
DISCUSSION PAPER SERIES

IZA DP No. 16630

Damian Clarke
Nicolás Paris Torres
Benjamín Villena-Roldán

(Frisch-Waugh-Lovell)’
On the Estimation of Regression Models
by Row

NOVEMBER 2023

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 16630

(Frisch-Waugh-Lovell)’
On the Estimation of Regression Models
by Row

NOVEMBER 2023

Damian Clarke
University of Exeter, University of Chile, MIPP and IZA

Nicolás Paris Torres
University of Chile

Benjamín Villena-Roldán
Universidad Andres Bello, LM2C2 and MIPP

ABSTRACT

IZA DP No. 16630 NOVEMBER 2023

(Frisch-Waugh-Lovell)’
On the Estimation of Regression Models
by Row*

We demonstrate that regression models can be estimated by working independently in

a row-wise fashion. We document a simple procedure which allows for a wide class of

econometric estimators to be implemented cumulatively, where, in the limit, estimators can

be produced without ever storing more than a single line of data in a computer’s memory.

This result is useful in understanding the mechanics of many common regression models.

These procedures can be used to speed up the computation of estimates computed via OLS,

IV, Ridge regression, LASSO, Elastic Net, and Non-linear models including probit and logit,

with all common modes of inference. This has implications for estimation and inference

with ‘big data’, where memory constraints may imply that working with all data at once

is particularly costly. We additionally show that even with moderately sized datasets, this

method can reduce computation time compared with traditional estimation routines.

JEL Classification: C55, C61, C87

Keywords: big data, estimation, regression, matrix inversion

Corresponding author:
Damian Clarke
University of Chile
Diagonal Paraguay, 257
Santiago
Chile

E-mail: damian.clarke@uchile.cl

* We thank Richard Blundell, Samuel P. Engle, Sebastian Kripfganz, James MacKinnon, and Jeffrey Wooldridge
for their feedback and suggestions, and are grateful to Iván Gutierrez Martínez for excellent research assistance.
The authors acknowledge the Millenium Institute for Research in Market Imperfections and Public Policy (MIPP) for
financial and institutional support.

1 Introduction

The Frisch-Waugh-Lovell theorem is a canonical result in econometrics, and the foundation of manymodern

econometric estimation procedures. That a regression can be estimated by partitioning data column-wise is

intuitive, and has a multitude of applications when brought to real data. Perhaps surprisingly, especially in a

time where datasets are growing ever-larger and more decentralised, relatively little attention has been paid

to the row-wise consideration of this problem. In this paper we seek to address the question of whether and

how regression models can be estimated when partitioning data by row.

We show that many regression models can be estimated by partitioning data in blocks of rows and that

these partitions can be arbitrarily small or large. This implies that for a large class of regressionmodels, there

is no need for data ever to be stored in a single matrix, or ever stored in a computer’s working memory. As

well as the conceptual elegance of this result, we show that it can be of substantial use, especially when data

is large. When data is so large that it escapes the working memory of a computer, this row-wise partitioning

of data implies that estimation can proceed, with processing time simply scaling linearly with the number

of observations. However, even where data is not too large to fit in a computer’s working memory, we

show that this result may offer a speed-up over standard commercial regression implementations, where in

practice, processing times tend to not scale linearly with observations.

The basic intuition of this result is that many regression models require taking sums over cross-products

of matrices of data such as a series of independent variablesX of dimensionN ×K. A clear example is the

OLS estimator β̂OLS = (X ′X)−1X ′y. In practice, calculatingX ′X requires summing over all observations

i ∈ {1, . . . , N} the product of each value of each independent variable within observations i, but does not

require cross-products taken across observations j ̸= i. Similarly,X ′y requires that for a given observation

i, the value of each of k independent variables xki be multiplied by yi, but such a cross-multiplication

is not required between observations. This implies that one can arrive very simply to aggregates such as

X ′X and X ′y without ever reading an entire dataset into memory. Indeed, in the limit, one can calculate

these quantities by reading a line of data for a single observation i at a time, iterating over all N , but never

holding more than a single line of raw data in memory.1 This may seem surprising given that regression

models account fully for the interdependence between independent variables, but it is a base result of matrix

algebra and the mechanics of multivariate regression.

What is more, a similar sequential procedure can be conducted for the variance of estimates of regression

coefficients, as well as standard goodness-of-fit parameters such as the R-squared, implying that standard

errors, confidence intervals, and any hypothesis tests can also be calculated exactly without ever loading all

1A simple visualisation of this calculation is provided in Appendix A.

2

data in memory. We show that a similar logic can be used for alternative models such as two-stage least

squares (2SLS), penalised regression models such as LASSO, Ridge and elastic net, and the estimation

of probit and logit models using indirect least squares. Similar results can be derived for models where

maximum likelihood (ML) estimation procedures are used. The methods discussed here are surprisingly

flexible, also being feasible (and comparatively fast) with estimates which prima facie one may believe

require loading larger portions of data in memory. For example, we show that similar row-wise procedures

can be used for cluster-robust variance-covariance estimates without ever reading data on an entire group

of observations at once.

In this paper we begin by establishing that linear regression models can be estimated row-wise, without

ever opening the entire dataset. We define a “cumulative ordinary least squares” algorithm, which is exactly

identical to OLS in both point estimates and standard errors, as well as any of the other basic statistics desired

which are commonly reported following the estimation of linear models by OLS. This result has historical

precedents in early computational literature in economics; see for example Brown, Houthakker, and Prais

(1953) who note that a specific variant of this procedure can be used. However, we also document that this

result extends to virtually all commonly used alternative variance estimators and regression models. We

discuss the computational implementation of such an estimator, noting that one could elect to split data into

arbitrarily small or arbitrarily large partitions, though in practice, partitions should be sufficiently small such

that they do not approach the limits of a computer’s working memory.

In our research, we highlight an intriguing aspect that sheds light on the efficiency of regression es-

timation. While drawing comparisons to the Frisch-Waugh-Lovell theorem, we argue that understanding

the possibility of estimating regression in blocks–with minimal information required to be saved between

iterations–is of significant interest. The Frisch-Waugh-Lovell theorem, known for its column-wise ap-

proach, provides a technique to reduce the total dimension of K in calculations. In contrast, our paper

introduces a ‘transposed’ version, presenting a row-wise result that allows for the reduction of the total di-

mension of N in calculations. Generally, and especially with the growing relevance of high-frequency and

administrative datasets in economic research, N is substantially greater than K, meaning that reductions

in N can lead to far greater computational savings than reductions in K. Notably, both the Frisch-Waugh-

Lovell theorem and our paper are motivated by computational considerations, highlighting the shared em-

phasis on addressing computational challenges in econometrics (MacKinnon 2023b). However, beyond the

computational elements of the paper, both of these results are theoretically elegant, and provide an under-

standing of the internal workings of regression models: one of the most commonly used tools of researchers

in all empirical fields of economics.

This paper joins other studies from a range of settings which provide basic understanding of regression-

3

based models (see for example Słoczyński (2022), Abadie (2003), Stefanski and Boos (2002), Gelbach

(2016), Angrist (1998), Abadie, Athey, Imbens, and Wooldridge (2020), Solon, Haider, and Wooldridge

(2015)). It also provides results which are potentially highly useful in cases where very large databases are

used in econometric analysis. Massive databases are increasingly common in econometric analyses (Varian

2014), but supercomputers are not always available to process big chunks of data. Indeed, MacKinnon

(2023b) calls for consideration of computational issues with large datasets, noting that “[i]n recent years (…)

many interesting datasets seem to be becoming larger more quickly than computers are becoming faster.”

While true, the results in this paper suggest that many of the processes of interest in econometrics can be

implemented in a partition-wise fashion, implying that memory costs can be avoided. While an alternative

solution to these issues is to simply gain access to super-computers or large server clusters, this solution

may be infeasible for individuals with small research budgets or students, who nevertheless wish to use

large datasets. These results can thus also be viewed as democratising access to econometric tools. Finally,

we note that these results can offer substantial speed-ups for clustered bootstrapping, joining a literature

which considers the computational efficiency of bootstrap procedures, and clustering in particular (see eg

Cameron et al. (2008), Roodman et al. (2019), MacKinnon (2023a)), as well as for the consideration of

tuning parameters in regularised regression models.

This paper is structured as follows. In Section 2 we define the cumulative least squares procedure, show-

ing its equivalence to standard estimation. We begin by showing how this estimator works in cases where

estimation proceeds by OLS assuming homoscedasticity, and then document how it holds in a broad range

of other estimation and inference procedures. Section 3 discusses the nature of the cumulative procedure,

and considerations of optimal block sizes for estimation. In Section 4 we provide a number of illustrations

of the performance of these methods compared to commonly-used commercial alternatives. This includes

controlled tests where sample sizes and covariate numbers are varied and computational efficiency is com-

pared, as well as an applied example based on a sample of census data and demographic surveys and models

with a large number of fixed effects. In Section 5 we provide some additional discussion and conclusions.

2 Cumulative Least Squares

2.1 Cumulative Ordinary Least Squares

Suppose we wish to run a regression of a dependent variable y on a set of K covariates x1, x2, ..., xK ,

using a series of i = 1, . . . , N observations. Thus, data can be viewed as a matrix or database of size

N × K independent variables which we will denote X , as well as an N × 1 vector y for the dependent

4

variable. Throughout this paper we will adopt the notation that matrices are written as upper case italics,

vectors are written as lowercase italics, and scalars are defined as required. Suppose also that computing

the regression with all the data in memory is either infeasible or undesired due to memory constraints. The

data can be partitioned row-wise in J arbitrarily defined portions, where each portion, or block, is denoted

j, and consists of Nj = N/J observations.2 The blocks are mutually exclusive and cover all observations

such that
∑J

j=1Nj = N . We use the notationXj to denote block j of sizeNj of the independent variables,

and similarly yj is used to denote block j of the dependent variable.

Consider the OLS estimator of the parameter β̂. The standard OLS estimator can be written as follows:

β̂OLS = (X ′X)−1X ′y ≡

⎛

⎜⎜⎜⎜⎜⎜⎝

(
X1′ X2′ · · · XJ′

)

⎛

⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

XJ

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

−1

(
X1′ X2′ · · · XJ′

)

⎛

⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

yJ

⎞

⎟⎟⎟⎟⎟⎟⎠
(1)

=
(
X1′X1 +X2′X2 + · · ·+XJ′XJ

)−1(
X1′y1 +X2′y2 + · · ·+XJ′yJ

)
(2)

where in (1) theK×N matrixX ′ is re-expressed (identically) as a series of horizontally concatenatedK×Nj

matrices, and the N ×K matrix X is similarly re-expressed as a series of vertically concatenated Nj ×K

matrices. The N × 1 vector y is also re-written as a series of vertically stacked sub-vectors of dimension

Nj × 1. Based on the properties of matrix multiplication, it can easily be seen that elements from each

sub-matrix or vector will be interacted only with themselves, and no products are required across blocks.

The re-expressed version of β̂OLS in (2) makes clear that X ′X can thus be re-written as the summation

over the series of J matrices Xj′Xj which are each of dimension K ×K, and a similar procedure can be

followed for X ′y.

This suggests that a cumulative procedure can be followed, as laid out formally in Algorithm 1 below.

Specifically, for ease of notation denote Xj′Xj ≡ Σj and Xj′yj ≡ Υj . Define as Σ1∼j the summation

Σ1 + . . .Σj , and Υ1∼j = Υ1 + . . . + Υj . Then, to estimate (2), initially a single block of data can

considered, and the quantities Σ1 and Υ1 calculated. In the following step, a new block of data can be

consulted, the quantities Σ2 and Υ2 calculated, and the preceding quantities summed to provide Σ1∼2 and

Υ1∼2. In following steps, accumulated quantitiesΣ1∼j−1 andΥ1∼j−1 are received at the beginning of each

stage, theΣj andΥj are calculated, and the step ends withΣ1∼j andΥ1∼j . A key element of this procedure

is that in each stage, only a single block of data of size Nj × (K + 1) needs to be read into memory, with

the results stored in a single accumulated matrix and vector Σ1∼j andΥ1∼j . As Σ andΥ are of dimensions

K ×K andK × 1 respectively, this makes clear that we simply need to keep track of small matrices in an

2To fix ideas, we will consider that Nj is common across all blocks. In Section 3 we will discuss optimal choices of Nj , not
requiring that this number be equivalent across blocks.

5

ongoing fashion, and never house more than Nj observations in memory at a single time, where Nj can be

an arbitrarily small value (in the limit, this could even be 1).3 The OLS estimate β̂OLS is only calculated

by matrix inversion (or alternative procedures such as Gauss-Jordan elimination) once the full matrices

Σ1∼J ≡ X ′X and Υ1∼J ≡ X ′y are calculated, implying that potentially costly matrix inversions are not

required at every step.

The above process allows for point estimates to be recovered from independent partitions of the database.

What’s more, inference on regression parameters can be conducted in a similar partition-wise manner. As-

suming homoscedasticity (alternative inference procedures are considered in Section 2.4), the well-known

formula for the variance of OLS regression parameters is V̂ (β̂OLS) = σ̂2
u(X

′X)−1. The quantity (X ′X) is

already accumulated as laid out above. The second element of the variance is σ̂2
u ≡ û′û/(N −K), where

the regression residuals û = y−Xβ̂OLS = (I−X(X ′X)−1X ′)y = MXy, withMX being the annihilator

matrix, an idempotent matrix. Hence:

û′û = y′MXy = y′y − y′X(X ′X)−1X ′y, (3)

which consists of three separate elements: X ′X , X ′y and its transpose, and y′y. The first two of these

elements are already calculated iteratively in the estimation of point estimates asΣ1∼J andΥ1∼J . The only

additional element required to calculate σ̂2
u is thus y′y, which can similarly be calculated in a cumulative

manner in the same fashion asX ′X orX ′y in (2): y′y = (y1′y1 + y2′y2 + · · ·+ yJ ′yJ). As above, we will

refer to yj′yj ≡ Ψj , and Ψ1∼j = Ψ1 + . . . + Ψj . Hence, calculating y′y occurs iteratively, where at each

step the accumulated Ψ1∼j−1 is the starting point, an additional block of y of dimension Nj × 1 is loaded,

and the step ends with Ψ1∼j = Ψ1∼j−1 +Ψj .4

Formally, the entire estimation process to arrive to exact OLS point estimates and standard errors is laid

out in Algorithm 1. Note that given the information calculated in Algorithm 1, other standard regression

statistics can be generated following estimation, including t-tests for each regression parameter against arbi-

trary null hypotheses, global F -tests of regressions, andR2 or adjustedR2 measures. For example, in order

to compute the R2, we can use the residual sum of squares (RSS), û′û calculated above, and additionally

require the total sum of squares (TSS), given that R2 = 1− RSS
TSS . The TSS is simply:

TSS =
N∑

i=1

(yi − y)2 =
N∑

i=1

y2i −N

(
1

N

N∑

i=1

yi

)2

=
N∑

i=1

y2i −
1

N

(
N∑

i=1

yi

)2

,

3This particular limit case whereNj = 1 and estimation occurs via OLS to generate the matrix Σ1∼J is mentioned in Brown,
Houthakker, and Prais (1953).

4In Appendix D we note that this result can be documented in an alternative way, where rather than accumulating matrices
Σ,Υ, andΨ at each step, the estimate β̂1∼j is directly updated. This result is based on the matrix inverse lemma (Woodbury 1950).
However, given that this is less efficient than the cumulative procedure described here, we document this only as a curiosity.

6

and both y2i and yi can be summed iteratively, with the only addition to the statistics already laid out above

being the cumulative sum of y squared, and grand mean y.

Algorithm 1: Cumulative ordinary least squares
Inputs: Database consisting of (y,X), block size b.
Result: Point estimate β̂OLS and variance-covariance matrix V̂ (β̂OLS).

1. Set i = 1 and j = b. Load into memory partition of data covering y,X in observations i to j. ;
2. Calculate Σ1, Υ1, and Ψi ;
3. If observations i to j contain end of file, set e = 1, otherwise, set e = 0 ;
while e ̸= 1 do

4. Replace i = i+ b and j = j + b. Load into memory partition of data covering y,X in
observations i to j. ;
5. Calculate Σj , Υj , and Ψj . ;
6. Calculate Σ1∼j = Σ1∼j−1 + Σj , Υ1∼j = Υ1∼j−1 +Υj , and Ψ1∼j = Ψ1∼j−1 +Ψj ;
7. If observations i to j contain end of file, set e = 1. ;

end

8. Calculate

β̂OLS = (Σ1∼J)
−1Υ1∼J and V̂

(
β̂OLS

)
= σ̂2(X ′X)−1,

where σ̂2 =
[
Ψ1∼J −Υ′

1∼J(Σ1∼J)−1Υ1∼J
]
/(N −K).

2.2 Alternative Estimators

While the previous implementation allows for the generation of exact equivalents to OLS estimates and their

standard errors (and derived statistics), this cumulative procedure can be applied far more widely. Indeed,

the procedure can be used for any estimator which can be expressed as a sum of squares-based procedure,

where the relevant database level processing requires sums over observation-level products. We document

how the cumulative process works in a range of estimators below. We then document that similar logic can

be used to arrive to estimates which are based upon other techniques such as maximum likelihood.

Weighted Least Squares A simple extension to the procedure noted in section 2.1 is weighted least

squares, where some diagonal weight matrixW is incorporated, such that the estimator is defined as:

β̂WLS = (X ′WX)−1X ′Wy =
(
X1′W 1X1 + · · ·+XJ′W JXJ

)−1 (
X1′W 1y1 + · · ·+XJ′W JyJ

)
. (4)

Here, it follows that an identical updating procedure can be implemented to that laid out in the case of

OLS, however additionally, a variable w contains the weight associated with each observation. In this case,

the cumulative estimation procedure consists of holding in memory a single block of data (yj , wj , Xj) and

7

generating matrixWj , anNj×Nj matrix with elementswj on the principal diagonal. In the limit, ifNj = 1,

the matrixWj consists simply of the scalarwj . Then, elementsXj′W jXj andXj′W jyj are calculated, and

summed cumulatively, before in a final step the WLS estimator is calculated by matrix inversion or similar.

Instrumental Variables andTwo-Stage Least Squares Estimators Both instrumental variables (IV) and

Two-Stage Least Squares (2SLS) estimators can be similarly estimated in cumulative form. To see this, note

that the IV estimator in a linear model is β̂IV = (X ′Z)−1Z ′y and the 2SLS estimator in a linear model is:

β̂2SLS =
(
X ′Z (Z ′Z)−1 Z ′X

)−1 (
X ′Z (Z ′Z)−1 Z ′y

)
, where Z refers to an N × L dimensional vector

of exogenous variables, with L ≥ K, and in the case of IV, L = K. Thus, both β̂IV and β̂2SLS can be

generated cumulatively following a similar procedure to (1), however in the case of β̂IV X ′X is substituted

forX ′Z, andX ′y is substituted forZ ′y. In the case of 2SLS, an additional quantityZ ′Z must be calculated,

though identically toX ′X , this simply requires cross-products on all variables Z within each observation i,

and as in (2), Z ′Z ≡ (Z1′Z1 + Z2′Z2 + . . .+ ZJ ′ZJ). Once again, estimation can proceed in this case in

a cumulative fashion, where in each block the quantities Xj′Zj , Zj′Zj and Zj′yj are calculated, summed

cumulatively, and ultimately, the quantity β̂2SLS is calculated by matrix inversion and multiplication, or

other standard procedures such as QR decomposition or single value decomposition.

Ridge, LASSO and Elastic Net Frequently in cases where big data is used in economic models, prac-

titioners wish to perform some sort of regularisation. Fortunately, these cumulative procedures cross-over

seamlessly to regularised models such as Ridge, LASSO and Elastic Net. Additionally, in each case, the

process of accumulation is such that work with the full dataset of dimensionN ×K can be viewed as a first

data processing step, and the selection of tuning parameters can be conducted as a second step, without ever

returning to full data.

To see this, we first document the case of the Ridge regression, which given its use of the ℓ2 norm for

shrinkage is particularly simple expositionally. In the case of the Ridge regression, parameters are estimated

as follows:

β̂Ridge = argminβ

⎧
⎨

⎩

(
N∑

i=1

(yi −X ′
iβ)

)
+ λ

K∑

j=1

β2
j

⎫
⎬

⎭ ,

where λ is a scalar tuning parameter determining the degree of shrinkage. This can equivalently be written

as:

β̂Ridge = (X ′X + λI)−1X ′y (5)

where I is an identity matrix of sizeK. Note that following the notation above, solving for β̂Ridge requires

the quantity Σ1∼J , which we have documented can be calculated in a cumulative fashion, Υ1∼J , which we

8

have also documented can be calculated cumulatively, and an additional factor λI , which is independent of

the number observations. Hence, estimation in the case of Ridge is identical to that documented in OLS in

section 2.1, with the only difference being that after accumulating Σ1∼J and Υ1∼J , but prior to solving for

β̂Ridge, an additionalK ×K matrix is added to Σ1∼J . This is laid out formally in Algorithm 2.

Algorithm 2: Cumulative least squares for Ridge regression
Inputs: Database consisting of (y,X), block size b.
Result: Point estimate β̂Ridge.

1. Set i = 1 and j = b. Load into memory partition of data covering y,X in observations ito j. ;
2. Calculate Σ1 and Υ1. ;
3. If observations i to j contain end of file, set e = 1, otherwise, set e = 0 ;
while e ̸= 1 do

4. Replace i = i+ b and j = j + b. Load into memory partition of data covering y,X in
observations i to j. ;
5. Calculate Σj and Υj . ;
6. Calculate Σ1∼j = Σ1∼j−1 + Σj and Υ1∼j = Υ1∼j−1 +Υj . ;
7. If observations i to j contain end of file, set e = 1. ;

end

8. Select tuning parameter λ. Then calculate

β̂Ridge = (Σ1∼J + λI)−1Υ1∼J .

Similar procedures can be conducted in the case LASSO and Elastic net, where first data can be accu-

mulated to form Σ1∼J and Υ1∼J and then, conditional on having processed the data of dimension N ×K

to a level of K × K (or K × 1), and selecting a tuning parameter5, estimates are calculated without ever

returning to data at a level of N × K (or even NJ × K). To see this, note that the Lasso and Elastic net

equivalents of (5) are:

β̂Lasso = argminβ

{(
N∑

i=1

(yi −X ′
iβ)

)
+ λ||βj ||1

}
,

β̂ElasticNet = argminβ

{(
N∑

i=1

(yi −X ′
iβ)

)
+ λ1||βj ||1 +

λ2

2
||βj ||22

}
,

where || · ||p refers to the ℓp norm, and in the case of the Elastic net, λ1 and λ2 refer to the strength of the

Lasso and Ridge penalties respectively.

Although the lack of the exclusive ℓ2 norm in Lasso and Ridge does not admit a simple least-squares

solution as in (5), they nevertheless can both be simply resolved using cumulative procedures and a single
5We note below that our procedures can similarly be used very efficiently for k-fold cross validation; see Section 2.3.

9

(accumulatory) pass through N dimensional data. Specifically, this can be implemented via coordinate

descent, a standard way of computing parameters in Lasso and Elastic Net (Fu 1998). To see this note that

for a specific parameter βj , the coordinate descent algorithm for estimation can be written for Lasso as:

β̂newj = sign
(
β̂oldj

)
max

(
|zj |−

λ

N
, 0

)

where β̂oldj is the value of β̂j at the previous iteration, zj is the jth element of the vector z = X ′(y−Xβ̂old)

and sign(·) returns the sign of the argument. Noting that z can be re-expressed asX ′y−X ′Xβ̂old makes clear

that the vector of parameters βj can be estimated by first using the cumulative procedure laid out previously,

and then working with X ′y and X ′X in coordinate descent, without ever returning to the original data. A

similar procedure can be used for Elastic Net given that in this case successive iterations of coordinate

descent can be calculated as:

β̂newj =
zj

1 + λ2

(
sign

(
β̂oldj

)
max

(
|zj |−

λ1

1 + λ2
, 0

))
,

where zj is the jth element of z = X ′(y−Xβ̂old)+β̂old·λ2, andλ1 andλ2 are Lasso andRidge regularisation

parameters. Again, given that z can be expressed asX ′y−X ′Xβ̂old+ β̂old ·λ2, estimation can proceed by,

firstly, accumulating Σ1∼J and Υ1∼J in a block-by-block or line-by-line fashion, and then implementing

coordinate descent with, at most, matrices of dimensionK ×K.

Binary Choice Models via Iteratively Reweighted Least Squares The previously defined estimators

can be implemented in a single cumulative step, potentially offering substantial speed-ups compared to tra-

ditional estimators in cases where both cumulative and standard estimators are feasible, but where limits

are close to met when all observations are housed in working memory (further discussion on relative per-

formance of cumulative and naive procedures are provided in the following sections). In the case of Binary

Choice Models such as probit and logit models, cumulative procedures can similarly be implemented which

exactly replicate non-cumulative procedures while at the same time never housing more than a small num-

ber of observations in memory. However in these cases it is not possible to implement these estimators as

single shot processes, but rather multiple passes through theN rows of data must be conducted. Thus, while

these procedures provide feasible implementations of estimators when the entire dataset cannot be held in

a computer’s working memory, they are unlikely to be as fast as standard procedures when memory is not

a limiting factor.

Nevertheless, to see that cumulative procedures can also be implemented in non-linear models, one

alternative is to use Iteratively Reweighted Least Squares (IRLS). IRLS allows for the estimation of the

10

parameters in non-linear models in a step-wise fashion, where at each step the updated parameter estimates

are based on a weighted least squares problem (Nelder and Wedderburn 1972; Green 1984). Based on this,

cumulative procedures can be used to conduct least squares estimators in each iteration. Specifically, the

IRLS procedure for binary outcome models consists of iteratively solving the following equation until β̂old

and β̂new converge:

β̂new = (X ′WX)−1X ′WZ where Z = Xβ̂old +W−1(y − p)

= β̂old + (X ′WX)−1X ′(y − p) (6)

Here y is an N × 1 vector of outcome variables, and p is predicted value for each unit pi(xi, β̂old) based

on the 1 ×K vector of individual-level realisations xi, such that y − p represents prediction residuals. W

is an N ×N diagonal weight matrix with diagonal elements consisting of pi(xi, β̂old)(1− pi(xi, β̂old)). In

the case of probit models, for example p(xi,β) ≡ φ(xiβ), while in the case of logit models, p(xi,β) =

ln(xiβ/(1 − xiβ)). The quantity in (6) consists of some starting value β̂old which is taken as an input (in

the first iteration, β̂old = 0), and a second component which can be calculated cumulatively in a block-wise

fashion following (4). Thus one can estimate non-linear models where in each step a cumulative procedure

is performed, and a solution is reached when the second term in (6) converges to 0.

Maximum Likelihood and other M-Estimators The use of cumulative procedures like those described

above can similarly be employed to with other classes ofM-estimators where estimation is based on iterative

optimisation procedures provided that observations are assumed to be independently sampled.6 To see

this, consider maximum likelihood estimation implemented using the Newton-Raphson method. Estimation

occurs iteratively, where at each stage the Hessian and Score matrices are evaluated based on the current

iteration of β. Specifically, estimation occurs as follows:

β̂new = β̂old −
[
∂2ℓ(β)

∂β∂β′

]−1

β=β̂old

[
∂ℓ(β)

∂β

]

β=β̂old
, (7)

with the ML solution occurring when this equation converges.

When observations are independent, the Hessian and score matrices in ML are written as summations

6In cases where sampling is not assumed to be independent, generalisations of this procedure could be followed, but likelihood
functions, and hence blocks in the data in cumulative procedures, would need to permit this dependence. We discuss one such case
where sampling is not assumed to be independent in Section 2.4 below.

11

over observations i. For example, in the case of the logit regression:

∂ℓ(β)

∂β
=

N∑

i=1

[
yiF (−xiβ)− (1− yi)F (xiβ)

]
x′i

∂2ℓ(β)

∂β∂β′ = −
N∑

i=1

f(xiβ)x
′
ixi,

where F (·) and f(·) are the logit cdf and pdf respectively.7 This suggests a cumulative procedure can be

employed where a block of arbitrary sizeNj can be read in to memory and the Hessian and Score matrix can

be calculated for this block j based on the values β = β̂old. The summation for each matrix can be stored,

and then a subsequent block of sizeNj can be read in, the Hessian and Score matrices can be calculated, and

added to the previous values. This process can be updated cumulatively until the end of the data is reached.

Finally, a new value for β̂ can be calculated as in (7), either providing the ML estimate if convergence has

occurred, otherwise data will be read again, and another iteration of (7) calculated. In this case, as noted

previously with IRLS, this procedure is feasible when large databases cannot be read into memory in their

entirety, but is unlikely to be as fast as a standard ML procedures if the entire data can be stored in memory.

2.3 Grouped Estimation Procedures, Fixed Effect Estimators, Heterogeneity, and Cross-
Validation

In the previous section, results were shown based on arbitrary divisions of the data into mutually exclusive

blocks. All of the previous results hold if rather than groups of data being based on positions, groups of

data are based on some particular indicator. Consider a variableG capturing membership in some particular

group, with group levels g ∈ G. Using notation Xg and yg to indicate realisations of X and y respectively

for observations where G = g, it is well known that the OLS estimate β̂OLS can be generated over groups

as:

β̂OLS =

⎛

⎝
∑

g∈G
X ′

gXg

⎞

⎠
−1⎛

⎝
∑

g∈G
X ′

gyg

⎞

⎠ (8)

What’s more, as was the case previously, quantities X ′
gXg and X ′

gyg can be built up cumulatively from

arbitrarily small portions of data.

7Similar examples can be easily provided for other common models estimated via ML. In the case of the probit regression,
these functions are written as summations over i of the following form:

∂ℓ(β)
∂β

=
N∑

i=1

[
yi

φ(xiβ)
Φ(xiβ)

− (1− yi)
φ(xiβ)

1− Φ(xiβ)

]
x′
i

∂2ℓ(β)
∂β∂β′ = −

N∑

i=1

φ(xiβ)

[
yi
φ(xiβ) + xiβΦ(xiβ)

Φ(xiβ)2
− (1− yi)

φ(xiβ)− xiβ(1− Φ(xiβ))
[1− Φ(xiβ)]2

]
x′
ixi.

where φ(·) and Φ(·) are the normal pdf and cdf respectively.

12

In practice, this is simply a group-level generalisation of the procedure described in Algorithm 1. As in

Section 2.1, consider data broken down into J row-wise partitions, with each block denoted j and consisting

of Nj observations. For a particular group g ∈ G define Xj′
g X

j
g ≡ Σg

j , and similarly, X
j′
g y

j
g ≡ Υg

j . If no

observations for group g are present in block j, Σg
j is simply defined to be a null matrix OK,K , and Υg

j a

null vector OK,1. As previously, Σg
1∼j refers to the summation Σg

1 + . . .Σg
j , and Υg

1∼j = Υg
1 + . . . + Υg

j .

A group-level generalisation of Algorithm 1 is described in Algorithm 3 below.

Algorithm 3: Grouped cumulative ordinary least squares
Inputs: Database consisting of (y,X ,G), block size b.
Result: Point estimate β̂OLS and variance-covariance matrix V̂ (β̂OLS). Aggregates Σg

1∼J and
Υg

1∼J ∀g ∈ G.

1. Set i = 1 and j = b. Load into memory partition of data covering y,X,G in observations i to j. ;
for g ∈ G1 do

2. Calculate Σg
1, Υ

g
1, and Ψ

g
i ;

3. If observations i to j contain end of file, set e = 1, otherwise, set e = 0 ;
while e ̸= 1 do

4. Replace i = i+ b and j = j + b. Load into memory partition of data covering y,X,G in
observations i to j. ;
for g ∈ Gj do

5. Calculate Σg
j , Υ

g
j , and Ψ

g
j . ;

6. If ∃ Σg
1∼j−1 calculate Σ

g
1∼j = Σg

1∼j−1 + Σg
j , Υ

g
1∼j = Υg

1∼j−1 +Υg
j , and

Ψg
1∼j = Ψg

1∼j−1 +Ψg
j , otherwise, initialise Σ

g
1∼j = Σg

j , Υ
g
1∼j = Υg

j , and Ψ
g
1∼j = Ψg

j ;

7. If observations i to j contain end of file, set e = 1. ;
end

8. Calculate Σ1∼J =
∑

g∈G Σ
g
1∼J , Υ1∼J =

∑
g∈G Υ

g
1∼J , and Ψ1∼J =

∑
g∈G Ψ

g
1∼J . Then:

β̂OLS = (Σ1∼J)
−1Υ1∼J and V̂ (β̂OLS) = σ̂2Σ−1

1∼J ,

where σ̂2 =
[
Ψ1∼J −Υ′

1∼J(Σ1∼J)−1Υ1∼J
]
/(N −K).

Heterogeneity An immediate implication of this group-level cumulative procedure is that instead of gen-

erating a singleK×K matrixΣ1∼J andK×1 vectorΥ1∼J ,NG versions of thesematrices will be generated,

where NG refers to the distinct number of groups. Estimation of overall OLS parameters can then occur

following (8), or any other grouped level estimator can similarly be generated. However, given that group

level statistics Σg
1∼J and Υg

1∼J are also generated, identical models for any sub-samples can then be gen-

erated nearly instantaneously, without ever returning to individual level data. This includes estimates for

each specific group g, but also for aggregated groups, such as groups of states or groups of countries. In

Section 2.4 we will return to show that this also offers substantial benefits for inference in cases of (blocked)

13

bootstrap procedures.

Fixed Effect Estimators We can similarly use these group-level procedures to generate fixed-effect es-

timators, again without ever returning to individual level data. To see how fixed effect estimators can also

be estimated in a cumulative fashion, we will now double-index as Ygt an observation t within group g

(this can be thought of, for example, as a case where observations are repeated within g across time periods

denoted t). We are interested in estimating the parameter vector on some independent variablesXgt, while

controlling for time-invariant group fixed effects µg. The fixed effect estimator can be generated from an

OLS regression on within transformed data. Specifically, this consists of estimating:

ygt − ȳg = (Xgt − X̄g)βFE + (µg − µ̄g) + ugt − ūg

ẏgt = ẊgtβFE + u̇gt

where ẏgt denotes the within transformation of y, ȳg refers to group-level means, and similarly for other

variables. The term ugt is a time-varying stochastic error. The fixed effect estimator is then written as

below:

β̂FE =

⎛

⎝
∑

g∈G

T∑

t=1

Ẋ ′
gtẊgt

⎞

⎠
−1⎛

⎝
∑

g∈G

T∑

t=1

Ẋgtẏgt

⎞

⎠

=
∑

g∈G

T∑

t=1

(
X ′

gtXgt − X̄ ′
gX̄g

)−1
∑

g∈G

T∑

t=1

(X ′
gtygt − X̄ ′

gȳg). (9)

The key insight in (9) is that
∑

g∈G
∑T

t=1(Xgt−X̄g)′(Xgt−X̄g) =
∑

g∈G
∑T

t=1(X
′
gtXgt−X̄ ′

gX̄g). To see

why this is the case, note that we canwrite X̄g as: MgXg, whereMg = Ig−1g(1′g1g)
−11′g is a group-specific

demeaning operator, and 1g a matrix which indicates membership to group g as a column of ones when the

observation belongs to the group, and 0s otherwise. Note also that Mg is an idempotent matrix. Then,

Ẋ ′
gtẊgt = (Xgt − X̄g)′(Xgt − X̄g) = [(I −Mg)Xgt]′(I −Mg)Xgt, and the matrix (I −Mg) is symmetric

and idempotent. Thus, the preceding quantity can be written as X ′
gt(I − Mg)Xgt = X ′

gtXgt − X̄ ′
gX̄g as

required. Also note, that the K × K matrix X̄ ′
gX̄g can be generated from an underlying K × 1 vector of

group level means and the number of observations in each group. Specifically, refer to a group level vector

of variable means as x̄g ≡ (x̄1g x̄2g · · · x̄Kg). Then X̄ ′
gX̄g = Ng × x̄′gx̄g, where Ng is the number of

observations in group g. Identical logic holds to show that Ẋgtẏgt = (X ′
gtygt − X̄ ′

gȳg), and X̄ ′
gȳg can be

generated from group level averages x̄g, aK × 1 vector, and scalar ȳg.

Given this, implementing fixed effect models using grouped data generated in a cumulative fashion is a

14

straightforward extension of Algorithm 3. For ease of exposition we define Ẋ ′
gẊg ≡

∑T
t=1 Ẋ

′
gtẊgt, and

Ẋ ′
gẏg ≡

∑T
t=1 Ẋ

′
gtẏgt. From (8), elementsX ′

gXg and X ′
gyg have already been calculated cumulatively for

all g. The remaining step is to calculate X̄ ′
gX̄g and X̄ ′

gȳg which only requires group-level variable means.

From this,K ×K matrices Ẋ ′
gẊg andK × 1 vector Ẋ ′

gẏg can be generated, and the fixed effect estimator

(9) can be calculated as:

β̂FE =

⎛

⎝
∑

g∈G
Ẋ ′

gẊg

⎞

⎠
−1⎛

⎝
∑

g∈G
Ẋgẏg

⎞

⎠

Similar cumulative procedures can be followed for two-way fixed effect models using the double within-

transformation (Baltagi 2001; Wooldridge 2021). For example for balanced panels over group g and time

t, two way transformations Ẍgt = Xgt − X̄g − X̄t + X̄ and ÿgt = ygt − ȳg − ȳt + ȳ can be calculated, and

similar procedures followed as in the fixed effect case.8

Returning Fixed Effects Generally, when fixed effect models are implemented, the interest is in estimat-

ing the coefficients and standard errors on time-varying variables, and hence a fixed effect estimator like (9)

is appropriate. However, in cases where estimates and standard errors on fixed effects themselves are also

desired, cumulative least squares procedures offer a particularly efficient way to generate these estimates.

To see this, note that in the case of mutually exclusive fixed effects, we can write:

X ′X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑N
i=1 x1ix1i · · ·

∑N
i=1 x1ixKi 0 · · · 0

...
...

∑N
i=1 xKix1i · · ·

∑N
i=1 xKixKi 0 · · · 0

x̄1,g1 · · · x̄K,g1 Ng1 · · · 0
...

...

x̄1,gK · · · x̄K,gK 0 · · · NgK

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X ′y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑N
i=1 x1iyi
...

∑N
i=1 xKiyi

ȳg1
...

ȳgK

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where here we assume data is ordered such that first time-varying variables are included in X , and then

group fixed effects. In this case, the resulting matrix X ′X simply consists of the K × K matrix Σ1∼J in

the top-left corner (where hereK refers to time-varying variables, aNG ×K matrix of group means in the

bottom left corner, thematrixOK,NG in the top right-hand corner, and aNG×NG diagonal matrix containing

the number of observations in each group on the main diagonal. Similarly,X ′y simply consists of the vector

8This results follows from the case of single demeaning. However, here both group and time fixed effects need to be removed.
Noting that we can now define the double-demeaning operation asMgt = [Igt−1g(1

′
g1g)

−11′g−1t(1
′
t1)

−11′+1(1′1)−11′], and
hence write Ẍ as MgtXgt, then Ẍ ′Ẍ = X ′

gtM
′
gtMgtXgt. However, Mgt is idempotent, and so Ẍ ′Ẍ = (X ′

gtXgt − X̄ ′
gX̄g −

X̄ ′
gX̄g + X̄ ′X̄). This then suggests a simple and feasible process for concentrating out two-way (or higher order) fixed effects

by grouping aggregates Σ1∼J andΥ1∼J over g and t, and calculating group-specific, time-specific, and overall means, which can
then be used to estimate β̂FE after processing all data.

15

Υ1∼J in positions 1 toK, and thenNG group-level means below. In this case, the only required information

beyond elements already stored in standard cumulative procedures (Σ1∼J andΥ1∼J), are group level means

and observation numbers, which can be trivially estimated cumulatively. This thus suggests that fixed effect

estimators can be estimated directly and efficiently including all fixed effects in a sequential procedure.

Cross-Validation In Section 2.2 we noted that cumulative procedures could be used for models such as

Ridge, LASSO and elastic net, where commonly tuning parameters are chosen. Often, such tuning parame-

ters are chosen through k-fold cross-validation (see, eg Wu and Wang (2020)). We showed previously that

the tuning parameter λ in these models can be chosen after accumulating matrices X ′X and X ′y (see for

example the case of Ridge regression in (5)). If we follow Algorithm 3, where the group variable is simply

a discrete uniform random variable taking values between 1 and k, resulting matricesX ′
1X1, · · · , X ′

KXK ,

and X ′
1y1, · · · , X ′

KyK , can be used for k-fold cross validation in an efficient way.

To see this, note that cross validation consists of a procedure where for a tuning parameter λ, a spe-

cific group g is held out, and coefficients β̂−g,Ridge(λ) estimated using the remaining groups. Within

group g, the Mean Squared Error associated with this parameter is then calculated as MSE = 1
Ng

||yg −

Xgβ̂−g,Ridge(λ)||2. A similar procedure is then conducted for each of the NG groups, and the MSE as-

sociated with λ is calculated as the sum of the group-specific MSEs. Note that this quantity 1
Ng

||yg −

Xgβ̂−g,Ridge(λ)||2 can be rewritten as 1
Ng

[
(yg −Xgβ̂−g,Ridge(λ))′(yg −Xgβ̂−g,Ridge(λ))

]
= y′gyg −

2β̂−g,Ridge(λ)′X ′
gyg + β̂−g,Ridge(λ)′X ′

gXgβ̂−g,Ridge(λ). Each of the quantities X ′
gyg, X ′

gXg and y′gyg are

already calculated in a cumulative fashion, implying that the MSE for a given lambda can be calculated

entirely from cumulatively calculated aggregates, and MSE-optimal tuning parameters chosen as the value

of λ which minimises this MSE.

2.4 Alternative Inference Procedures

In Section 2.1 we documented that inference could be conducted in a cumulative fashion in the same way as

point estimates, and this required no other special procedures, apart from the accumulation ofΨ1∼J , which

is needed to calculate the variance-covariance matrix but not parameter estimates. This can all be done in

a single pass through blocks of the data. However, this relies on a homoscedasticity assumption. Here we

discuss how inference can proceed in alternative settings.

16

2.4.1 Heteroscedasticity Robust Standard Errors

In cases where heteroscedasticity-robust standard errors are desired, the well-known heteroscedasticity-

robust estimator can be implemented cumulatively. The HC1 variance estimator for OLS is written as:

V̂ (β̂OLS)HC1 =
N

N −K
(X ′X)−1

[
N∑

i=1

û2ix
′
ixi

]
(X ′X)−1

From Section 2.1, we already know that X ′X = Σ1∼J can be generated cumulatively. Similarly, both

K and N can be read trivially from data. If û2i is known, the central component
∑N

i=1 û
2
ix

′
ixi could be

calculated cumulatively: this value, which we will refer to as Ω could be initialised as a null matrix OK,K ,

and in each block of the dataset when an observation i is read in, the quantity û2ix′ixi calculated, and added

to all previous values, as laid out in the Algorithm 4 below. As above, we will define Ωj ≡
∑

i∈j û
2
ix

′
ixi,

and Ω1∼j ≡ Ω1 + · · ·Ωj .

The issue here however is that when the data is first loaded in blocks, we cannot calculate ûi = (yi −

Xiβ̂OLS), as this requires β̂OLS , which is not known until an entire pass through the data has been completed.

Thus, while heteroskedasticity robust estimates can be calculated in a cumulative fashion, this requires the

data be read in a cumulative fashion a second time. In particular, first Algorithm 1 should be run to calculate

β̂OLS , and then Algorithm 4 be run with β̂OLS as an input. However, apart from having to return to read the

data, there is no particular memory restriction which implies that this procedure will not be feasible. The

only addition is a single accumulatedK×K matrix Ω1∼J . Similar procedures can be conducted for IV and

other estimators.

2.4.2 Cluster-Robust Variance Covariance Matrix

Similarly, in the case of standard closed-form cluster-robust variance-covariance estimators, a second pass

through of the data is required to calculate cumulative standard errors.9 In this case, slightly more informa-

tion must be stored, namely an additional vector of sizeK for each of theNG groups over which clustering

occurs, but unless both K and NG are exceedingly large, this should not generate a problem for the fea-

sibility of these procedures. Perhaps somewhat surprisingly, while clustered variance-covariance matrices

account for dependence among observations, it is never necessary for data for an entire cluster to be housed

in a computer’s working memory in order to cluster standard errors by group.

9In Section 2.4.3 we lay out an extremely efficient clustered bootstrap procedure in which it is not necessary to return to
individual-level data.

17

Algorithm 4: Cumulative Estimation of Heteroscedasticity-Robust Variance-Covariance Matrix
Inputs: Database consisting of (y,X), block size b. Point estimate β̂OLS , and Σ1∼J from Algorithm
1.
Result: Variance-covariance matrix V̂ (β̂OLS)HC1.

1. Set i = 1 and j = b. Load into memory partition of data covering y,X in observations i to j ;
2. Calculate Ω1 ;
3. If observations i to j contain end of file, set e = 1, otherwise, set e = 0 ;
while e ̸= 1 do

4. Replace i = i+ b and j = j + b. Load into memory partition of data covering y,X in
observations i to j. ;
5. Calculate Ωj . ;
6. Calculate Ω1∼j = Ω1∼j−1 + Ωj . ;
7. If observations i to j contain end of file, set e = 1. ;

end

8. Calculate: V̂ (β̂OLS)HC1 =
N

N−KΣ−1
1∼JΩ1∼JΣ

−1
1∼J .

To see this, note that the standard cluster-robust variance-covariance estimator is written as follows.

V̂ (β̂OLS)c =
N − 1

N −K

NG

NG − 1
(X ′X)−1

⎡

⎣
∑

g∈G
X ′

g(ûgû
′
g)Xg

⎤

⎦ (X ′X)−1

As previously g refers to groups over which clustered standard errors are desired, andNG refers to the total

number of groups. As in the case of the HC1 estimator, observation, group, and covariate quantities can

be easily read in a cumulative fashion from data, and X ′X is similarly calculated cumulatively. However,

here we additionally require the quantity Ωg ≡
∑

g∈G X
′
g(ûgû

′
g)Xg. For expositional clarity, note that

∑
g∈G X

′
g(ûgû

′
g)Xg =

∑
g∈G(X

′
gûg)(û

′
gXg). Matrix X ′

g is an K × Ng matrix, while ûg is an Ng × 1

vector of regression residuals. Thus, the matrixX ′
gûg is aK × 1 vector, while its transpose û′gXg is 1×K.

Additionally, note thatX ′
gûg is generated by multiplying the observations of each observation with its own

residual, and so can be generated cumulatively. Thus, as previously, if data is arbitrarily divided into J

blocks, the quantity X ′
gûg = X1′

g û1g + . . . + XJ ′
g ûJg can be generated cumulatively by first calculating

Xj′
g û

j
g for each group present within each block j, then summing over all j, and finally using this quantity

to calculate the overall quantity Ωg.10 This procedure is laid out formally in Algorithm 5 below, where as

before, X ′
gûg,1∼j refers to the summation of X1′

g û1g + · · ·+Xj′
g û

j
g.

10It is important to note that this procedure requires working with the K × 1 vector Xj′
g ûj

g at each step. It is not possible to
calculate Ωg at each step, but rather, we must accumulateXj′

g ûj
g and only then calculate Ωg .

18

Algorithm 5: Cumulative Estimation of Cluster-Robust Variance-Covariance Matrix
Inputs: Database consisting of (X,G), block size b. Point estimate β̂OLS , and Σg

1∼J from
Algorithm 3.
Result: Variance-covariance matrix V̂ (β̂OLS)C .

1. Set i = 1 and j = b. Load into memory partition of data covering G,X in observations i to j ;
for g ∈ G1 do

2. Calculate X1′
g û1g ;

3. If observations i to j contain end of file, set e = 1, otherwise, set e = 0 ;
while e ̸= 1 do

4. Replace i = i+ b and j = j + b. Load into memory partition of data coveringX,G in
observations i to j. ;
for g ∈ Gj do

5. Calculate Xj′
g û

j
g. ;

6. If ∃ X ′
gûg,1∼j−1 calculate X ′

gûg,1∼j = X ′
gûg,1∼j−1 +Xj′

g û
j
g, otherwise initialise

X ′
gûg,1∼j = Xj′

g û
j
g. ;

7. If observations i to j contain end of file, set e = 1. ;
end

8. Calculate

V̂ (β̂OLS)c =
N − 1

N −K

NG

NG − 1
(Σ1∼J)

−1

⎡

⎣
∑

g∈G
(X ′

gûg,1∼J)(X
′
gûg,1∼j)

′

⎤

⎦ (Σ1∼J)
−1

.

2.4.3 An Efficient Bootstrap Algorithm for Clustering

While the clustered procedure described in the previous sub-section is feasible and permits for the exact

calculation of analytic cluster-robust variance covariance matrices, it requires opening the data two times:

the first to calculate the parameter estimates, and the second to calculate the standard errors which requires

residuals ûg. However, given the results from Section 2.3, if onewishes to generate a clustered standard error

by bootstrapping, this can be done in a single pass through the data, and additionally bootstrap replicates can

be conducted extremely quickly, and indeed orders of magnitude more quickly than in standard clustered

bootstrap procedures. To see why, note that the parameter estimate of interest can be generated as in (8).

Also note that from Algorithm 3, that cumulative procedures are used to generateK ×K matrices for each

group Σg
1∼J , as well as group-specificK × 1 vectors Υg

1∼J .

This implies that we can generate resampled versions of (8) by simply resampling with replacementNG

19

pairs of matrices Σg
1∼J ,Υ

g
1∼J , and calculating a resampled estimator β̂

b∗ as follows:

β̂∗ =

⎛

⎝
∑

g∗∈G∗

Σg∗
1∼J

⎞

⎠
−1⎛

⎝
∑

g∗∈G∗

Υg∗
1∼J

⎞

⎠ , (10)

where Σg∗
1∼J refers to resampled matrix Σg

1∼J , and similarly for Υ
g
1∼J . When clusters are large, such as

individuals within states of countries, resampling aggregatedmatrices to form bootstrap resamples β̂∗ will be

orders of magnitudes faster than resampling clusters of data. This suggests a potentially substantially faster

bootstrap estimate for the cluster robust variance for the parameter vector β̂. This consists of generating a

large number B of resampled estimates (10), which can be used to calculate the bootstrap CRVE for β̂ as:

V (β̂)CRV E = V (β̂∗) = 1
B

∑B
b=1(β̂

∗
b − E[β̂∗

b])
2.

3 Optimal Implementation

Whether implementing cumulative or standard algorithms, identical calculations are required to be made,

given that cross products are required between each element of X and between X and y for each observa-

tion i. Indeed, cumulative algorithms require strictly more calculations than standard algorithms. To see

this, consider the case of OLS. To calculate coefficients in OLS, X ′ must be multiplied with X , implying

computational time of order O(NK2). Additionally, X ′ must be multiplied with y, implying computa-

tional time of order O(NK). Finally, resolving the linear system X ′Xβ = X ′y involves time O(K3)

via Gauss-Jordan elimination. In the case of cumulative algorithms, identical procedures are required, and

additionally, at each step twoK ×K matrices Σj and Σ1∼j−1 must be summed, which is of computational

time O(K2), and similarly, twoK × 1 vectors Σj and Σ1∼j−1 must be summed, involving time O(K). In

general, N >> K, implying that O(NK2) will dominate in both cases.

Nevertheless, if all computational procedures scale linearly in the number of observations, no gains will

be made by implementing cumulative routines in place of their standard counterparts. However, compu-

tational routines clearly do not scale linearly with sample size indefinitely. To see this, it is sufficient to

consider two cases: one where N is such that observations can be housed in a computer’s working mem-

ory, and another where N exceeds the capacity of a computer’s memory. In the prior case, the calculation

time will be finite, while in the latter case calculation will be impossible, and hence time will be infinite.

In this section we will discuss the optimal implementation where optimality refers to the block size which

minimises calculation time. Given that in the limit cumulative procedures simply revert to standard OLS

estimation if a block size of N is chosen, we consider only the optimal choice of block size for cumulative

procedures. We return to these issues empirically in Section 4.

20

As above, the entire cumulative algorithm for OLS requires a number of well-defined steps. In total,

matrix multiplication between X ′ and X is O(NK2), and between X ′ and Y is O(NK). Final resolution

of the parameters is O(K3). Additionally, within each block j a series of element-by-element summations

must occur to accumulateΣ1∼j andΥ1∼j . In each step these are are of orderO(K2) andO(K) respectively.

Given that there are J such blocks, and in the first block it is not necessary to accumulate Σ1∼1 and Υ1∼1,

these calculations are of computational time O(K2(J − 1)) and O(K(J − 1)). Thus, total computational

time of the algorithm is of the order:

O(NK2) +O(NK) +O(K3) +O(K2(J − 1)) +O(K(J − 1)). (11)

Here it is clear that if a single block is chosen, and hence J = 1, then O(K2(J − 1)) +O(K(J − 1)) = 0

and the cumulative algorithm collapses to OLS.

To consider the optimal block size, we will consider separately three elements of (11). A first element,

corresponding to the first two terms in (11) and denoted L(N,K) is the procedure of loading data and

multiplying matrices required to arrive to X ′X and X ′y. We write this function as L(N,K) = l(NK2 +

NK). A second element, corresponding to the third term in (11), consists of generating estimates β̂ once

provided with X ′X and X ′y, and is written as S(K) = s(K3). And finally, an accumulation procedure,

denotedC(J,K) = c(K2(J−1)+K(J−1)), consisting of the final two terms where matrices are summed

in a cumulative fashion.

Note that given that N = JNj , the first term can be re-expressed as s L(J,K) = l(JNjK2 + JNjK).

For the sake of simplicity, given that Nj is determined by J , below we omit Nj terms as implicit in l(·).

For a givenK, The total time to compute the cumulative least squares algorithm can thus be written as:

Tc(J ;K) = L(J,K) + S(K) + C(J,K).

Hence, the optimal number of partitions of data J should solve the problem:

min
J

(
L(J,K) + S(K) + C(J,K)

)
subject to 0 < J ≤ N.

For an interior solution, this suggests that optimal number of blocks considered should satisfy the following

first order condition:

∂L(J,K)

∂J
+

∂C(J,K)

∂J
= 0

⇒∂L(J,K)

∂J
= −∂C(J,K)

∂J
(12)

21

Note that here given that regardless of the block size chosen, the same final matrix inversion is required,

for a givenK optimality does not depend on S(·), as reflected in (12). This suggests the logical conclusion

that an optimal block size should be chosen which equates the marginal cost of summing an additional set

of matrices across blocks, ∂C(J,K)/∂J , with the marginal benefit coming from loading smaller partitions

of the data into memory to calculateX ′X and X ′Y .

Understanding the optimal block size for conducting cumulative least squares thus requires understand-

ing the nature of functions C(J,K) and L(J,K). The precise nature of these two functions is likely highly

dependent upon a particular computational environment (both software and hardware), nevertheless, we can

suggest a number of key conjectures. Firstly, it is clear that for a given K, C(J,K) will, abstracting from

other elements, be linear in J . To see this, note that for each additional block, we simply require the summa-

tion of an additional identically sizedK×K andK×1matrix. Thus, moving from j to j+1 requires adding

one set of summations, while moving from j+1 to j+2 requires adding an identical set of summations, and

so calculation time will scale linearly in block sizes. Secondly, for a given K, L(J,K) seems unlikely to

be linear in J . Rather, this value is highly dependent on a particular computational environment. Note that

in general, when a computer’s RAM usage is high a number of internal processes such as paging occur such

that loading data into memory becomes increasingly slow as the size of a database increases. Thus, when a

sample approaches the limit of a computer’s RAM, the marginal benefit of increasing the number of blocks

of data is high given that it avoids substantial slowdowns inherent in computational architecture. However,

if a computer’s RAM usage is low, the marginal benefit of increasing the number of blocks approaches zero,

given that no such slowdown in data loading occurs, and the total computation time L(J,K) is independent

of J . Thus, at very high values of J , for example where J approaches the total number of observations, the

marginal benefit of increasing L(J,K) is likely essentially zero given that no memory slowdown occurs

owing to the storage of large amounts of data in memory. However, at high low values of J , if data is large

enough to result in memory slowdowns, the benefit of increasing J is substantial. On the other hand, the

costs of increasing J , C(J,K) are constant in J .

This suggests a number of general results. Firstly, if one is working with large datasets and memory

is not unlimited, it is likely the case that smaller blocks of data should be preferred given that memory

slowdowns can be avoided. If data does not fit in memory, this argument holds with certainty, given that

∂L(J,K)/∂J |Jmin = ∞, where Jmin refers to the point at which it becomes feasible to hold data in

memory. However, if RAM limits are binding with N , the optimal solution is likely not to increase the

number of blocks to the maximum theoretical limit (J = N), given that at low block sizes no memory

slowdown will be observed, but a constant cost increase is observed in terms of sums across blocks. What’s

more, these results suggest that there is no gain from varying the block size across the sample, but rather

22

that a single value ofNJ should be chosen as that which satisfies (12). Finally, as the number of covariates

increases, it seems likely that fewer blocks should be preferred, given that the cost of adding marginal

blocks increases inK. Precise optimawill vary across computers and configurations, and are thus specific to

particular contexts. In the following section wewill document specific examples which point to a Goldilocks

principle of choosing blocks neither too big nor too small, and, fortunately, suggest that computation time

is quite flat over a large range of blocks, provided that extreme situations are not encountered.

4 Illustrations

In this section we document two examples to illustrate the performance of cumulative procedures in practice.

A first example is based on simulated data where we maintain fixed computational resources and vary key

parameters of the data (namely the number of observations and the number of variables). And a second

example is based on real data, where we document the performance of cumulative versus standard estimation

procedures in a range of computational environments and with various methods of estimation.

4.1 Simulated Data

To demonstrate the relative performance of the cumulative algorithm compared with a standard regression

implementation, we test the time to complete calculations under controlled conditions. Specifically, we

compare the time it takes to run an OLS regression using cumulative and standard estimation routines based

on the same data. We conduct these tests on a server with 1GB of dedicated RAM and no outside processes

running to ensure comparability across estimation times.11 We consider a range of observation numbers

and independent variables, and, in the case of the cumulative algorithm, also document times under a range

of block sizes. In each case, the time completed consists of identical procedures: namely, in the case of

the cumulative algorithm it is the time to import all blocks of data, calculate the necessary block-specific

quantities, and finally return the regression estimates, standard errors and R-squared. And in the case of a

‘standard’ regression implementation, the time simply refers to the time to open the data from the disk and

estimate the OLS regression using canned software.

The test procedure thus consists of generation of data of the following general form:

y = Xβ + u,

11This is a commercially available Virtual Private Server with a 4 core CPU running a Linux-based operating system. All data
is stored on the server on a solid state drive.

23

where X is an N × K matrix of simulated data consisting of a constant and K − 1 uniformly distributed

variables, u ∼ N (0, 3) is a simulated N × 1 error term, and β is a K × 1 vector of parameters. Here we

consider processing times varyingK, N and the block size, Nj , where in each case X and y are treated as

inputs, u as unobservable, and β as a vector of parameters to estimate.

Tests are conducted using a recent version of Stata (specifically, Stata version 16), where the cumulative

algorithm is written principally in Stata’s matrix language Mata. Regression is conducted using Stata’s

native “regress” command. Initially, a single core version of Stata is used (Stata SE), however relative

performance is shown to follow qualitatively similar patterns when a multiple processor version of Stata is

used (Stata MP). In Section 4.2 we consider a range of alternative estimation procedures and models.

Figure 1: Sample size and execution time of commercial routine versus cumulative method

0

100

200

300

400

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000 20,000 25,000

Observations (in thousands)

Cumulative LS Stata regress

(a) 5 Independent Variables

0

100

200

300

400

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000

Observations (in thousands)

Cumulative LS Stata regress

(b) 10 Independent Variables

0

100

200

300

E
x

ec
u

ti
o

n
 T

im
e

0 2,000 4,000 6,000 8,000

Observations (in thousands)

Cumulative LS Stata regress

(c) 20 Independent Variables

0

100

200

300

E
x

ec
u

ti
o

n
 T

im
e

0 1,000 2,000 3,000 4,000

Observations (in thousands)

Cumulative LS Stata regress

(d) 50 Independent Variables

Notes: All times refer to the computation time of reading data into memory and estimating an ordinary least squares regression.
Tests are all conducted on a system with 1GB of RAM, with no other processes running. In each case, tests are conducted up to the
point at which there is insufficient RAM to open the data, this precluding the estimation of standard regression models. Beyond
this point, it is still feasible to estimate parameters using Cumulative Least Squares.

Processing times for estimation of cumulative algorithms versus standard regression software are docu-

24

mented in Figure 1. Each panel presents processing times for a particular number of simulated independent

variables ranging from 5 (panel (a)), to 50 (panel (d)). Processing time in seconds is documented on the

vertical axis of each plot, and the total number of observations in thousands is documented on the horizontal

access. Times for standard regression software are presented as hollow squares with dashed lines, while

times for cumulative algorithms are presented as hollow circles connected by a solid black line. Each point

refers to a specific simulated dataset and the time it takes to estimate parameters, standard errors, and other

regression statistics with this data. In this Figure, in each case where cumulative algorithms are used the

block size is arbitrarily chosen to contain 10% of the total number of observations.

Across all panels we observe, unsurprisingly, that as the total number of observations grow for a fixed

K, processing time increases. For cumulative algorithms, this processing time increases approximately lin-

early. For example, for the case where K=5, regressions with 5, 10, 15 and 20 million observations take

approximately 30, 60, 90 and 120 seconds to run. This is observed in all panels. Similar linear behaviour is

observed in standard regression software when the observation numbers are moderate compared to the total

RAM available. However, the linear relationship breaks down and processing times become considerably

slower from around the time that the total number of observations approaches around 50% of the memory

capacity of the computer.12 This implies that at relatively small numbers of observations compared to a

computer’s available memory, the processing time of cumulative procedures are similar to that of standard

non-cumulative procedures, however cumulative procedures then rapidly become 2 to 3 times fasted than

non-cumulative counterparts. At some point, when the number of observations grows beyond the capacity

of the RAM, non-cumulative procedures become infeasible to estimate, while the processing time of cu-

mulative procedures continue to scale linearly indefinitely. If similar tests are run using multiple processor

versions of software, similar patterns are observed (Appendix Figure A1).

Results from Figure 1 are based on a block sizeNj which is arbitrarily chosen asNj = N/10. If data is

very large, blocks of this size will also imply that individual blocks of data cannot fit in memory. In Figure

2 we document processing times of cumulative least squares procedures where the block size is varied from

1% of data up to 50% of data (using sizes of greater than 50% of data is not sensible, as one block will be

larger than the other).13 Once again, we document times across a range of values for K (panels), and N

(horizontal axes). Each point refers to the time for a single regression. We observe that across all cases

examined, in general smaller block sizes are marginally faster.

12In principle, a computer with 1GB of RAM contains 1×109 × 10243

10003
bytes of memory. A given line of data in our sim-

ulations consists of K double precision variables which each occupy 8 bytes of memory (K − 1 independent variables and the
dependent variable). Thus, one can calculate the theoretical maximum number of observations which could be held in memory as
1×109

K×8 × 10243

10003
. In Figure 1 we observe that the kink in processing times for Stata’s regress command occurs at around 12,000,000

observations, or around 44% of the computer’s theoretical maximum observations.
13These are essentially profiles of a surface where the block size is varied continuously. The entire surface is plotted in Appendix

Figure A2.

25

Figure 2: Execution Time of Cumulative Least Squares by Block Size

0

50

100

150

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000 20,000 25,000

Observations (1000s)

1% 5% 10% 20% 25% 33% 50%

(a) 5 Independent Variables

0

50

100

150

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000

Observations (1000s)

1% 5% 10% 20% 25% 33% 50%

(b) 10 Independent Variables

0

50

100

150

E
x

ec
u

ti
o

n
 T

im
e

0 2,000 4,000 6,000 8,000

Observations (1000s)

1% 5% 10% 20% 25% 33% 50%

(c) 20 Independent Variables

0

50

100

150

200

E
x

ec
u

ti
o

n
 T

im
e

0 1,000 2,000 3,000 4,000

Observations (1000s)

1% 5% 10% 20% 25% 33% 50%

(d) 50 Independent Variables

Notes: All times refer to the computation time of reading data into memory and estimating a cumulative least squares regression.
Tests are all conducted on a system with 1GB of RAM, with no other processes running. Block sizes as a proportion of the total
observation numbers are indicated in the figure legend.

Figure 3 documents the ratio of computation times from Stata’s native regress command compared to

cumulative least squares, where cumulative least squares is implemented with the same range of block sizes

displayed in Figure 2. Values of less than 1 imply that standard (non-cumulative) estimation procedures

are faster than cumulative procedures, while values greater than 1 imply that cumulative procedures are

faster than non-cumulative procedures. In line with the substantial increase in non-cumulative procedures

documented in Figure 1, we observe a sharp improvement in the ratio at around 50% of the theoretical

maximum memory. In this particular implementation, when the smallest block size is used (1% of N), the

ratio is consistently greater than 1.

These results may suggest that the optimal procedure is thus to choose a block size as small as possible.

All results in this paper hold for block sizes as small as Nj = 1, and even in cases where Nj = N/100,

the block size considered exceeds 1. In Figure 4 we consider execution times for a particular simulated

26

Figure 3: Relative Time of Cumulative Least Squares Versus Standard Implementation by Block Size

1

1.5

2

2.5

3

3.5

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000 20,000 25,000

Observations (1000s)

1% 10% 20% 30% 35% 40% 45%

(a) 5 Independent Variables

1

1.5

2

2.5

3

3.5

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000

Observations (1000s)

1% 10% 20% 30% 35% 40% 45%

(b) 10 Independent Variables

1

1.5

2

2.5

3

E
x

ec
u

ti
o

n
 T

im
e

0 2,000 4,000 6,000 8,000

Observations (1000s)

1% 10% 20% 30% 35% 40% 45%

(c) 20 Independent Variables

1

1.5

2

2.5

E
x

ec
u

ti
o

n
 T

im
e

0 1,000 2,000 3,000 4,000

Observations (1000s)

1% 10% 20% 30% 35% 40% 45%

(d) 50 Independent Variables

Notes: Each point presents the ratio of computation times of Stata’s native regression command to cumulative least squares. Values
less than 1 imply non-cumulative procedures are faster than cumulative procedures, and vice versa for values greater than 1. All
times refer to the computation time of reading data into memory and estimating a cumulative least squares regression. Tests are all
conducted on a system with 1GB of RAM, with no other processes running. Block sizes as a proportion of the total observation
numbers are indicated in the figure legend.

dataset (N=25,000,000,K = 5), however here allowing block sizes to fall to their smallest possible value.

A logarithmic scale is used on the horizontal scale allowing black sizes to vary from 1 to 12.5 million

observations (50% of the total observations). Panel (a) uses an identical 1GB server as that used in tests

above, while panel (b) documents the same times on a computer where memory limits do not bind. In this

case we observe that the optimal block size is not the smallest possible size (N = 1), but rather follows

the Goldilocks principle laid out in Section 3. Clearly, block sizes that are so large that memory constraints

begin to bind withNj observations should be avoided, however, a very small block size is also sub-optimal,

given that this requires the accumulation of manyXj′Xj andXj′yj matrices. Where memory limits do not

bind sharply (panel (b)) onemaywish to workwith slightly larger block sizes to avoid sub-optimal behaviour

observed with very small block sizes, as provided extreme regions are avoided, the practical choice of block

27

Figure 4: Optimal Block Size and Available Memory

100

200

300

400

E
xe

cu
tio

n
 t
im

e

1 5 10 25 50 10
0

25
0

50
0
10

00

10
00

0

10
00

00 1
M

5
M

12
.5

 M

Block size (log scale)

(a) Memory Limits Binding

90

100

110

120

130

E
xe

cu
tio

n
 t

im
e

1 5 10 25 50 10
0

25
0

50
0
10

00

10
00

0

10
00

00 1
M

5
M

12
.5

 M

Block size (log scale)

(b) No Binding Memory Limits

Notes: Total time taken to estimate a regression with 5 independent variables and 25 million observations is documented. Varying
block sizes are used, as plotted on the horizontal axes, and total time is plotted on the vertical axis. The left-hand panel is estimated
on a server with 1GB of RAM, 4 cores, and an Intel i7 processor. The right-hand panel is estimated on a PC with 32GB of RAM,
8 cores and Intel i7 processors. In each case, estimates are generated 50 times for each block size and average times are plotted as
circles. The 95% confidence interval of these estimation times are plotted in yellow.

appears to be of second order importance.

4.2 An Empirical Example

We document the performance of cumulative algorithms and their non-cumulative counterparts on a real

empirical example. This empirical example is based on a large sample of microdata, following Aaronson

et al. (2020). Aaronson et al. estimate the impact of fertility on mother’s labour supply using data over

2 centuries from censuses and demographic surveys. We follow Aaronson et al. (2020) in downloading

data from IPUMS and the Demographic and Health Surveys resulting in 51,449,770 observations covering

106 countries, with observations drawn from 434 country by year cells. Data covers years 1787-2015, and

measures women’s labour force participation, total fertility, and a number of other mother-level covariates.

In Appendix C we provide summary statistics as well as a graph documenting the years covered in data and

a graph documenting the countries covered and the number of observations in each (Figures A3 and A4).

This example is well-suited to our setting because it allows us to document the relative performance of

a number of different estimation and inference procedures. Specifically, two models are considered, and

these are estimated in a number of ways. A first model is simple (weighted) ordinary least squares, where

each woman’s labour for participation measure is regressed on her total fertility. We estimate:

Participationict = β0 + β1Fertilityict +X ′
ictβ + φc×t + εict, (13)

28

for individual i in country c observed in year t, where country by year fixed effects are indicated as φ, and

covariates Xict are those indicated by Aaronson et al.; namely each women’s age, age at first birth, and

first born child’s sex. Second, we estimate an IV model, where in the first stage, a measure of fertility

(specifically whether a woman has a third child) is regressed on an indicator of a woman having second

birth twins, and then in a second stage labour force participation is regressed on instrumented fertility:

Fertility 3ict = π0 + π1Twin 2ict +X ′
ictΠ+ φc×t + νict

Participationict = γ0 + γ1 ̂Fertility 3ict +X ′
ictΓ+ φc×t + ηict. (14)

All other details follow those laid out in (13), and replicate models proposed by Aaronson et al. (2020).14

This IV strategy follows a long tradition, starting with Rosenzweig and Wolpin (1980), of seeking to draw

conditionally exogenous variation in fertility owing twin births (see Bhalotra and Clarke (2023) for a recent

overview).

In this context, we are interested in documenting the processing times of IV and OLS estimation of co-

efficients and standard errors with a number of specific estimation procedures. This includes IV and OLS

models where fixed effects are directly estimated as well as estimation by fixed effects estimators where

fixed effects are concentrated out resulting in estimates only of coefficients on time-varying variables. We

also consider a number of alternative inference procedures; namely, firstly assuming homoscedasticity, then

clustering standard errors by country×year, both analytically, and with a clustered bootstrap. We report the

processing time of cumulative algorithms written by us to implement the procedures we lay out above com-

pared to commercially produced (non-cumulative) algorithmswritten in Stata (version 18). We also consider

alternative non-commercial (non-cumulative) algorithms which implement potentially more efficient fixed

effect procedures, namely a more rapid implementation of the within transformation described by Gaure

(2013), Guimarães and Portugal (2010), Correia (2015), implemented by Correia (2015). All processing

times are measured in minutes and include the time of reading data, estimating the regression and produc-

ing output, and are estimated under controlled conditions on a a server with fixed characteristics which are

varied across tests. Each procedure is estimated 10 times, with average processing times reported.

Results are displayed in Table 1. Each cell provides the average processing time for a particular esti-

mation procedure in a particular computational environment. Estimation procedures are listed in rows, and

computational resources are listed in columns. In Panel A we document times corresponding to OLS (13),

and in Panel B we document times corresponding to IV (14). Within panels, we first present processing

times for cumulative algorithms, and below this, standard regression or IV regression implementations. We

replicate each process for a range of computational systems. These are all commercially available dedi-
14All results are replicated exactly.

29

Table 1: Execution Time Across Models in a Labour Market Participation Example: OLS and IV

Memory Constraints

1 GB 2 GB 8 GB 16 GB 32 GB

Panel A: OLS
Cumulative Procedures
Within-transformation 4.060 4.135 4.111 4.236 4.108
Within, Clustered 7.979 8.053 7.994 8.174 7.929
Within, Clustered Bootstrap 4.086 4.133 4.151 4.209 4.084
Clustered Bootstrap (s) 3.684 3.745 3.798 3.815 3.715
Full Estimation 4.016 4.010 4.046 4.109 3.951

Standard Procedures
Within-transformation (areg) – 13.677 8.669 8.290 8.497
Within, Clustered – – 12.034 11.029 11.333
Full Estimation – 16.474 10.147 10.103 10.054
Within-transformation (hdfe) – – – 3.605 3.476
Within, Clustered (hdfe) – – – 3.794 3.554

Panel B: IV
Cumulative Procedures
Within-transformation 4.600 4.608 4.609 4.698 4.589
Within, Clustered 8.575 8.653 8.724 8.825 8.636
Within, Clustered Bootstrap 4.428 4.449 4.429 4.539 4.383
Winthin, Clustered Bootstrap (s) 4.267 4.293 4.278 4.376 4.271
Full Estimation 4.362 4.379 4.350 4.448 4.329

Standard Procedures
Within-transformation (xtivreg) – – – – 6.629
Within, Clustered – – – – 15.958
Full Estimation – – – – 226.181
Within-transformation (hdfe) – – – – 5.996
Within, Clustered (hdfe) – – – – 8.597

Panel C: System Benchmark 768.1 764.9 769.9 772.7 778.5
Notes: Each cell reports average processing time in minutes of a particular estimation procedure based
on the memory constraints listed in column headers. All averages are taken over 10 estimations. Cells
are coloured gray when estimation cannot occur due to memory limits. All methods are estimated in
Stata 18 SE. For clustered bootstrap errors, (s) stands for “sorted”, implying that the database is sorted
by clusters prior to processing. System benchmark is a standard test of processor capacity run on the
operating system to provide a baseline comparison of server performance across columns.

cated private servers with virtual memory limits (RAM) listed in column headers. Although each column

principally changes the quantity of RAM available on the server, a number of other more minor changes

may occur on the server when changing configurations. For this reason, in Panel C we provide a system

benchmark which shows the server’s performance on a standard numerical test.15

15Specifically, the system benchmark consists of counting the number of times that the computer is capable of calculating all
the primes up to 10,000 in a 10 second span. In this case, higher values of the system benchmark imply that the computer is faster.

30

Considering the behaviour of cumulative algorithms in OLS, we see that irrespective of the computer’s

memory, the processing time is very similar, ranging from an average of 4.0 to 4.2 minutes when estimation

is conducted by within-transformed variables as in (9). This stability across systems is precisely the value

of cumulative regression procedures. Here, whether one has available a system with substantial memory

(32 GB) or very little memory (1 GB), there is no change in performance. The case of standard regression is

of course different. In systems with small memory capacity it is simply infeasible to load data and estimate

parameters. These cells are shaded in gray. Initially, when loading data into a systemwith 2GB ofmemory is

viable, the standard implementation proves markedly slower than its cumulative counterpart (13.67 minutes

compared to 4.1 minutes). Yet, this instance is particularly noteworthy, revealing an overflow in the standard

procedure at the threshold of memory usage limits. Moving to larger memory capacities reduces the time

of processing of within transformed models slightly (to around 8.3 to 8.6 minutes), but given the efficiency

with which cumulative routines can conduct fixed effect procedures (Section 2.3), standard implementations

do not approach the performance of cumulative algorithms. Alternative routines for dealing with fixed

effects are observed to be slightly faster when they are feasible to be estimated, as observed when within-

transformed models from cumulative algorithms are compared with hdfe implementations. However, such

models are infeasible in a range of cases where lower memory limits are binding, and similarly cannot return

full parameter vectors.

When we wish to report full parameter vectors (“Full Estimation”), cumulative algorithms outperform

comparison estimators. Across system types, cumulative procedures require between 3.9 to 4.2 minutes for

estimation, while similar procedures in non-cumulative models require around 10 minutes. It is noteworthy

that in the case of cumulative algorithms, full estimation including fixed effects is marginally faster than

within-transformed versions, and this owes to the fact that within transformations require conducting group-

level analyses to store matrices Σ and Υ for each group, while models to return full fixed effects do not.

Turning to inference, we observe that when calculating clustered standard errors analytically, the process-

ing time of cumulative algorithms approximately doubles. This owes to the procedure laid out in Section 2.4

where the calculation of standard errors requires estimates of û, and hence requires reading data two times.

However, one particular advantage of fixed effect estimation is that if clustered standard errors are desired,

running block bootstraps is virtually costless. In Table 1 we run 500 bootstraps following the procedure

laid out in Section 2.4.3, seeing that this adds nearly no processing time (row 1 compared to row 3 of Table

1). We do not display the comparison for standard clustered bootstrap processing times in the table in a

non-cumulative process, simply because this procedure increases linearly in the number of bootstraps, and

is many orders of magnitude slower than cumulative procedures. In general, all group-level processing in

Table 1 occurs when data is sorted in any order, however if data is indeed sorted by group prior to process-

31

ing, estimation time further falls given that group-level processing of data can occur more rapidly (row 4 of

panel A).

In the case of IVmodels, results are evenmore stark given that non-cumulative calculations require hous-

ing larger matrices in memory, and make processing infeasible at a broader range of memory restrictions.

Indeed, in this case, even with data with only approximately 50 million observations, processing in non-

cumulative routines becomes feasible at 32 GB of memory, but not before. We again see a number of key

take-aways from Panel B of Table 1. These are, firstly, that cumulative routines open up feasibility where

previously estimation could not occur. Secondly, even where processing can occur, cumulative algorithms

are generally faster than non-cumulative procedures. In some cases, presumably where data approaches the

memory limits of the computer, comparisons suggest that even where feasible, non-cumulative methods

may be considerably slower than cumulative counterparts. This is especially clear in the comparison of IV

models where all fixed effects are estimated (226 minutes) to a similar procedure in cumulative 2SLS (4.3

minutes).

It is important to note that this example should be conceived as simply illustrative of the fact that along

with the conceptual interest of cumulative procedures, they do have practical implications too. Our im-

plementations are unlikely to compare to commercial implementations in terms of the efficiency of every

internal process, so could be conceived as lower bounds of the performance in this particular setting. In other

languages and on other specific computational environments results will also vary. If instead of conducting

these tests in single threaded versions of Stata we conduct them in multiple processor environments, results

are observed to be similar in nature (Appendix Table A1). What’s more, while this data has a reasonable

number of observations (around 50 million), estimation is feasible with as little as 8GB of memory depend-

ing on the estimation procedure. However, in cases with much larger data, such memory limits will be far

more binding, suggesting that the feasibility benefit of cumulative algorithms may be more important.

5 Discussion and Conclusions

In this paper we show that regressions can be estimated row-wise, without ever requiring all of the informa-

tion from a dataset at a given moment of time. In the limit, we show that regressions can be estimated in a

simple fashion where only a single line of data is read at a time and then forgotten, with only a small number

of low dimensional matrices needing to be updated over time. This fact appears to have been documented

in very early computational work in economics (Brown, Houthakker, and Prais 1953), however only for a

very specific variant of the problem.

Despite the ubiquity of procedures which work in a column-wise fashion in econometrics—based on

32

results known since the seminal papers of Frisch and Waugh (1933), Lovell (1963)—to our knowledge

these row-wise results have received very scarce attention. We show that these results hold for a broad class

of regression models including OLS, IV, fixed effect, and regularised regression models such as Ridge and

LASSO, and that the logic of these results holds both for both least squares and otherM-class estimators such

as probit and logit models. These results are not approximations, providing exact calculations of regression

coefficients, and can similarly generate standard errors and other regression statistics such as goodness of

fit measures exactly. Turning to inference, we show that these methods apply for both homoescedastic

error assumptions, as well as for heteroscedasticity- and cluster-robust variance estimators. We additionally

document that certain bootstrap procedures and the definition of tuning parameters can be substantially more

efficient with applications of the results from this paper.

As well as the theoretical interest of understanding the mechanics of frequently used regression models,

these results have a large number of practical uses. In both simulated and real data we show that these results

imply that models which cannot be estimated on certain computers using standard commercial implemen-

tations of regression software can be estimated using the same programs but with our algorithms. What’s

more, even in cases where a computer’s memory does not limit data from being opened, we show that our

algorithms can at times offer non-trivial speed ups over standard software. In some sense these results could

be cast as democratising the processing of big data via regression, as, provided that a sufficiently large hard

disk is available, one could process extremely large datasets with very low memory requirements. Indeed,

there is no reason why these results could not be applied to data stored remotely, or on the web, implying

that it would not be necessary to have access to super computers to process data of any size.

The results in this paper are likely lower bounds of the true performance of these algorithms. We have

implemented the results in this paper in a high level matrix processing language, and comparisons are made

to programs written largely in faster low-level languages. What’s more, the procedures we use here process

all data in a naive sequential fashion. The results from this study make clear that regression is an embar-

rassingly parallelisable task, and so if data is stored or broken down into various chunks in different files,

processing times likely also scale approximately linearly in parallel processes. All told, these results sug-

gest that transposing the ideas of Frisch-Waugh-Lovell to process regressions in a row-by-row rather than

column-by-column fashion provides both an interesting theoretical proposition, as well as useful practical

applications.

33

References

Aaronson, D., R. Dehejia, A. Jordan, C. Pop-Eleches, C. Samii, and K. Schulze (2020, 08). The Effect of
Fertility on Mothers’ Labor Supply over the Last Two Centuries. The Economic Journal 131(633),
1–32.

Abadie, A. (2003, April). Semiparametric instrumental variable estimation of treatment response models.
Journal of Econometrics 113(2), 231–263.

Abadie, A., S. Athey, G.W. Imbens, and J. M.Wooldridge (2020). Sampling-Based versus Design-Based
Uncertainty in Regression Analysis. Econometrica 88(1), 265–296.

Angrist, J. D. (1998). Estimating the Labor Market Impact of Voluntary Military Service Using Social
Security Data on Military Applicants. Econometrica 66(2), 249–288.

Baltagi, B. H. (2001). Econometric Analysis of Panel Data (2nd ed.). Chichester: John Wiley and Sons.

Bhalotra, S. and D. Clarke (2023). Analysis of Twins, pp. 1–37. Springer International Publishing.

Brown, J. A. C., H. S. Houthakker, and S. J. Prais (1953). Electronic Computation in Economic Statistics.
Journal of the American Statistical Association 48(263), 414–428.

Cameron, A. C., J. B. Gelbach, and D. L. Miller (2008, August). Bootstrap-Based Improvements for
Inference with Clustered Errors. The Review of Economics and Statistics 90(3), 414–427.

Correia, S. (2015, March). HDFE: Stata module to partial out variables with respect to a set of fixed
effects. Statistical Software Components, Boston College Department of Economics.

Frisch, R. and F. V.Waugh (1933). Partial Time Regressions as Compared with Individual Trends.Econo-
metrica 1(4), 387–401.

Fu, W. (1998). Penalized Regressions: The Bridge vs. the Lasso. Journal of Computational and Graph-
ical Statistics 7(3), 397–416.

Gaure, S. (2013). OLS with multiple high dimensional category variables. Computational Statistics &
Data Analysis 66, 8–18.

Gelbach, J. B. (2016). When Do Covariates Matter? And Which Ones, and How Much? Journal of
Labor Economics 34(2), 509–543.

Green, P. J. (1984). Iteratively Reweighted Least Squares forMaximumLikelihood Estimation, and some
Robust and Resistant Alternatives. Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 46(2), 149–192.

Guimarães, P. and P. Portugal (2010, December). A simple feasible procedure to fit models with high-
dimensional fixed effects. Stata Journal 10(4), 628–649.

Hager, W. W. (1989, 6). Updating the Inverse of a Matrix. SIAM Review 31(2), 221–239.

34

Lovell, M. C. (1963). Seasonal Adjustment of Economic Time Series and Multiple Regression Analysis.
Journal of the American Statistical Association 58(304), 993–1010.

MacKinnon, J. G. (2023a). Fast cluster bootstrap methods for linear regression models. Econometrics
and Statistics 26, 52–71.

MacKinnon, J. G. (2023b). Using large samples in econometrics. Journal of Econometrics 235(2), 922–
926.

Miller, K. S. (1981, 3). On the Inverse of the Sum of Matrices.Mathematics Magazine 54(2), 67–72.

Nelder, J. A. and R.W.M.Wedderburn (1972). Generalized linearmodels. Journal of the Royal Statistical
Society. Series A (General) 135(3), 370–384.

Roodman, D., M. Ørregaard Nielsen, J. G.MacKinnon, andM. D.Webb (2019). Fast and wild: Bootstrap
inference in Stata using boottest. The Stata Journal 19(1), 4–60.

Rosenzweig, M. R. and K. I. Wolpin (1980). Testing the Quantity-Quality Fertility Model: The Use of
Twins as a Natural Experiment. Econometrica 48(1), 227–240.

Solon, G., S. J. Haider, and J. M. Wooldridge (2015). What Are We Weighting For? Journal of Human
Resources 50(2), 301–316.

Stefanski, L. A. and D. D. Boos (2002). The Calculus of M-Estimation. The American Statistician 56(1),
29–38.

Słoczyński, T. (2022, 05). Interpreting OLS Estimands When Treatment Effects Are Heterogeneous:
Smaller Groups Get Larger Weights. The Review of Economics and Statistics 104(3), 501–509.

Varian, H. R. (2014, May). Big Data: New Tricks for Econometrics. Journal of Economic Perspec-
tives 28(2), 3–28.

Woodbury, M. A. (1950). Inverting modified matrices. Memorandum Report 42, Statistical Research
Group, Princeton University, Princeton, NJ.

Wooldridge, J. M. (2021, August 17). Two-Way Fixed Effects, the Two-Way Mundlak Regression, and
Difference-in-Differences Estimators. Technical report, Social Science Research Network. Available
at SSRN: https://ssrn.com/abstract=3906345 or http://dx.doi.org/10.2139/ssrn.
3906345.

Wu, Y. and L. Wang (2020). A Survey of Tuning Parameter Selection for High-Dimensional Regression.
Annual Review of Statistics and Its Application 7(1), 209–226.

35

https://ssrn.com/abstract=3906345
http://dx.doi.org/10.2139/ssrn.3906345
http://dx.doi.org/10.2139/ssrn.3906345

Appendices for: Frisch-Waugh-Lovell′

Damian Clarke, Nicolás Paris Torres & Benjamín Villena-Roldán
Not for print.

36

A
A
Si
m
pl
e
V
is
ua
lis
at
io
n
in
M
at
ri
x
Fo
rm

C
on
si
de
ra

si
m
pl
ei
llu
st
ra
tio
n
of
th
eg

en
er
at
io
n
of

X
′ X

ba
se
d
on

ac
as
ew

he
re
X
is
am

at
rix

co
ns
is
tin
g
of

N
=

4
ob
se
rv
at
io
ns
an
d
K

=
3
in
de
pe
nd
en
t

va
ria
bl
es
.F

or
ea
se
of
vi
su
al
is
at
io
n,
w
e
w
ill
de
no
te
X

as
fo
llo
w
s: ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

x
1
,1

x
1
,2

x
1
,3

x
2
,1

x
2
,2

x
2
,3

x
3
,1

x
3
,2

x
3
,3

x
4
,1

x
4
,2

x
4
,3

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

w
he
re
al
lr
ea
lis
at
io
ns

of
in
de
pe
nd
en
tv
ar
ia
bl
es
fo
ro
bs
er
va
tio
n
i
=

1
ar
e
co
lo
ur
ed

in
bl
ue
,a
nd

fo
ro
bs
er
va
tio
n
i
=

4
ar
e
co
lo
ur
ed

in
re
d.

N
ow

no
te

th
at
X

′ X
ca
n
be

w
rit
te
n
in
ex
te
ns
iv
e
fo
rm

as
be
lo
w
:

X
′ X

≡

⎛ ⎜ ⎜ ⎝

x
1
,1

x
2
,1

x
3
,1

x
4
,1

x
1
,2

x
2
,2

x
3
,2

x
4
,2

x
1
,3

x
2
,3

x
3
,3

x
4
,3

⎞ ⎟ ⎟ ⎠

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

x
1
,1

x
1
,2

x
1
,3

x
2
,1

x
2
,2

x
2
,3

x
3
,1

x
3
,2

x
3
,3

x
4
,1

x
4
,2

x
4
,3

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

=

⎛ ⎜ ⎜ ⎝

x
2 1
,1
+
x
2 2
,1
+
x
2 3
,1
+
x
2 4
,1

x
1
,1
x
1
,2
+
x
2
,1
x
2
,2
+

x
3
,1
x
3
,2
+
x
4
,1
x
4
,2

x
1
,1
x
1
,3
+

x
2
,1
x
2
,3
+
x
3
,1
x
3
,3
+

x
4
,1
x
4
,3

x
1
,2
x
1
,1
+
x
2
,2
x
2
,1
+
x
3
,2
x
3
,1
+
x
4
,2
x
4
,1

x
2 1
,2
+
x
2 2
,2
+

x
2 3
,2
+
x
2 4
,2

x
1
,3
x
1
,1
+

x
2
,3
x
2
,1
+
x
3
,3
x
3
,1
+

x
4
,3
x
4
,1

x
1
,3
x
1
,1
+
x
2
,3
x
2
,1
+
x
3
,3
x
3
,1
+
x
4
,3
x
4
,1

x
1
,3
x
1
,2
+
x
2
,3
x
2
,2
+

x
3
,3
x
3
,2
+
x
4
,3
x
4
,2

x
2 1
,3
+

x
2 2
,3
+
x
2 3
,3
+
x
2 4
,3

⎞ ⎟ ⎟ ⎠

=

⎛ ⎜ ⎜ ⎝

x
2 1
,1

x
1
,1
x
1
,2

x
1
,1
x
1
,3

x
1
,2
x
1
,1

x
1
,3
x
1
,1

x
1
,3
x
1
,1

x
1
,3
x
1
,1

x
1
,3
x
1
,2

x
2 1
,3

⎞ ⎟ ⎟ ⎠
+

⎛ ⎜ ⎜ ⎝

x
2 2
,1

x
2
,1
x
2
,2

x
2
,1
x
2
,3

x
2
,2
x
2
,1

x
2 2
,2

x
2
,3
x
2
,1

x
2
,3
x
2
,1

x
2
,3
x
2
,2

x
2 2
,3

⎞ ⎟ ⎟ ⎠
+
··
·+

⎛ ⎜ ⎜ ⎝

x
2 4
,1

x
4
,1
x
4
,2

x
4
,1
x
4
,3

x
4
,2
x
4
,1

x
2 4
,2

x
4
,3
x
4
,1

x
4
,3
x
4
,1

x
4
,3
x
4
,2

x
2 4
,3

⎞ ⎟ ⎟ ⎠
.

(1
5)

Th
e
ke
y
ta
ke
aw

ay
he
re
is
th
at
on
e
ca
n
si
m
pl
y
ar
riv
e
to
th
e
K

×
K

m
at
rix

X
′ X

by
ca
lc
ul
at
in
g
4
K

×
K

m
at
ric
es
ba
se
d
on

cr
os
s-
pr
od
uc
ts
fo
re
ac
h

ob
se
rv
at
io
n
(ie

w
or
ki
ng

an
ob
se
rv
at
io
n
at
a
tim

e)
,a
nd

fin
al
ly
su
m
m
in
g
ac
ro
ss
th
es
e
m
at
ric
es
(a
si
n
(1
5)
).

37

B Appendix Figures and Tables

Figure A1: Sample size and execution time of standard versus cumulative (Multiple Cores)

0

100

200

300

400

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000 20,000

Observations (in thousands)

Cumulative LS Stata regress

(a) 5 Independent Variables

0

100

200

300

400

E
x

ec
u

ti
o

n
 T

im
e

0 5,000 10,000 15,000

Observations (in thousands)

Cumulative LS Stata regress

(b) 10 Independent Variables

0

100

200

300

E
x

ec
u

ti
o

n
 T

im
e

0 2,000 4,000 6,000 8,000

Observations (in thousands)

Cumulative LS Stata regress

(c) 20 Independent Variables

0

100

200

300
Ex

ec
ut

io
n

Ti
m

e
(in

 s
ec

on
ds

)

0 1,000 2,000 3,000 4,000
Observations (in thousands)

Cumulative LS Stata regress

(d) 50 Independent Variables

Notes: All times refer to the computation time of reading data into memory and estimating an ordinary least squares regression.
Tests are all conducted on a system with 1GB of RAM, with no other processes running, using Stata MP (2 cores). In each case,
tests are conducted up to the point at which there is insufficient RAM to open the data, thus precluding the estimation of standard
regression models. Beyond this point, it is still feasible to estimate parameters using Cumulative Least Squares.

38

Figure A2: Relative Performance of OLS to CLS by Block Size

(a) 5 Independent Variables (b) 10 Independent Variables

(c) 20 Independent Variables (d) 50 Independent Variables

Notes: Surface plots present the ratio of computation times of Stata’s native regression command to cumulative least squares.
Values less than 1 imply non-cumulative procedures are faster than cumulative procedures, and vice versa for values greater than
1. All times refer to the computational time of reading data into memory and estimating a cumulative least squares regression.
Tests are all conducted on a system with 1GB of RAM, with no other processes running. Block sizes indicated on the horizontal
axis refer to the proportion of the full dataset (eg 50 refers to 2 blocks each covering 50% of the data, 1 refers to 100 blocks each
covering 1% of the data).

39

Table A1: Execution Time Across Models in a Labour Market Participation Example (MP): OLS and IV

Memory Constraints

1 GB 2 GB 8 GB 16 GB 32 GB

Panel A: OLS
Cumulative Procedures
Within-transformation 2.973 3.153 3.266 3.091 3.303
Within, Clustered 5.735 6.003 6.315 5.973 6.438
Within, Clustered Bootstrap 3.070 3.002 3.218 3.124 3.342
Clustered Bootstrap (s) 2.584 2.760 2.930 2.639 3.131
Full Estimation 2.843 2.895 3.181 2.960 3.185

Standard Procedures
Within-transformation (areg) – – 4.511 4.187 3.846
Within, Clustered – – 5.368 5.257 4.532
Full Estimation – – 4.500 4.143 3.630
Within-transformation (hdfe) – – – 3.397 3.177
Within, Clustered (hdfe) – – – 3.537 3.304

Panel B: IV
Cumulative Procedures
Within-transformation 3.371 3.435 3.501 3.316 3.651
Within, Clustered 6.351 6.498 6.798 6.374 6.950
Within, Clustered Bootstrap 3.242 3.312 3.479 3.306 3.468
Winthin, Clustered Bootstrap (s) 3.036 3.077 3.192 3.276 3.585
Full Estimation 2.957 3.003 3.142 2.981 3.538

Standard Procedures
Within-transformation (xtivreg) – – – – 4.968
Within, Clustered – – – – 10.916
Full Estimation – – – – 45.350
Within-transformation (hdfe) – – – – 4.834
Within, Clustered (hdfe) – – – – 6.597

Panel C: System Benchmark 866.2 852.7 856.4 842.4 843.1
Notes: Each cell reports average processing time in minutes of a particular estimation procedure
based on the memory constraints listed in column headers. All averages are taken over 10 estima-
tions. Cells are coloured gray when estimation cannot occur due to memory limits. All methods are
estimated in Stata 18 MP. For clustered bootstrap errors, (s) stands for “sorted”, implying that the
database is sorted by clusters prior to processing. System benchmark is a standard test of processor
capacity run on the operating system to provide a baseline comparison of server performance across
columns.

40

C Data Appendix

We collate original data from IPUMS and the Demographic and Health Survey (DHS) repository using
all census data and DHS waves described in Aaronson, Dehejia, Jordan, Pop-Eleches, Samii, and Schulze
(2020). This results in 51,449,770 observations drawn from 434 census files for 106 countries covering
years 1787 to 2015. The geographical coverage of the data is described in Figure A3, and the temporal
coverage is described in Figure A4.

We follow replication materials of Aaronson et al. (2020) to generate all variables, and replicate their
results exactly. We follow their inclusion criteria of working with women aged 21 to 35 who have at least
two children, all of whom are 17 or younger. As described in Aaronson et al. (2020) families are excluded
where information is missing on child gender or mother’s age, and mothers are not included in the sample
if they live in group quarters or give birth before the age of 15. Summary statistics of all data following the
processes described in Aaronson et al. (2020) are included below in Table A2.

Figure A3: Number of Observations by Country

����������������������
���������������������
�������������������
�����������������
����������������
��������������
�����������
�

Notes: Values plotted refer to the total frequency of observations used in estimating samples. These are pooled across all years.
Countries coloured grey have no available microdata on IPUMS or DHS.

41

Figure A4: Number of Observations by Year

�

�00

�00

�00

�00

�00

1
XP

EH
U�R
I�R
EV
HU
YD
WLR
QV

��
��
�

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

��
��
���
��

<HDUV

Notes: Values refer to the total frequency of observations used in estimating samples.
Years refer to the year the data was collected.

Table A2: Summary Statistics – Principal Variables

VARIABLES Obs Mean Std. Dev. Min Max

Labour Force Participation 51,449,770 0.263 0.441 0 1

Covariables

Fertility 51,449,770 0.525 0.499 0 1
Gender of first child 51,449,770 0.508 0.499 0 1
Mother Age 51,449,770 29.43 3.859 21 35
Mother age at first birth 51,449,770 21.04 3.300 15 35
Weights 51,449,770 1 0.390 0.0007 341.66

Years 51,449,770 1954.95 44.169 1787 2015

Instrument

Twin 51,449,770 0.0105 0.102 0 1

Notes: Summary statistics are displayed based on all observations and data cleaning procedures de-
scribed in Aaronson et al. (2020). Sample consists of women giving birth at the age of 15 or above, and
ages 21 to 35 at the time of data collection. All selection criteria follows Aaronson et al. (2020).

42

D An Updating Estimation Procedure

Throughout the paper we work with a cumulative procedure in which matrices X ′X and X ′y are accu-
mulated in a step-wise fashion, and estimates β̂OLS (or similar for other estimation methodologies) are
generated only after data is read in its entirety. Alternative procedures can be used in which iterations occur
over sequential iterations of β̂OLS estimates themselves, though these are less efficient than the cumulative
procedures laid out in the body of the paper.

To see this, we will use identical notation to that laid out in the paper. Suppose we wish to estimate a
regression between a dependent variable y and a set of K covariates X1, X2, ..., XK . The database that
can be partitioned into J samples. The whole sample size of the database is N , but computing an OLS
regression with all the data is unfeasible due to memory constrains. As an alternative procedure, we could
run a regression with the sample j = 1 and update the result with the other J − 1 samples. To fix ideas,
suppose we have a samples 1 and 2 and we want to compute an OLS estimator for the whole sample denoted
by the subindex 1 ∼ 2. Hence,

β̂1∼2 =

((
X ′

1 X ′
2

)(X1

X2

))−1 (
X ′

1 X ′
2

)(y1

y2

)
= (X ′

1X1 +X ′
2X2)

−1(X ′
1y1 +X ′

2y2)

= (Σ1 + Σ2)
−1(Υ1 +Υ2)

whereX ′
jXj ≡ Σj andX ′

jyj ≡ Υj . The challenge is to compute β̂1∼2 using estimates from the two samples
separately, so that we can avoid storing very large databases in memory. Trivially, as laid out in the body
of the paper, this can be done cumulatively. Alternatively, we can make use of a result of the inverse of the
sum of two matrices by Miller (1981). A more general perspective in this theory, including application to
linear least squares is Hager (1989). The application of this result can be proven easily.

Lemma 1 The inverse of the sum of two matrices can be obtained as

(Σ1 + Σ2)
−1 ≡ Σ−1

1∼2 = Σ−1
1 − Σ−1

1 Σ2(I + Σ−1
1 Σ2)

−1Σ−1
1

Proof. Follows as a direct application of Woodbury (1950) matrix inverse lemma

Using Lemma 1, we can iterate on β̂OLS , without requiring that all of the elements stored in cumulative
procedures are accumulated across iterations. We define the factor

Ω1∼2 ≡ IK − Σ−1
1 Σ2

(
IK + Σ−1

1 Σ2
)−1

,

where IK stands for an identity matrix of dimensionK, the number of regressors in the model. Hence, the

43

joint Σ matrix can be expressed as
Σ−1
1∼2 = Ω1∼2Σ

−1
1

Therefore, the joint OLS estimator becomes

β̂1∼2 = Ω1∼2

(
β̂1 + Σ−1

1 Υ2

)
. (16)

This suggests an iterative procedure for estimatingOLS parameters generalising the above result to J blocks,
rather than 2 blocks. This is defined as Updated Ordinary Least Squares in Algorithm 6.

Algorithm 6: Updated Ordinary Least Squares
Inputs: Database consisting of (y,X), block size b.
Result: Point estimate β̂OLS (and potentially point estimates updated at each step, β̂1∼j,OLS).

1. Set i = 1 and j = b. Load into memory partition of data covering y,X in observations i− j. ;
2. Calculate Σ1 and β̂1 ;
3. If observations i-j contain end of file, set e = 1, otherwise, set e = 0 ;
while e ̸= 1 do

4. Replace i = i+ b and j = j + b. Load into memory partition of data covering y,X in
observations i− j. ;
5. Calculate Σj and Υj . ;

6. Calculate Ω1∼j = IK − Σ−1
j−1Σj

(
IK + Σ−1

j−1Σj

)−1
and β̂1∼j = Ω1∼j

(
β̂j−1 + Σ−1

j−1Υj

)
;

7. If observations i-j contain end of file, set e = 1, otherwise, set e = 0 ;
end

While this procedure allows for the calculation of updated values of β̂1∼j at each step, and additionally
avoids the need of passing Υ1∼j across steps, each iteration involves one matrix inversion of size K in
step 6. Indeed, for any given quantity of variables K and block size b, the cumulative algorithm strictly
dominates the updating algorithm in terms of total computations (and hence computation time). This owes
to the fact that the same calculations of order O(NK2) + O(NK) discussed in Section 3 are required in
calculating Σj and Υj as inputs for (16), strictly more elements are required to be summed in iterating on
Ω1∼j instead of Σ1∼j and Υ1∼j , and additionally, a matrix inversion is required at each step in calculating
(16). For this reason, we focus on cumulative least squares algorithms throughout this paper.

44

	Introduction
	Cumulative Least Squares
	Cumulative Ordinary Least Squares
	Alternative Estimators
	Grouped Estimation Procedures, Fixed Effect Estimators, Heterogeneity, and Cross-Validation
	Alternative Inference Procedures
	Heteroscedasticity Robust Standard Errors
	Cluster-Robust Variance Covariance Matrix
	An Efficient Bootstrap Algorithm for Clustering

	Optimal Implementation
	Illustrations
	Simulated Data
	An Empirical Example

	Discussion and Conclusions
	A Simple Visualisation in Matrix Form
	Appendix Figures and Tables
	Data Appendix
	An Updating Estimation Procedure

