case presented in this paper. The alternative

condition

E(sysY u(✓0)|sz, z) = 0

can be much easier to verify and still leads to consistency. Recall that under the usual conditions,

the consistency of the GMM estimator of ✓ requires that E(szu(✓)) = 0 if and only if ✓ = ✓0. This

is easily proven,

E(szu(✓0)) = E(szzsysY u(✓0)) = E(szzE(sysY u(✓0)|sz, z)) = 0,

On the other hand, for ✓ 6= ✓0,

E(szu(✓)) = E(szu(✓ ± ✓0)) = E(szu(✓0))� E(szY 0)(✓ � ✓0) = E(szY 0)(✓0 � ✓).

Therefore, it su�ces to have rank(E(szY 0)) = dim(✓), which is to say the instruments have a full

e↵ect on the endogenous variables in the observed sample.
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B Sample selection corrections for IV estimators when � 6= 0 and

cov("it, uis 6= 0; s  t)

In this section we develop the required correction for dynamic models in which IV is strictly neces-

sary. For static model corrections see Wooldridge (1995) for the RE case and Rochina-Barrachina

(1999) for the FD case.

B.1 Recap of a dynamic model

Consider an outcome variable y
⇤, which is related to its lagged value, and other variables included

in the vector x.

y
⇤
it = ⇢y

⇤
it�1 + xit� + ↵i + "it for ti s.t. dit = 1; (A1)

where d is the selection variable and ↵i is an individual heterogeneity component independent of

"it, the error term. ⇢, � are parameters. x can be correlated with both the individual heterogeneity

component and the error term. In addition we define !it = ↵i + "it. Finally, note that when ⇢ = 0

we get the static model.

The observability of y⇤ is driven by the model for d, which is given by

d
⇤
it = zit� + xit� + ⌘i + uit = wit⇡ + ⌘i + uit; dit = 1 [d⇤it � 0] (A2)

where w (which combines z and x, being x?z) is a vector of strictly exogenous regressors (with

respect to u once we allow for w to be correlated with ⌘i), ⌘i is a term capturing unobserved

individual heterogeneity and uit is an error term. Assumptions about the components of (A1) and

(A2) will be given in the next subsections.

Furthermore, in general, ⌘i+uit and ↵i+"it can be serially cross-correlated, that is cov("it, uis) 6=
0; s  t.

B.2 General assumptions for the selection equation

•B1: The conditional expectation of ⌘i given w̄i is linear.

Following Mundlak (1978), it is assumed that the conditional expectation of the individual e↵ects

in the selection equation is linear in the time means of all exogenous variables (alternatively, we

can also use Chamberlain’s, 1984, approach): ⌘i = w̄
i
✓ + ci, where ci is a random component

independent of wi (recall that w represents the combination of z and x).

•B2: The errors in the selection equation, ⌫it = uit+ci, are independent of wi and normal
�
0,�2t

�
.

Under B1 and B2 the reduced form selection rule of (A2) is d
⇤
it

= w
it
⇡ + w̄i✓ + ⌫it, dit =

1 {w
it
⇡ + w̄i✓ + ⌫it � 0} = 1 {Hit + ⌫it � 0}.

The reduced form selection rule d
⇤
it
= w

it
⇡t + w̄i✓t + ⌫it is not only compatible with B1 (to allow

the w to be correlated with the individual e↵ect in the selection equation) but also with a dynamic

model for the selection rule such as: d⇤
it
= ⇢dd

⇤
it�1 +w

it
⇡t + ⌘i + uit, where d

⇤
i0 = w̄

i
⇡0 + ui0 (initial
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condition) and ⌘i = w̄
i
✓+ ci (as in B1 ). In this case ⌫it will be a function of ui0, ..., uit, ci, but still

independent of wi.

B.3 Bias correction

B.3.1 Correction of the first di↵erenced (FD) equations

Let us consider the first-di↵erenced model:

�yit = ⇢ ·�yit�1 +�xit� +�"it (A3)

We will need a sample of individuals with dit = dit�1 = dit�2 = 1, and, therefore, in general the

sample selection correction term will come from a trivariate probit:

�yit = ⇢ ·�yit�1 +�xit� + E [�"it |wi, dit = dit�1 = dit�2 = 1] +�eit. (A4)

We follow Tallis (1961) to work it out: E [�"it |wi, dit = dit�1 = dit�2 = 1] under a 4-variant normal

distribution assumption. In fact, by assuming a linear projection of the errors in the main equation

�"it on the errors in the selection equations in t , t � 1 and t � 2 , we do not need a 4-variant

normal distribution for the errors in both equations [�"it, ⌫it, ⌫it�1, ⌫it�2], but only a trivariate

normal distribution for the errors in the selection equation (⌫it, ⌫it�1, ⌫it�2).

•B3 : The errors [�"it, ⌫it, ⌫it�1, ⌫it�2] are 4-variate normally distributed and independent of wi.

Therefore,

E [�"it |wi, dit = dit�1 = dit�2 = 1] = ��"t,
⌫t
�t
� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+��"t,
⌫t�1
�t�1

� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) + ��"t,
⌫t�2
�t�2

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2).

(A5)

where His = wis⇡ � E(⌘i|wi) for s = t, t� 1, t� 2, and,

� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) =
�(Hit)�2

⇣
(Hit�1�%t,t�1Hit)

.
(1�%

2
t,t�1)

1/2
,(Hit�2�%t,t�2Hit)

.
(1�%

2
t,t�2)

1/2
,%t�1,t�2.t

⌘

�3(Hit,Hit�1,Hit�2,%t,t�1,%t,t�2,%t�1,t�2)
,

� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) =
�(Hit�1)�2

⇣
(Hit�%t,t�1Hit�1)

.
(1�%

2
t,t�1)

1/2
,(Hit�2�%t�1,t�2Hit�1)

.
(1�%

2
t�1,t�2)

1/2
,%t,t�2.t�1

⌘

�3(Hit,Hit�1,Hit�2,%t,t�1,%t,t�2,%t�1,t�2)
,

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2) =
�(Hit�2)�2

⇣
(Hit�%t,t�2Hit�2)

.
(1�%

2
t,t�2)

1/2
,(Hit�1�%t�1,t�2Hit�2)

.
(1�%

2
t�1,t�2)

1/2
,%t,t�1.t�2

⌘

�3(Hit,Hit�1,Hit�2,%t,t�1,%t,t�2,%t�1,t�2)

where � () is the standard normal density function, and �2 (), �3 () are the standard bivariate and

trivariate normal cumulative distribution functions, respectively. The %t,t�1, %t,t�2, %t�1,t�2 are all

the possible correlation coe�cients between the errors in the selection equation in the three time

periods.

To construct estimates of the � () terms, first, the coe�cients in the Hs will be jointly determined
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with %t,t�1, %t,t�2, %t�1,t�2, using a trivariate probit for the three time periods. Doing this we will

get a predicted value for the trivariate probability �3 (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) that

appears in the denominator of the � () terms. Second, we will get also estimates for the two

arguments of the type (His � %t,sHit)
.�

1� %
2
t,s

�1/2
in the bivariate probabilities �2 (). Third,

we will perform all the involved bivariate probabilities �2 () and estimate the partial correlation

coe�cients %t�1,t�2.t, %t,t�2.t�1, %t,t�1.t�2 for fixed Hit, Hit�1, Hit�2, respectively. Fourth, we will

get a predicted value for the bivariate probabilities �2 () that are in the numerators of the � ()

terms multiplied by the corresponding � (His).

Under stationarity �
"t,

⌫t
�t

= �
"t�1,

⌫t�1
�t�1

, and we will call it �0. Now (A5) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] =

�0 {� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)}
��

"t�1,
⌫t,2
�t

� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) + �
"t,

⌫t�1
�t�1

� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+�
"t,

⌫it�2
�t�2

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)� �
"t�1,

⌫it�2
�t�2

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)

(A6)

In this equation the correlation �
"t�1,

⌫t
�t

does not have to be equal to the correlations �
"t,

⌫t�1
�t�1

=

�
"t�1,

⌫it�2
�t�2

, or �
"t,

⌫it�2
�t�2

, but let us call �
"t�1,

⌫t
�t

= �+1, �"t,
⌫t�1
�t�1

= �
"t�1,

⌫it�2
�t�2

= ��1, and �"t,
⌫it�2
�t�2

=

��2 under stationarity.

Then equation (A6) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] =

�0� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� �0� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

��+1� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) + ��1� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+��2� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)� ��1� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2) =

(�0 � �+1)� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� (�0 � ��1)� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)

+ (��2 � ��1)� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)
(A7)

Further, if we assume an exchangeability condition like the one in Kyriazidou (1997), this implies

�+1 = ��1 (let us call them simply �) and in this case equation (A7) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] =

�̄ {� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)}
+�̄�2� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2)

(A8)

where �̄ = �0 � � and �̄�2 = ��2 � �. That means that correcting for sample selection with

longitudinal correlation of the errors increases the dimension of regressors by two.

Importantly, when there is no serial cross-correlation between the errors in the outcome and the

selection equation, %t,t�1 = %t,t�2 = %t�1,t�2 = 0, also %t�1,t�2,t= %t,t�2,t�1= %t,t�1,t�2 = 0, and we

have that

� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) = � (Hit) /� (Hit) = � (Hit) ,
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� (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2) = � (Hit�1) /� (Hit�1) = � (Hit�1) ,

� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2) = � (Hit�2) /� (Hit�2) = � (Hit�2) ,

The corrected outcome equation (A5) becomes:

E [�"it |wi, dit = dit�1 = dit�2 = 1] = �("t),
⌫t
�t
� (Hit)� �("t�1),

⌫t�1
�t�1

� (Hit�1) (A9)

and the model has to include as new regressors correcting for sample selection the standard Heckman

lambda terms coming from univariate probits in t and t-1. Under stationarity (A9) becomes

�0 {� (Hit)� � (Hit�1)}.

B.3.2 Correction of the level equations

Let us consider now the estimation of the levels equations.

yit = ⇢yit�1 + xit� + z̄i + E [!it |zi, dit = dit�1 = dit�2 = 1] + eit =

⇢yit�1 + xit� + z̄i + �
!t,

⌫t
�t
� (Hit, Hit�1, %t,t�1) + �

!t,
⌫t�1
�t�1

� (Hit�1, Hit, %t,t�1) + eit
, (A10)

and consider the following assumption:

•B3’: The errors [!it, ⌫it, ⌫it�1] are trivariate normally distributed and independent of zi.

Under stationarity �
!t,

⌫t
�t

= �0 and �
!t,

⌫t�1
�t�1

= ��1, and (A10) becomes:

yit = ⇢yit�1 + xit� + w̄i + �0� (Hit, Hit�1, %t,t�1) + ��1� (Hit�1, Hit, %t,t�1) + eit (A11)

To construct estimates of the � () terms the coe�cients in the Hs will be jointly determined with

%t,t�1, using a bivariate probit for each pair of time periods.

Importantly, when the errors in the outcome and selection equations are not time-series correlated

%t,t�1 = 0, then ��1 = 0, and (A10) becomes:

yit = ⇢yit�1 + xit� + w̄i + E [⌫it |zi, dit = 1] + eit =

⇢yit�1 + xit� + w̄i + �0� (Hit) + eit

(A12)

and we come back to univariate probits per each t.

B.4 Summary and empirical guidelines

When the errors in the outcome and selection equations are (cross) serially correlated (that is, when

cov("it, uis 6= 0; s < t) we generally require sample selection correction terms that require estimation

of a trivariate probit and we need at least 3 periods per individual. For the di↵erences equation

estimation, the relevant samples are constructed by picking up at least three consecutive treatment

outcomes or alternatively three non-treatment outcomes per individual. When after selecting the

observations in this way the treatment sample is not large enough to allow the identification of

the relevant parameters of the equation, we estimate this equation by levels estimation exploiting

only the extra moment conditions of system GMM (Arellano and Bover, 1995; Blundell and Bond,
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1998) versus GMM (Arellano and Bond, 1991). In the latter case we require samples with two

consecutive outcomes of the same regime.

B.4.1 Using standard software

In the first di↵erences model, under the assumption that cov("it, uis = 0; s < t) and assuming sta-

tionarity, (A9) can be estimated with the Stata xtabond command. In the more general stationary

only case, (A8) can be estimated with a modified version of the xtabond command adding two regres-

sors: � (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2); and

�(Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2).

With System-GMM estimation, and under stationarity only, joint estimation of equations (A12)

and (A9) with the xtdpdsys Stata System-GMM command if we restrict the level sample in the

same way as the first di↵erenced one. However, the Stata command have to be adapted to allow

for di↵erent coe�cients of the sample selection correction terms in the equation in levels (�
!t,

⌫t
�t

in

(A12)) than in the equation in time di↵erences (�
"t,

⌫t
�t

in (A9)).

Under Simplification 1, it will be more di�cult to adapt standard software because, in addition to

adding di↵erent regressors to the levels ({� (Hit, Hit�1, %t,t�1) ,� (Hit�1, Hit, %t,t�1)}) and the di↵er-

enced equations ({� (Hit, Hit�1, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)� � (Hit�1, Hit, Hit�2, %t,t�1, %t,t�2, %t�1,t�2)},
� (Hit�2, Hit, Hit�1, %t,t�1, %t,t�2, %t�1,t�2), we have to allow for di↵erent parameters associated with

the sample selection correction terms in the level and di↵erenced equations.

B.5 Semiparametric model estimation

B.5.1 Correction of level equations

Consider the level model:

yit = ⇢yit�1 + xit� + z̄i + E [!it |wi, dit = dit�1 = 1] + eit

,

where the conditional mean is now an unknown function of the selection indices Hit, Hit�1, that is:

E [!it |wi, dit = dit�1 = j ] = 'jt,t�1 (Hit, Hit�1) = 'jit,t�1

Errors can depend on the wi only through these indices (what is called a “double index” assump-

tion). Now (A10) becomes

yit = ⇢yit�1 + xit� + z̄i + 'jit,t�1 + eit

Once selection indices size has been obtained, in a first stage, by a normal, logistic or the Heckman’s

lambda (inverse Mill’s ratio) transformation, the unknown function 'jit,t�1 is approximated non-

parametrically by a polynomial of degree q on the transformation of the indices Hit, Hit�1. In the
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general case of absence of stationarity, we will interact the terms of the polynomial with time-pair

dummies.

B.5.2 Correction of first di↵erenced equations

Consider the first di↵erenced model:

�yit = ⇢�yit�1 +�xit� + E [�"it |wi, dit = dit�1 = dit�2 = j ] +�eit

where instead of giving a parametric expression for E [�"it |wi, dit = dit�1 = dit�2 = j ] in (A5) we

write E [�"it |wi, dit = dit�1 = dit�2 = j ] = 'jt,t�1,t�2 (Hit, Hit�1, Hit�2) = 'jit,t�1,t�2, where the

conditional mean is now an unknown function of the selection indices Hit, Hit�1, Hit�2. Errors can

depend on the wi only through these indices (what is called a “triple index” assumption).

Now (A4) becomes �yit = ⇢�yit�1+�xit�+'jit,t�1,t�2+�eit. The unknown function 'jit,t�1,t�2

is approximated non-parametrically by a polynomial of degree q on the transformation of the indices

Hit, Hit�1, Hit�2. Note that in the general case of absence of stationarity, we will interact the terms

of the polynomial with time-triples dummies. The identification of the selection indexes, or first

step, can be achieved by assuming a normal or loǵıstic transformation. We could estimate the first

step by using a semiparametric method for binary choice with panel data.

Besides the (parametric or semi-parametric) specification of the sample selection correction

terms, the models will be finally estimated by GMM (AB) or system-GMM (when ⇢ 6= 0 and/or x

is endogenous) or RE,FE,FD (when ⇢ = 0 and x is exogenous).
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C Additional tables and figures

Table C1. Average moment conditions of simulated errors and most recent instruments

N = 500 E(�"ityit�2/Ait) E((↵i + "it)�yit�1/Ait) E("it�yit�1/Ait) E(↵i�yit�1/Ait)
corr("it, uit) = 0.242 = corr(↵i, ⌘i)
⇢ = 0.25 -.0021 .0020 .0015 .0004
⇢ = 0.50 -.0036 .0008 .0017 -.0009
⇢ = 0.75 -.0071 .0001 .0019 -.0018
corr("it, uit) = 0.242; corr(↵i, ⌘i) = 0
⇢ = 0.25 -.0021 .0020 .0015 .0005
⇢ = 0.50 -.0037 .0018 .0017 .0002
⇢ = 0.75 -.0071 .0020 .0019 .0001
corr("it, uit) = 0.447 = corr(↵i, ⌘i)
⇢ = 0.25 -.0011 .0012 .0019 -.0007
⇢ = 0.50 -.0025 -.0014 .0030 -.0044*
⇢ = 0.75 -.0057 -.0037 .0042** -.0079***
corr("it, uit) = 0.447; corr(↵i, ⌘i) = 0
⇢ = 0.25 -.0011 .0025 .0019 .0006
⇢ = 0.50 -.0026 .0031 .0030 .0001
⇢ = 0.75 -.0057 .0042 .0042** -.0000

N = 5000 E(�"ityit�2/Ait) E((↵i + "it)�yit�1/Ait) E("it�yit�1/Ait) E(↵i�yit�1/Ait)
corr("it, uit) = 0.242 = corr(↵i, ⌘i)
⇢ = 0.25 .0016 -.0001 -.0001 -.0015***
⇢ = 0.50 .0019 -.0019** .0003 -.0022***
⇢ = 0.75 .0035 -.0022** .0008 -.0030***
corr("it, uit) = 0.242; corr(↵i, ⌘i) = 0
⇢ = 0.25 .0015 -.0009 -.0001 -.0008
⇢ = 0.50 .0019 -.0006 -.0003 -.0009
⇢ = 0.75 .0034 -.0002 .0008 -.0009*
corr("it, uit) = 0.447 = corr(↵i, ⌘i)
⇢ = 0.25 .0017 -.0019* .0014* -.0033***
⇢ = 0.50 .0022 -.0035*** .0027*** -.0062***
⇢ = 0.75 .0044 -.0051*** .0041*** -.0091***
corr("it, uit) = 0.447; corr(↵i, ⌘i) = 0
⇢ = 0.25 .0016 .0005 .0014* -.0008
⇢ = 0.50 .0020 .0017* .0027*** -.0010
⇢ = 0.75 .0041 .0030*** .0041*** -.0011*

Notes.
1. 1000 simulations.
2. Static selection model (A).
3. Ait = {zit, dit = dit�1 = dit�2 = 1}.
4. *** significant at 1%; ** significant at 5%; * significant at 10%.
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Table C2. Average bias, RMSE and coverage rates of C.I. in the static model. x strictly exogenous.
T=7; 500 replications

x in Corrected FE estimator FD estimator RE (GLS) estimator Corrected RE (GLS) estimator1

cov((zi, xi),↵i) = 0, cov(xi,↵i) = 0 cov((zi, xi),↵i) 6= 0,cov(xi,↵i) 6= 0
selection av. bias RMSE CICR2 ERF av. bias RMSE CICR ERF av. bias RMSE CICR ERF av. bias RMSE CICR ERF

sel. term sel. term sel. term sel. term

Panel A: N = 500; endogenous selection, cov(x, z) = 0

No No 0.0003 0.0214 0.936 -0.0007 0.0301 0.958 0.0005 0.0160 0.952 -0.0001 0.0218 0.962
Yes No -0.0474 0.0536 0.726 -0.0427 0.0554 0.558 -0.0642 0.0671 0.094 -0.0520 0.0583 0.482
Yes Yes3 0.0011 0.0295 0.926 0.950 0.0010 0.0388 0.954 0.832 -0.0034 0.0245 0.938 0.998 0.0007 0.0297 0.95 0.996

Panel A: N = 500; exogenous selection, cov(x, z) = 0

Yes Yes3 0.0010 0.0261 0.924 0.050 0.0008 0.0349 0.944 0.098 0.0009 0.0218 0.944 0.070 0.0045 0.0294 0.942 0.060
Panel B: N = 5000; endogenous selection, cov(x, z) = 0

No No -0.0001 0.0070 0.948 0.0002 0.0093 0.956 0.0001 0.0052 0.942 -0.0000 0.0072 0.954
Yes No -0.0469 0.0476 0.022 -0.0413 0.0427 0.000 -0.0640 0.0642 0.000 -0.0512 0.0519 0.000
Yes Yes3 0.0020 0.0097 0.930 1.000 0.0023 0.0128 0.942 1.000 -0.0024 0.0081 0.930 1.000 0.0031 0.0103 0.914 1.000

Panel B: N = 5000; exogenous selection, cov(x, z) = 0

Yes Yes3 0.0001 0.0084 0.914 0.038 0.0005 0.0113 0.940 0.086 0.0001 0.0067 0.966 0.038 0.0041 0.0104 0.906 0.12

Panel C: N = 500; endogenous selection, cov(x, z) 6= 0

No No -0.0253 0.0305 0.654 -0.0315 0.0399 0.628 -0.0211 0.0251 0.656 -0.0010 0.0162 0.958
No Yes4 -0.0011 0.0177 0.918 0.978 -0.0012 0.0260 0.944 0.926 -0.0008 0.0142 0.946 0.998 0.0009 0.0163 0.944 0.986

Panel C: N = 5000; endogenous selection, cov(x, z) 6= 0

No No -0.0253 0.0259 0.002 -0.0315 0.0324 0.002 -0.0212 0.0216 0.002 -0.0001 0.0052 0.954
No Yes4 -0.0004 0.0055 0.916 1.000 0.0002 0.0082 0.948 1.000 -0.0004 0.0045 0.944 1.000 0.0017 0.0055 0.924 1.000

1. In the last column (corrected GLS estimator) we add the mean of z and x as covariates in both the selection and
the outcome equation to control for the correlation between z, x and ⌘,↵.
2. CICR. 95 % Confidence intervals coverage rates, ie. CICR=

P
S 1(â � 1.96 ⇤ s.e.(â) < a < â + 1.96 ⇤ s.e.(â))/S,

where S is the number of simulations, a is the true parameter and â is the estimate of a in each simulation.
3. In Panels A and B the correction is obtained from a year by year probit with z, x as covariates.
4. In Panel C the correction is E(x|z), cov(x, ) 6= 0 where  2 z.
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Table C3. Average bias, RMSE and coverage rates of C.I. in the purely AR(1) model. T=7; 500
replications. GMM-IV and Han and Phillips estimators

GMM-IV estimators. Results using the first seven generated observations

Estimates with the full sample Estimates with the selected sample
AB estimator system AB estimator system

⇢ av. bias RMSE CICR1 av. bias RMSE CICR av. bias RMSE CICR av. bias RMSE CICR

Panel A: N=500

0.25 -0.0054 0.0435 0.930 0.0012 0.0322 0.940 -0.0168 0.7687 0.940 -0.0047 0.7559 0.936
0.50 -0.0135 0.0591 0.916 0.0018 0.0386 0.928 -0.0275 0.5317 0.934 -0.0077 0.5101 0.932
0.75 -0.0102 0.0388 0.936 0.0017 0.0265 0.954 -0.0212 0.2769 0.944 0.0011 0.2510 0.952

Panel B: N=5000

0.25 -0.0007 0.0130 0.946 -0.0006 0.0096 0.942 -0.0021 0.7523 0.956 -0.0047 0.7548 0.928
0.50 -0.0017 0.0163 0.936 -0.0009 0.0111 0.936 -0.0036 0.5040 0.940 -0.0086 0.5088 0.900
0.75 -0.0010 0.0105 0.970 -0.0002 0.0080 0.950 -0.0029 0.2535 0.944 -0.0009 0.2511 0.948

Han and Phillips LS estimators.
T=7 discarding the initial 13 observations

Estimates with the full sample Estimates with the selected sample
HP LS estimator HP LS estimator

⇢ av. bias RMSE CICR av. bias RMSE CICR

Panel A: N=500
0.25 -0.0005 0.7513 0.944 0.0007 0.7504 0.960
0.50 -0.0013 0.5025 0.950 0.0023 0.4995 0.962
0.75 -0.0005 0.2530 0.952 0.0061 0.2479 0.956

Panel B: N=5000
0.25 -0.0009 0.7509 0.960 0.0007 0.7494 0.946
0.50 -0.0007 0.5008 0.960 0.0035 0.4967 0.950
0.75 -0.0003 0.2505 0.956 0.0077 0.2428 0.928
T=7 using the first seven observations

Panel A: N=500

0.25 0.0651 0.6857 0.512 0.0639 0.6872 0.644
0.50 0.1777 0.3242 0.004 0.1789 0.3239 0.016
0.75 0.4293 0.1835 0.000 0.4352 0.1909 0.000

Panel B: N=5000
0.25 0.0630 0.6871 0.002 0.0638 0.6863 0.002
0.50 0.1756 0.3246 0.000 0.1793 0.3210 0.000
0.75 0.4268 0.1774 0.000 0.4347 0.1854 0.000

1. CICR. 95 % Confidence intervals coverage rates, ie. CICR=
P

S 1(â � 1.96 ⇤ s.e.(â) < a < â + 1.96 ⇤ s.e.(â))/S,

where S is the number of simulations, a is the true parameter and â is the estimate of a in each simulation.
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Figure C1. Average bias of the AB and system estimators in the full sample (NT observations)
and the endogenously selected sample
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Notes.

AB all: AB GMM estimates using the full sample (no selection process).

system all: System GMM estimates using the full sample (no selection process).

AB select: Uncorrected for selection AB GMM estimates on the selected sample under endogenous sample selection.

system select: Uncorrected system GMM estimates on the selected sample under endogenous sample selection.
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Table C4. AR(1) log hourly earnings equation

(1) (2) (3) (4)

2SLS-IV No No year by year

correction correction correction of

lev eq. only

AB system system

Lag log 0.1522** 0.1029** 0.1798*** 0.2354***
hourly earnings (0.0489) (0.0377) (0.0434) (0.0444)

Observations 5033 5033 5033 5033

Joint significance 105.13 (11)
selection terms (0.000)

Notes: 1. N = 550; 2. Annual dummies are included in all specifications; 3. *** significant at 1%; ** significant at

5%; * significant at 10%; 4. The standard errors have been corrected following Windmeijer (2005). In column (4),

we also report corrected standard errors following Terza (2016) 5. The test of significance of the selection terms is a

Wald test. Degrees of freedom and level of significance are in parentheses.
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