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We quantify firm heterogeneity in skill returns and present direct evidence of worker–firm 

complementarities. Within a model of firms’ demand for cognitive and noncognitive 

attributes we show that identification depends on the availability of skill measures. Linking 

administrative data to test scores we document worker sorting and convex earnings–skill 

relationships. We find that: (1) Both skills’ returns vary substantially across employers and 
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1 Introduction

The recognition that earnings distributions reflect the interaction of worker and firm heterogeneity

dates back decades (Willis, 1986). Access to matched employer–employee data has rekindled

interest in such interaction (e.g., Card et al., 2013; Song et al., 2018; Sorkin, 2018; Lamadon

et al., 2022). In this paper we present evidence on worker–firm complementarities, matching,

and their effects on earnings. We do so by linking cognitive and noncognitive test scores with

population data on Swedish workers and firms,1 from which we recover estimates of firm-level

returns to each skill attribute.

Various studies examine match effects within the boundaries of a single skill index (among

others, Sørensen and Vejlin, 2013; Woodcock, 2015; Bonhomme et al., 2019; Lachowska et al.,

2020; Lentz et al., 2023). Unlike previous work, our analysis emphasizes what can, and cannot, be

identified when considering more than one skill dimension. If unobserved skills are collapsed into

a single index, identification requires a connected worker–firm graph (sufficient mobility between

employers) and that the average skill of the workers moving to a firm is not the same as that of

workers moving out of the firm (a rank condition; see Bonhomme et al., 2019; Lamadon et al.,

2022). These requirements are no longer sufficient with multiple skill dimensions because the

ranking of workers is not unique. In such settings returns are identified under general conditions

if skill proxies are available.

We build on these insights to study how cognitive and noncognitive skill returns vary across

firms and document their impacts on sorting and wages. Estimates reveal significant heterogene-

ity in returns both within and across skills. Some firms pay up to 35 log points more than oth-

ers for similar cognitive or noncognitive attributes. The multidimensional and bundled nature

of skills plays a role in the imperfect assignment of skills to jobs (Rosen, 1983; Heckman and

Scheinkman, 1987). That cognitive and noncognitive returns have independent impacts high-

1Several studies document the information content of our cognitive and noncognitive measures (for a well-known
example, see Edin et al., 2022) and their relation to productive attributes. Lindqvist and Vestman (2011) show
that they are highly significant in predicting earnings and unemployment conditional on any rich set of controls.
Fredriksson et al. (2018) use them to identify the effects of job–skill mismatch on mobility and wage growth. See
also Appendix A.1.
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lights workers’ inability to separately rent out their skills to the highest bidder (Lindenlaub, 2017;

Edmond and Mongey, 2021; Choné and Kramarz, 2021; Skans et al., 2022).

Our findings provide novel evidence on the nature of returns to skills in the labor market.

Previous work has shown that cognitive and noncognitive attributes shape individual outcomes

(Heckman et al., 2006; Lindqvist and Vestman, 2011; Deming, 2017) and that the average gains

from these skills have changed over time (Beaudry et al., 2016; Deming, 2017; Edin et al., 2022).

We show that each worker’s return depends on both skills and on their match with an employer.

For this reason, conventional Mincerian measures of returns are not equivalent to averages of

individual returns across employers. Rather, assortative matching tangibly alters skill premia,

inducing nonmonotonic effects that are convex in skills.

In the baseline analysis we address limited mobility biases through clustering methods (Bon-

homme et al., 2019) whereby we group firms into 100 classes based on the earnings and skills

of employees. To assess robustness we estimate quadratic forms of the parameters of interest

at the individual firm level (non-grouped) after correcting for biases (Kline et al., 2020). Each

approach imposes different sample restrictions and assumptions. Results, however, are remark-

ably robust insofar as the importance of skill returns, relative to conventional measures of firm

fixed effects, is stable and does not depend on implementation choices. Under either approach,

estimation requires significant computational work, which we discuss below.

To motivate the focus on skill returns, we begin by estimating fixed-effect models separately

for high versus low skill workers and we reject the hypothesis that earnings premia at a given

firm are the same across skill levels (either cognitive or noncognitive). We confirm the presence

of firm heterogeneity in skill returns through event studies where we track wage changes for

different worker types as they move across employers. Informed by these findings, we use a

monopsonistic model of labor demand (Card et al., 2018; Lamadon et al., 2022) to derive an

empirical specification that allows for granular returns to each skill attribute. The specification

is the first-order approximation of a general wage function: skill×firm interaction terms reflect

heterogeneous returns, firm intercepts capture skill-independent premia, and standard Mincer

returns are subsumed into worker fixed effects.
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Our estimates reveal considerable dispersion of returns across firms in either skill dimension.

We find even larger heterogeneity in robustness checks where we implement firm-level estimation

with bias-correction or where we account for the impact of measurement error in skill measures.

The correlation between returns to different skills is positive but weak; this suggests that col-

lapsing cognitives and noncognitives into a single index would be restrictive. The assignment of

workers to firms with heterogeneous returns generates earnings gaps of the same order of magni-

tude as those induced by heterogeneity in firm intercepts. Through variance decompositions (see

appendix) we show that allowing for skill returns’ heterogeneity boosts the overall firm-specific

contribution to wage inequality.

To gauge the intensity of sorting we adapt methods developed for multidimensional assign-

ment problems (Lindenlaub, 2017). We find that the assignment of more able workers to high

return employers stochastically dominates, in first-order, the assignment of lower skilled work-

ers (Lindenlaub and Postel-Vinay, 2023). Several testable restrictions are consistent with positive

assortative matching, which occurs along both skill dimensions. Sorting is stronger in the cogni-

tive dimension where returns heterogeneity is larger. Worker–firm complementarities and sorting

lead to a skewed wage distribution: more skilled workers match to firms with higher returns to

skills. This raises average earnings and magnifies the earnings of high-skill workers. In contrast,

middle-to-low skill workers earn less because they are frequently matched with low-return firms.

These results are of interest to a long-standing debate on worker–firm interactions (Becker and

Chiswick, 1966; Sattinger, 1993; Lindenlaub, 2017; Hagedorn et al., 2017; Bonhomme et al.,

2019; Borovickova and Shimer, 2020; Lamadon et al., 2022; Lentz et al., 2023). Skill proxies

facilitate the measurement of gains from matching because pecuniary returns are not, themselves,

used to determine skills ranks. This helps establish which workers (and skill bundles) benefit or

lose from returns heterogeneity.

In keeping with our emphasis on direct measures, we probe the nature of firm differences by

linking balance sheet data to the main sample and show that employers who exhibit high cogni-

tive returns have different capital composition, with more intangible and intellectual assets (as

opposed to physical capital) per worker. Survey responses indicate that these firms invest more in
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R&D and innovate frequently. This lends support to the view that production and organizational

arrangements shape the distribution of skill returns.

2 Data and Preliminary Evidence

2.1 Matched Earning Records and Skill Measures

Our data consist of annual employer–employee matched records for the whole population of

Swedish workers and firms during 1990–2017, including earnings, industry, occupation, worker

characteristics such as age, gender, and education. A strength of these data are cognitive and

noncognitive military enlistment tests that we link to individual workers. The tests were manda-

tory before 2007 and are available for almost 90 percent of males, across birth cohorts, in our

sample. The cognitive score is assessed through tests covering logic, verbal, spatial, and technical

comprehension. The noncognitive score is from a semi-structured interview with a certified psy-

chologist who assesses willingness to assume responsibility, independence, outgoing character,

persistence, emotional stability, and initiative.

Prior research shows that these scores are significant predictors of earnings and other labor

market outcomes (Lindqvist and Vestman, 2011; Fredriksson et al., 2018; Edin et al., 2022).

Cognitive and noncognitive measures are recorded on a standard-nine (Stanine) scale, which

approximates the Normal distribution and facilitates comparisons across birth cohorts.2 These

tests are strongly associated with life-cycle earnings in our sample (see Appendix A.1).

We restrict the sample to males aged 20–60 with nonmissing scores and to firms that employ

an average of at least ten male workers over five years or more. We focus on estimates from 1999–

2008. Results are similar in alternative samples (1990–1999 and 2008–2017). The 1999–2008

sample consists of approximately 26,000 firms and 1,100,000 workers in all private nonprimary

industries. The dataset reports both organization and workplace identifiers. To identify “firms”

2Measures are standardized for each birth year. A score of 5 denotes the middle 20 percentiles of the population
taking the test. Scores of 6, 7, and 8, are given to the next 17, 12, and 7 percentiles, and the score of 9 to the top 4
percent of individuals. Scoring below 5 is symmetric.
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we use the workplace with the highest income in the calendar year. This choice is closest to the

notion of a production unit and is consistent with existing work (e.g., Card et al., 2013). We use

the annual labor income at the firm as our measure of earnings: this is available for all workers

and includes bonuses and performance pay throughout. Descriptive statistics are in Appendix A.

In Section 6 we link information on firms’ financial accounts (from a commercial data provider)

and innovation activities (from the Swedish version of the European Community Innovation

Survey). These data are reported at the organization level and, in the case of multi-workplace

firms, we coarsen estimates to that level of aggregation.

2.2 Estimation of High-Dimensional Models of Skill Returns

We estimate models with many firm and worker fixed effects alongside firm-specific returns to

skills. Depending on the estimation approach, different sampling restrictions are required (see Ap-

pendix A.2). We work with the largest connected component of the firm–worker graph (Abowd

et al., 2002; Bonhomme et al., 2023). In order to account for different skill levels (e.g. high vs

low cognitive skills), the set must be connected along each skill level (Kline et al., 2020). Con-

nectedness delivers unbiased parameter estimates but the variance components may be biased if

sampling errors in parameter estimates enter the quadratic forms of interest. This bias in quadratic

forms may result in overstated variances and understated covariances (Andrews et al., 2008).

We use two different approaches to deal with this problem. First, in our baseline analysis, we

characterize unobserved heterogeneity as the “class” of a firm, where each class corresponds to

a cluster of similar employers (Bonhomme et al., 2019). We define 100 classes using a k-means

algorithm based on the average earnings and average skills of workers (stayers and movers).

This characterization reduces dimensionality, enhances tractability and delivers well-centered

estimates of the contributions of worker and firm heterogeneity to earnings dispersion (Lamadon

et al., 2022). Second, in robustness analysis, we use variance component estimators for linear

models with heteroscedasticity of unknown form. This approach relies on leave-out estimators

of the variances of the errors in the linear model. For each worker–firm match, we estimate
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the error variance from a sample where that match’s observations are left out. The leave-out

procedure delivers unbiased estimates in finite samples (Kline et al., 2020) and facilitates tests

of linear restrictions.3 Appendix B overviews the nuances of each approach; Table A.1 reports

statistics for the underlying samples.

A concern is that skill proxies may be measured with error. To account for this possibility,

we conduct robustness analysis to quantify the impact of incrementally stronger measurement

error on estimates of skill returns (Appendix C). This exercise shows that our estimates of re-

turns’ heterogeneity would be even larger under conventional assumptions about noise in skill

measures.

2.3 A First Glance at Skill Returns

Returns heterogeneity, in its most basic form, can be tested with binary skill levels (high vs low

test scores) in each attribute. We consider a widely studied additive specification (Abowd et al.,

1999, AKM) and allow firm fixed effects for high and low skill workers to differ.

We classify workers into high cognitive (C = 1[c > 5]) and high noncognitive (N = 1[n > 5]),

where scores of 5 reflect the central moments of the Stanine scores (see Footnote 2). To account

for serial correlation within employment spells, we select observations within a two-year set

and separately estimate linear binary models of worker and firm effects of the form log(wi jt) =

µS
i +θ S

j +εi jt for cognitive skills, S ∈ {C = 0,C = 1} or noncognitive skills, S ∈ {N = 0,N = 1}.

Subscript t takes on the values of the two years selected. We use non-adjacent years (in fact, two

years apart) to mitigate the impact of partial employment spells during contiguous years when

workers switch firms.

Figure 1 plots estimated firm fixed effects of high-skill (x-axis) and low-skill (y-axis) workers

for t ∈ {2004,2007}. Panel (A) shows results for cognitive skills while Panel (B) plots those for

3This analysis requires that firms remain connected by worker mobility when a single mover is dropped. There-
fore, the original sample must be pruned to ensure that the connectedness condition is met by all leave-out subsam-
ples. We use Python NetworkX to identify the articulation points of the worker–firm graph, then trim it to construct
the double leave-one-out connected set (see Appendix A.3). Given the large computations necessary to estimate
leave-out quadratic forms, we adapt the random projection method of Achlioptas (2003).
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(A) High vs low cog skills – 100 firm clusters
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(B) High vs low noncog skills – 100 firm clusters

Figure 1: Firm effects heterogeneity: cognitive and noncognitive skills.
The figures plot the averages of firm effects for low-skill workers (θ S=0

j ) against the averages of firm effects for high
skill workers (θ S=1

j ), where S ∈ {C,N}. Firm effects are estimated for 25,783 firms grouped into 100 clusters based
on workers’ average cognitive skill, noncognitive skill, and earnings. Firm effects are demeaned. The “Test Statistic”
is for the null hypothesis that estimated firm effects are equal across skill groups and should be evaluated against the
standard normal distribution (see Appendix B.3).
Sample restriction: years 2004 and 2007 only. Tests for other year pairs are in Appendix Table B.1.

noncognitives. The sample consists of 25,783 firms grouped into 100 clusters based on work-

ers’ average cognitive skill, noncognitive skill, and earnings. The “Test Statistic” is for the null

hypothesis that estimated firm effects are equal across skill groups. Estimated slopes are 0.66

for cognitive and 0.85 for noncognitive. Under the null hypothesis of no heterogeneity in skill

returns, the slopes should be statistically indistinguishable from 1 and the scatters should align

along the dashed 45° lines. This is not the case and the null hypotheses that firm effects are the

same for high- and low-skill workers are strongly rejected: the test statistics of equal firm effects

for high and low skill workers have values above 6 for both cognitive and noncognitive returns.

Since firm effects do not appear to be independent of worker skills, one must discard the

notion of a homogeneous skill return across firms. Tests for alternative periods lead to similar

conclusions and deliver slopes that are well below 1 (Table B.1). When we run similar tests

on firm-specific estimates of slopes that are corrected for bias using the methods of Kline et al.
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(2020), we again estimate slopes that are well below 1 and reject the null hypothesis of homoge-

neous returns across skills groups (Appendix B.3).

We find further evidence of heterogeneity in skill returns when performing event studies. In

these exercises we track wage changes for different workers as they move across firms (Bon-

homme et al., 2019; Lamadon et al., 2022). For example, moving to an employer with larger

cognitive returns leads to increases in the relative wage of high-skill workers compared to low

skill ones (Appendix B.4). Results are similar for noncognitive returns. We find no evidence of

cross-skill effects (that is, no changes in the relative wages of high cognitive individuals who

move between firms with different noncognitive skill returns).

3 Quantifying Variation in Skill Returns

To quantify heterogeneity in firm returns we develop an empirical framework that allows for gran-

ular differences in skill bundles while controlling for other sources of variation. The framework

is derived from a model of demand for productive skills (see below and Appendix D).

3.1 Skill Demand by Heterogeneous Firms

We embed return heterogeneity in a model where firms differ in four dimensions: (i) cognitive

returns; (ii) noncognitive returns; (iii) output market demand, where they have varying degrees

of monopoly power; (iv) cost of labor in the input market, driven by differences in non-pecuniary

firm characteristics valued by employees. Monopoly power in the output market implies a skill-

independent firm surplus. This underpins the cross-sectional variation in base-wages reflected in

firms’ fixed effects. On the other hand, firm-specific labor supply curves (input market hetero-

geneity) imply rents for both workers and firms (Card et al., 2018; Lamadon et al., 2022). The

model allows for a production technology with heterogeneous skill returns.

Production complementarities and labor supply. Consider an environment with two het-

erogeneous sides (workers, firms). Workers have measure one, differ in their cognitive (c) and
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noncognitive (n) abilities, and are indexed by their skill vector (c,n). Firms are indexed by j. A

firm j matched with a (c,n) worker produces output y = f j(c,n). Given constant returns to scale

(CRS) in worker headcounts (as in the production problem with multiple skill inputs of Eeckhout

and Kircher, 2018), a j firm matched with k workers of type (c,n) produces k× f j(c,n), while a

j firm matched with one (c1,n1) and one (c2,n2) worker produces f j(c1,n1)+ f j(c2,n2).4 Firm

j’s output, if it hires shares q j(c,n) of the workforce of type (c,n), is:

y j =
∫

f j(c,n)q j(c,n) dG(c,n). (1)

where G is the population measure of different worker types in the economy. A worker’s utility

from matching with a firm depends on their wage plus a preference shock. Workers choose firms

that give them the highest utility. Using standard arguments (McFadden, 1974), the share q j(c,n)

of type (c,n) workers who choose firm j has a logit form:

log(q j(c,n)) = log(h(c,n))+β log(w j(c,n)). (2)

Equation (2) describes the upward sloping labor supply faced by firm j. The intercept h(c,n),

determined in equilibrium, guarantees market clearing. β is the sensitivity of labor supply to

wages. Firm-specific wages for each skill set and the labor market equilibrium are defined in

Appendix D.

Technology and wages. The wage paid by firm j reflects market structure and technology.

The monopsonistic firm sets wages at a fraction β

1+β
of the marginal revenue generated by the

worker. The marginal revenue is an increasing function of the firm’s output market share and of

its productivity.

In the appendix we show that logged wages are the sum of a common level effect plus a

firm-specific intercept and skill premium,

4Production is defined at the level of the match since workers may not agree on the ranking of firms. That is, the
production technology combines the skills of a worker and the technology of a firm (Lise and Robin, 2017). As in
one-to-one matching problems, firms produce with every match separately.
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log(w j(c,n)) = α +Λ j +∆ j(c,n). (3)

The skill premium ∆ j(c,n) = log( f j(c,n)/ f j(L, l)) corresponds to the output of a (c,n) skill

bundle relative to the lowest skill bundle (L, l) within firm j. To obtain an empirical counterpart

of (3), we do not restrict the functional form of the production function f (·), and hence of ∆ j(c,n),

but rather use a first-order approximation that delivers a bilinear relationship for worker i in firm

j. We also explore higher-order approximations with skill interactions but this makes a negligible

difference.5 Making the worker index i explicit, the empirical wage representation is:

log(wi, j(c,n)) = µi +λ
0
j +λ

c
j · ci +λ

n
j ·ni, (4)

where λ 0
j is the baseline wage that a worker with the lowest bundle of skills earns in firm j.

Gradients λ c
j and λ n

j are firm-specific marginal returns, above and beyond the baseline wage λ 0
j .

Finally, as we show below, the individual intercepts µi capture the average (Mincerian) returns

to a worker’s skill endowments.

Normalizations. Identification of (4) requires linear restrictions on firm effects, which are de-

fined relative to a reference firm (or set of firms). We identify parameters up to unknown constants

{κ0,κc,κn}, such that:

λ
0
j = Λ j −κ0

λ
c
j =

∂∆ j(c,n)
∂c

−κc (5)

λ
n
j =

∂∆ j(c,n)
∂n

−κn

µi = α +κ0 +κc · ci +κn ·ni

We set κ0 = Λ̄, κc =
∂ ∆̄(c,n)

∂c , and κn = ∂ ∆̄(c,n)
∂n , where the reference values (Λ̄, ∂ ∆̄(c,n)

∂c , ∂ ∆̄(c,n)
∂n )

correspond to the average employment-weighted firm effects. For example, κ0 is normalized to

5For a discussion of log-additive firm effects in wage specifications with bundled skills, see Choné and Kramarz,
2021. Worker–firm complementarities can be micro-founded by restricting attention to the labor composition alone
(e.g., learning and cooperation of workers as in Jarosch et al., 2021).
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the average intercept (Λ̄) in the population of firms. This is conservative, since central moments

yield the lowest variance of firm heterogeneity (intuitively, they minimize squared deviations)

and are less sensitive to estimation error than, e.g., extrema of the firm effects distribution. Unlike

models with degenerate skill returns, firm premia are not restricted to be equal across skill groups.

Under the model’s null hypothesis, within-firm wage dispersion depends on workers’ skills and

firm’s returns.

3.2 Identification and Estimation of Skill Returns

We study a sample of firms connected by worker mobility along both skill dimensions over the

1999–2008 period. The baseline wage specification is:

log(wi jt) = µi +λ
0
j +λ

c
j · ci +λ

n
j ·ni +Xitbt + εi jt , (6)

where λ 0
j are skill-independent earnings, λ c

j and λ n
j are skill gradients, and µi are worker fixed

effects. We account for life-cycle and time variation through interactions of skill, age, and year,

denoted as Xitbt in (6).

Identification of firm effects. It is useful to draw attention to what can, and cannot, be identi-

fied in specifications like (6). Lacking observable skill proxies, the assumption of a single skill

index is necessary for identification alongside a connected worker–firm graph (see discussion in

Appendix B.5). If unobserved skills are collapsed into a single index, identification amounts to a

rank condition requiring that the average quality of the workers moving to a firm is not the same

as that of workers moving out of the firm (see Remark 1 in the appendix and Bonhomme et al.,

2019; Lamadon et al., 2022). This result does not hold with multiple skill dimensions because the

ranking of workers is not unique and workers with different attributes may exhibit similar overall

productivity. Identification of heterogeneous returns in such settings is not possible unless skill

proxies are available. The intuition is that wage changes following moves across firms cannot be

traced back to one single skill dimension unless the other dimension is controlled for (Lemma 1
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and Remark 2, Appendix B.5). Returns in equation (6) are identified under general conditions if

skill measures are available (Remark 3). To illustrate this point, we explicitly solve for cognitive

returns as a function of the average skills and wages of workers who move between employers

in Appendix B.5. Identification works similarly for noncognitive skills and firm intercepts.

Interpreting parameters. The level and dispersion of worker fixed effects µi reflect skill en-

dowments. That is, µi includes the average (Mincerian) return to a worker’s skills. Generally, the

µi fixed effect accounts for worker skills that are priced homogeneously across firms.

We normalize the Stanine scores to take values on the unit interval. Setting a unit upper bound

for skills is convenient because each skill return λ s
j can be interpreted as the earnings gap sepa-

rating the highest and lowest worker types.6

The linear restrictions on firm effects imply that the lowest skill workers gain no employer

premium above and beyond firm intercepts. Put differently, for the subset of workers with the

lowest skill endowments (c = 0,n = 0), equation (6) reduces to a standard specification with

firm fixed effects λ 0
j , time-varying controls Xitbt , and worker fixed effects µi. For other skill

types, (6) augments the double fixed-effect specification by allowing for heterogeneous returns

to skills. If we restrict attention to a single skill dummy S over a two year interval with no other

control variables, estimation of (6) collapses back to the binary model from Section 2.3 where

λ 0
j = θ S=0

j and λ s
j = θ S=1

j −θ S=0
j .

Interactions of skill, year, and age dummies (in Xitbt) flexibly account for variation in average

skill returns and reduce computation times. 7 Conditional on the latter, worker fixed effects absorb

time-invariant residual skill components.

6The transformation is (Stanine− 1)/8. The distribution of normalized skills is carried over from the Stanine
distribution. Normalized scores for c and n are defined on the grid [0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1].
Sampling restrictions have little impact on the distribution’s moments relative to the population of test takers: e.g.,
c̄ = 0.54, n̄ = 0.52, sd(c) = 0.24, sd(n) = 0.21, corr(c,n) = 0.36.

7 For example, estimation for the leave-out sample takes about 20–30 hours using Python and the JLA ap-
proximation. Adding stratified controls raises computation time proportionally to the number of added parameters.
Allowing for time-varying returns to education, instead, does not affect results. Life-cycle profiles, by skill and time,
are accounted for by the cognitive× noncognitive× age× year group interaction in Xitbt . Dummies for s ≤ 0.25,
0.375 ≤ s ≤ 0.625, 0.75 ≤ s for s ∈ {c,n} are interacted with each other and age groups 20–25, 26–32, 33–42, 42–60
as well as two-year period dummies 1999–2000, 2001–2002, 2003–2004, 2005–2006, 2007–2008.
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Estimation. Baseline estimation relies on the clustering approach. We use the k-means algo-

rithm to partition firms into 100 clusters, based on the average skills and earnings of employees.

Results are not sensitive to the use of alternative clustering approaches. To gauge robustness,

we replicate the analysis using a different approach that delivers unbiased estimates of arbitrary

quadratic forms of firm returns (Kline et al., 2020).

3.3 Estimates of Firm Parameters

Table 1 shows results from the estimation of (6). Skills are free to vary over their granular range

(for example, ci ∈ [0,0.125, ..,1]). We initially focus on the dispersion of firm parameters. As we

show below, heterogeneity in skill returns has implications for other moments of the earnings

distribution through behavioral responses and assortative matching.

Column (1) reports estimates from the grouped-firms approach. The first line, sd(λ 0
j ) = 0.10,

highlights that skill-independent premia vary significantly across employers, confirming well-

established evidence on firm fixed effects. The lines below reveal a less known layer of firm

heterogeneity and show that the standard deviations of skill returns are sd(λ 0
j ) = 0.08 for noncog-

nitive skills and sd(λ c
j ) = 0.05 for cognitive ones. Column (2) shows that heterogeneity in skill

returns is even larger when using the leave-out (non-grouped) approach. Interestingly, the relative

magnitudes of parameter dispersion are unchanged as the values of sd(λ 0
j ), sd(λ c

j ) and sd(λ n
j ) all

approximately double. The finding of stable relative magnitudes is robust throughout the analysis

and indicates that estimates of the proportional contribution of each layer of firm heterogeneity

do not depend on the estimation method.

A double differencing thought experiment. To convey the magnitude of skill premia, in

columns (3) and (4) of Table 1 we consider thought experiments whereby workers with dif-

ferent skills are parachuted from their original firm to a different one in which returns are one

standard deviation larger. We report the hypothetical change that such transitions imply for the

wage gap between high skill workers (the 90th percentile of skills) and low skill workers (the

10th percentile of skills).
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Table 1: Standard deviations of firm parameters: estimates from clustered sample and from
firm-level sample with quadratic-form correction.

Standard deviations Standard deviations
× (90th −10th skill percentile)

grouped firm-level grouped firm-level
(1) (2) (3) (4)

sd(λ 0
j ) 0.10 0.22

sd(λ c
j ) 0.08 0.15 0.06 0.11

sd(λ n
j ) 0.05 0.10 0.04 0.07

cumulative (cog+noncog score) 0.10 0.19

# unique firms 25,783 19,085

Notes: The first two columns show standard deviations of parameters λ 0
j , λ c

j , and λ n
j in equation (6). Column

(1), clustered firms estimation: group firms into 100 classes according to average earnings and average c and
n scores (k-means algorithm). Then, estimate (6) on the grouped data. Column (2), quadratic-form correction:
compute corrected variances of the parameters estimated at the individual firm level and take the square root.
In Columns (3) and (4) we multiply the estimated standard deviations by the skill gap between the 90th (ci and
ni of 0.875) and 10th (ci and ni of 0.125) percentiles. Sample period: 1999–2008.

Based on grouped estimates, moving to a firm that sits just a standard deviation higher in cog-

nitive returns results in an extra gain of six log points for a worker at the 90th cognitive percentile

(ci = 0.875) compared to a worker at the 10th percentile (ci = 0.125). These differences in the

gains from job mobility are elicited through positive assortative matching (see Section 5). Het-

erogeneity in noncognitive returns is lower but economically significant. Parachuting a worker

at the 90th percentile of ni into a firm that is a standard deviation higher in noncognitive returns

raises their earnings gap relative to someone at the 10th percentile by four log points. A one-

standard deviation change in both cognitive and noncognitive returns for workers at the 90th,

rather than the 10th, percentile of each skill brings about an impact that is as large as that of firm

intercepts (see cumulative effect in the last line of Table 1). Absolute magnitudes are larger when

we estimate at the firm (non-grouped) level.

Estimates of dispersion in skill returns are robust in several respects. For example, Appendix E.1

shows that bias correction in a leave–observation-out sample (rather than leave–match-out sam-
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ple) delivers even higher dispersion of skill returns. In other sensitivity checks we find that, when

varying the number of firm clusters in the grouping estimator, the relative magnitudes of skill

returns and firm intercepts are unchanged. In Appendix E.2 we plot the dispersion of skill returns

and show that it is stable across time periods. Moreover, we show that the employment-weighted

correlation of returns among firms, corr(λ c,λ n), is positive but imperfect (less than 0.1 when we

use the clustered-firms approach; less than 0.3 when we use the bias-correction approach). Such

weak correlation lends support to the hypothesis that firm heterogeneity is multidimensional.8

4 Matching

Do cognitive and noncognitive traits matter for the assignment of workers to employers? And

how do they affect the distribution of earnings? To examine these questions we characterize

worker–firm matching in a setting with multiple skill attributes (Lindenlaub, 2017).

First, we introduce notation. Firms differ in three dimensions: earnings intercept (λ 0
j ), cogni-

tive return (λ c
j ) and noncognitive return (λ n

j ). We define a matching function ϕ(λ c
j ,λ

n
j ) = (c j,n j),

which maps firm’s returns into their average worker skills. Under the assumption of upward slop-

ing firm-specific labor supplies (equation (2)), the matching function ϕ is increasing in λ c
j and λ n

j ,

and multidimensional positive assortative matching holds (see Appendix E.3). In what follows,

we examine the empirical content of these restrictions.

4.1 Sorting Patterns

Assortative matching, whether positive (PAM) or negative (NAM), is characterized by the match-

ing function’s derivatives. With one-dimensional heterogeneity, this boils down to the sign of a

single derivative. With multiple attributes, all elements of the Jacobian play a role.

8Plots in Appendix E.2 confirm the substantial dispersion of skill returns. In the grouped estimation, cognitive
returns concentrate between −15 and +20 log points. Relative to the 10th percentile of skills, a worker from the
90th percentile who moves from bottom to top of the returns distribution gains 25 extra log points in earnings.
Noncognitive returns have a similar range of variation.
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Definition 1. The sorting pattern is locally PAM if, for given (λ c,λ n), the following holds:

(a) ∂c j
∂λ c

j
> 0; (b) ∂n j

∂λ n
j
> 0; (c) ∂c j

∂λ c
j

∂n j
∂λ n

j
− ∂c j

∂λ n
j

∂n j
∂λ c

j
> 0.

Definition 1 requires sorting patterns along each skill dimension; moreover, these patterns must

not be offset by potential cross-sorting. To examine assortative matching, we focus on the Jaco-

bian of the matching function:

dϕ(λ c
j ,λ

n
j )

d(λ c
j ,λ

n
j )

=

 ∂c j
∂λ c

j

∂c j
∂λ n

j
∂n j
∂λ c

j

∂n j
∂λ n

j

 (7)

The Matching Jacobian in data. We pursue two routes to test the sorting hypothesis. First,

we evaluate the Jacobian by projecting average skills c j and n j onto firm returns. The advantage

of this approach is that one can examine patterns where skill sorting in each dimension depends

on both of the employer’s returns. In practice, we estimate the following projections:

c j = δ1c +δ2cλ c
j +δ3cλ n

j + εc
j

n j = δ1n +δ2nλ c
j +δ3nλ n

j + εn
j .

(8)

Estimates of the δ s provide a test of Jacobian conditions. The regressions in (8) deliver the best

linear approximation to the conditional expectations of c j and n j. For instance, E(c j|λ c
j ,λ

n
j ) =

δ1c+δ2cλ c
j +δ3cλ n

j , so that the parameter δ2c is the expected value of the top-left element
(

∂c j
∂λ c

j

)
of the Jacobian taken over the sample of all firms. Similar arguments hold for δ3c and gradients in

the second line of (8). If returns λ are measured with error (due to limited mobility), estimation

of (8) may deliver biased point estimates. Our clustering approach mitigates such concerns as we

project average skills (cognitive or noncognitive) onto the 100 cluster-specific returns. Table 2

reports estimates of the Jacobian’s parameters.

Positive and significant estimates of δ2c and δ3n in Table 2 imply that the own-derivative

conditions for PAM are satisfied for both c and n. High c workers sort with high λ c returns

firms, conditional on λ n in (8); high n workers sort with high λ n firms, conditionally on λ c. This

underscores the multidimensional nature of skill returns.
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Table 2: Projection of average skills onto grouped returns.

Dependent Variables:
(1) (2) (3)

c j n j c j n j c j n j

λ c
j 1.21 0.58 1.18 0.55 1.15 0.53

(0.08) (0.07) (0.07) (0.06) (0.07) (0.05)

λ n
j −0.15 0.61 −0.05 0.71 −0.14 0.61

(0.11) (0.08) (0.10) (0.07) (0.11) (0.07)

R2 0.676 0.542 0.712 0.612 0.752 0.648
# firms 25,783 25,783 25,783
Controls No λ 0

j , # employees λ 0
j

Weights No No # employees

Notes: Column (1) reports sorting coefficients δ2 and δ3 from estimating (8). The specification in column (2) ad-
ditionally controls for intercepts λ 0 and for total employment headcounts within firms. Column (3) weights the
observations by each firm’s number of employees. One firm is one observation. Robust standard errors clustered at
the level of the 100 firm groups (in parentheses). Grouped estimation. Sample period: 1999–2008.

The Jacobian is positive definite (the determinant δ2cδ3n −δ3cδ2n is larger than zero), lending

additional support to the hypothesis that PAM holds in our large sample of firms and workers

between 1999 and 2008.

The positive δ2n in equation (8) indicates cross-sorting of high n workers to high λ c
j firms.

This occurs because skill endowments are correlated and high c workers, who sort into high

cognitive returns, have on average a higher endowment of n skills. This observation suggests that

the own-sorting in the c dimension is strong enough to trigger indirect effects, as confirmed by

Figure 2 below. There is less evidence of cross-sorting of high c into high λ n
j firms: this suggests

that own-sorting in the n dimension is weaker and not sufficient to induce such indirect effects

(confirmed, again, by Figure 2 below).9 Results do not change when we control for firm-specific

employment and intercepts λ 0, as shown in column (2) of Table 2. Neither do they change when

we weigh by employment, as in column (3). Differences in estimated λ c and λ n returns account

9Correlation of λ c
j and λ n

j would affect cross-sorting estimates if we did not control for their respective indirect
return in (8).
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for roughly 60% percent of the skill variation between firm clusters.10 When we weigh firms by

their employment and control for λ 0, the explained variation rises to 65–75 percent.

A different test of sorting. The second route to test for sorting hinges on Jacobian parameters

estimated from the following specification (see Appendix E.3):

λ c
j = d1c +d2cc j +d3cn j + ec

j

λ n
j = d1n +d2nc j +d3nn j + en

j .
(9)

The linear forms in (9) are reminiscent of the projections of fixed effect on firm characteristics

used in the applied literature (Kline et al., 2020). Under standard assumptions, the parameters

can be correctly estimated from a cross-section of individual (non-grouped) firms. If returns are

measured with error, having λ c
j and λ n

j on the left-hand-side avoids biases in the estimation of the

d-parameters in (9). We use these projections to test for PAM. One caveat applies: while point

estimates are generally unbiased, standard errors must be corrected for the correlation across

the first-stage estimates of the outcome variable (firm parameters).11 Appendix E.3 reports point

estimates and standard errors for the projections in (9), based on firm-level data (employees’ cog-

nitive and noncognitive skills are averaged into firm-specific c j and n j). PAM cannot be rejected

since the own-partial derivatives and the determinant of the Jacobian are positive throughout.

Sorting again appears to be stronger in the cognitive dimension.

4.2 The Distribution of Workers over Returns

If a high-skill workers matches more frequently with firms exhibiting high returns to that skill (in

the sense of first-order stochastic dominance, FOSD), then sorting is positive along that dimen-

sion (Lindenlaub and Postel-Vinay, 2023). To visualize these patterns, we compare the cumula-

tive distribution functions (CDF) of returns for separate sets of workers.

10The R2 refers mostly to between-firm variation, since average skills vary little within k-means clusters. It is
remarkable that returns can explain so much of the skill variation between the clusters.

11We use the correction proposed in equation (7) of Kline et al. (2020) to construct adjusted standard errors.
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Figure 2: Distributions of firm returns for different sets of worker skills.
Notes: Results from grouped estimation. Panels (A) and (B) show cumulative distribution functions for workers
with low (c,n ≤ 0.25), mid (0.25 < c,n < 0.75), or high (c,n ≥ 0.75) skill ranks over the range of firm returns.
Period: 1999–2008. FOSD: first-order stochastic dominance.
Panels (C) and (D) show binned scatterplots of firm-specific skill returns (vertical axis) with average skills
(horizontal axis) for three ten-year estimation periods: 1 (1990–1999), 2 (1999–2008), 3 (2008–2017).
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First-order stochastic dominance. Figure 2 shows sorting patterns along either cognitive or

noncognitive attributes, using the grouped-firm estimates. The top panel plots the CDF for work-

ers in three coarse skill-specific ranks (low, medium or high). The CD functions are defined over

the ordered set of estimated firm returns.12

In Panel (A) we condition on medium noncognitive skills and show that workers with higher

cognitive attributes match with higher cognitive returns λ c
j . The CDF of high cognitive workers

dominates all other types; the CDF of medium cognitive workers dominates the CDF of low

cognitive workers. Panel (B) shows FOSD patterns across ranks of noncognitive attributes (n),

holding cognitive attributes fixed at the medium rank. Sorting patterns on noncognitive traits

are less striking but clearly discernible. The bottom panels of Figure 2 show the distributions of

skill returns over the range of within-firm average skills. These plots confirm that returns increase

monotonically with skill endowments, consistent with PAM. Between-firm differences in average

skills are larger in the cognitive dimension, which is expected given the higher dispersion of λ c

relative to λ n and the stronger sorting incentives. Similar patterns hold for other sample periods.

5 Complementarities and Earnings

Considering the non-random nature of firm assignments, it is useful to distinguish between the

return that an average worker gets from a firm and the excess gains derived by matching different

skills to different employers.

In what follows, we cast firm heterogeneity in terms of deviations from cross-sectional means

and explicitly account for assortative matching.

12For clarity, we coarsen the skill levels to low (c,n ≤ 0.25), mid (0.25 < c,n < 0.75), and high (c,n ≥ 0.75). Re-
turns are estimated by clustering firms. This is graphically convenient as it restricts variation on the x-axis. Estimates
at the non-clustered firm level deliver similar insights. Additional FOSD plots in Appendix E.3.
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5.1 Effects on the Distribution of Earnings

We rewrite Equation (6) so that the log wage for skill bundle si = (ci,ni) of worker i in firm j is:

log(w j(si)) = µi︸︷︷︸
(a)

Person effect
(incl. Mincer returns)

+ λ
0
j︸︷︷︸

(b)
Firm intercept

+ λ
c
j c+λ

n
j n︸ ︷︷ ︸

(c)
Firm returns effect

+ λ
c
j c̃i +λ

n
j ñi︸ ︷︷ ︸

(d)
Match effect

, (10)

where x̃i denotes the deviation of skill xi from its cross-sectional average x̄. Equation (10) has

an intuitive interpretation: the term (a) summarizes the homogeneous Mincerian return (the

κcci+κnni in the normalization of Section 3), often estimated from survey data; component (b) is

a firm fixed effect. The elements (c) and (d) reflect, respectively, the direct impact of returns’ het-

erogeneity on the earnings of an average-skill person, and the more nuanced effect of assortative

matching. Terms (c) and (d) add up to the premium λ c
j ci +λ n

j ni. They encapsulate firm returns

that vary with worker skills. The expected value of (c) in (10) is nil because E(λ c
j ) = E(λ n

j ) = 0.

In contrast, the expected value of (d) can be different from zero as it reflects the per capita wage

gains due to assortative matching.

In the absence of skill measures, (b) and (c) would be conflated into the firm fixed effect and

the skill dependent variation would be absorbed within the person fixed effect µi. Identification of

heterogeneous returns and match-quality in summands (c) and (d) is obtained only when proxies

of skill endowments are available.

Permanent heterogeneity decomposition. Panel (A) of Table 3 summarizes the influence of

heterogeneous components (equation (10)) on earnings dispersion. Worker fixed effects µi have a

strong influence on earnings. Estimates of worker fixed effects reflect the cross-sectional average

of skill returns, as discussed in Section 3.1. Estimates of the dispersion of firm intercepts, as

a share of total variation, are in line with existing evidence both at the firm level (Kline et al.,

2020) and at the group level (Bonhomme et al., 2019; Lamadon et al., 2022). Table 3 highlights

the magnitude of heterogeneous skill returns, which add up to a value close to the estimate of

firm fixed effects.
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Table 3: Contributions of firm heterogeneity to dispersion and levels of earnings.

Panel (A) Dispersion Components: Panel (B) Levels (×100):
grouped firm-level grouped firm-level

(1) (2) (3) (4)

sd(µi) 0.43 0.49 — —

sd(λ 0
j ) 0.10 0.22 — —

sd(λ c
j ci) 0.05 0.09 E(λ c

j ci) 0.75 0.66

sd(λ n
j ni) 0.03 0.06 E(λ n

j ni) 0.13 0.17

sd(λ c
j ci +λ n

j ni) 0.06 0.12 E(λ c
j ci +λ n

j ni) 0.88 0.83

# unique firms 25,783 19,085 25,783 19,085

Notes: Panel (A) shows the dispersion of each summand in equation (10). Namely, the standard deviations of: (i)
person and firm intercepts; (ii) interactions of returns and skills. Panel (B) shows the averages of the last two
summands in equation (10). Namely, the contribution of matching to average earnings in the economy (comple-
mentarity gains). Firm-level estimates in column (4) are based on the observation-level, rather than the match-level,
leave-out sample to capture the gains from matching in the population of workers. The averages of person and firm
intercepts are uninformative due to the normalization of firm parameters and are omitted from Panel (B). Sample
period: 1999–2008.
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In Appendix E.4 we document, through variance decompositions, the importance of worker

and firm effects, and of their covariation. This exercise shows that skill returns’ heterogeneity

accounts for a sizable share (about 1/4) of the firm-specific contributions to wage inequality.

Restricting firm heterogeneity to fixed effects mechanically attributes part of that variation to

employer intercepts.

Heterogeneous skill returns and sorting increase average earnings. These gains can be mea-

sured from the covariance of skills and firm returns. For example, for cognitive skills, we have

that E(λ c
j ci) = cov(λ c

j ,ci) = cov(λ c
j ,c j), which shows that sorting determines the intensity of

the average gain accruing from returns’ heterogeneity.13 Panel (B) of Table 3 shows estimates of

the average gain from match effects, which is 0.8–0.9 log points. The larger gains from cognitive

returns reflect the stronger sorting in that dimension, also documented in Section 4.

5.2 The Uneven Gains from Sorting

The gains from sorting are nonmonotonic and convex. They are positive and large for high skill

workers, absent for the least skilled workers and negative for a wide range of intermediate skills.

To illustrate these patterns, we take an expectation of equation (10) after conditioning on skill

level. For brevity, we overview gains from cognitive skills; similar arguments hold for noncogni-

tives. Given skill level ci, the full earnings gain from sorting is

ci ·E(λ c
j | ci)︸ ︷︷ ︸

Full sorting gain

= c ·E(λ c
j | ci)︸ ︷︷ ︸

Firm returns effect

+ c̃i ·E(λ c
j | ci)︸ ︷︷ ︸

Match effect

, (11)

where we split ci into average c and deviation c̃i. The distribution of returns faced by each indi-

vidual depends on the skill level and the expected return from firm heterogeneity changes non-

linearly with skills. Baseline estimates (Column 1, Table 4) illustrate that the marginal expected

return E(λ c
j | ci) is increasing in ci and deviates from the unconditional average, which is normal-

13The sorting parameters estimated in (9) are, in essence, this gain standardized by the variance of skills across

firms,
cov(λ c

j ,c j)

var(c j)
. The equality E(λ c

j ci) = cov(λ c
j ,ci) follows from E(λ c

j ) = 0 (excess returns have zero mean).
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Table 4: Gains from sorting across returns λ c
j for different cognitive skill levels.

E(λ c
j | ci) Full gain Return effect Match effect E(λ 0

j | ci)

(1) (2) (3) (4) (5)

skill level (ci):
1 (lowest, ci = 0) -5.13 0.00 -2.75 2.75 -2.00
2 -4.61 -0.58 -2.47 1.89 -1.51
3 -3.75 -0.94 -2.01 1.07 -1.45
4 -2.61 -0.98 -1.40 0.42 -1.28
5 (median, ci = 0.5) -0.85 -0.42 -0.45 0.03 -0.69
6 1.10 0.69 0.59 0.10 0.15
7 2.98 2.24 1.60 0.64 1.33
8 4.86 4.25 2.60 1.65 2.70
9 (highest, ci = 1) 6.74 6.74 3.61 3.13 3.83

Aggregate 0.00 0.75 0.00 0.75 0.00

Notes: Gains are multiplied by 100 (i.e., in log points) for readability. All returns are differences relative to a
scenario with no heterogeneity in firm returns. Estimates are based on the grouping approach. Sample period: 1999–
2008. Column (1): expected marginal return conditional on skill. Column (2): total gain from sorting. Column (3):
gain from sorting for the average-skill worker. Column (4): gain from sorting in excess of an average-skill worker
with the same employer. Column (5): gain from sorting into intercepts.

ized to zero. The difference in expected marginal returns between top and bottom cognitive skills

is almost 12 log points (6.74− (−5.13) = 11.87).

Marginal returns conditional on skills. Column (2) of Table 4 summarizes the distribution

of gains. Top cognitive workers benefit from higher returns and earn 7 log points more than if

they were matched with the average firm. This return matters for skill premia: we compare the

sorting gains gap between a top worker (ci = 1) and a low-middle (level 4 in Table 4, ci = 0.375),

which is 8 log points. The raw earnings difference between these two workers is on average 30

log points; the gap is reduced to (30− 8) = 22 log points when sorting effects are taken out.

Therefore, sorting adds more than 1/3 ( 8
22 ) to the baseline gap.

Nonmonotonicity of gains. Gains are not monotonic in skills (Column (2), Table 4). Work-

ers with low-to-middle skills lose out compared to a hypothetical situation where everyone is

matched with the average return. To understand why these losses wane as ci approaches zero,
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we break down skill returns into a mechanical “return effect” c ·E(λ c
j | ci) and a “match effect”

c̃i ·E(λ c
j | ci) (see equation (11)). Estimates of the return effect c ·E(λ c

j | ci) reflect the gain that

a worker i, whose skill endowment is equal to the cross-sectional average, derives from being

assigned to different expected returns (column (3), Table 4). Hence, the return effects measure

the impact of firm heterogeneity net of complementarity. Since high skill workers sort into high

return firms, estimates of the return effects grow monotonically with skills. This raises inequality

compared to a random allocation and results in a zero-sum redistribution of returns, as evidenced

by the aggregate nil effect reported in the bottom row of column (3) of Table 4. In contrast,

match effects c̃i ·E(λ c
j | ci) in column (4) raise aggregate earnings by eliciting incremental gains

from worker–firm complementarity.14 Unsurprisingly, match effects are large at the high end of

the skill distribution, where earnings are magnified compared to the random allocation (3.1 log

points match effect for ci = 1; 1.7 for ci = 0.875). We detect large match effects also for low skill

workers (2.7 for ci = 0; 1.9 for ci = 0.125) since match effects are defined as deviations from the

average-worker gain (see (10)). That is, match effects reflect gains in excess of those experienced

by an average-skill worker with the same employer (note that average-skill workers experience a

steeper loss from matching with a low quality firm due to their higher opportunity cost).

Firm-specific intercepts and gains from sorting. The last column of Table 4 shows the wage

gains due to matching with intercepts λ 0
j , conditional on skills. These gains are zero-sum due

to the lack of complementarity between skills and firm intercepts. Nonetheless, the assignment

of workers across firms (hence, across λ 0
j ) raises earning gaps by an extent comparable to that

due to skill sorting across returns (column (2)). This reinforces between-skills inequality as more

able workers populate high λ 0
j firms.

A graphical representation. Figure 3 summarizes the distribution of returns by skill. Low-

skill workers experience positive match quality effects because they do not lose as much as

14Both components are defined as surplus relative to a baseline with no firm heterogeneity where all returns are
equal to the population average. Hence, both positive and negative gains must be interpreted relative to a scenario
where each worker gets the average return or, equivalently, where workers are randomly matched with firms.
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Figure 3: Gains from sorting for workers with different cognitive skill ranks.
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Gains are multiplied by 100 (i.e., in log points). Differences are relative to a scenario with no heterogeneity in firm
returns. Estimates are based on the grouping approach (see Table 4). Sample period: 1999–2008.

the average worker from matching with low return employers. Gains turn negative for low-to-

intermediate skill workers, who would benefit from matching with high return firms but do not.

These individuals would be better off in a world with no firm heterogeneity in skill returns. Work-

ers with above average skills experience large gains: both their return effects and their match

effects are positive. Complementarities convexify the earnings-skills schedule. Overall, the gains

outweigh the losses and matching raises aggregate earnings. To gauge the intensity of matching

in the data, we benchmark it against the maximum gain achievable from the estimated returns and

skill dispersion.15 Assortative matching in the cognitive dimension generates 0.75 log points as

compared to a hypothetical maximum of 1.9 log points. That is, the observed allocation of skills

across employers delivers about 40% of the potential gains from cognitive sorting. Adding the

returns from matching on noncognitives boosts aggregate match quality, up top 0.88 log points

(Panel B, Table 3). Estimated gains from sorting are robust to alternative normalizations of skills

and returns (Appendix E.5).

15Match effects are maximized when the correlation corr(λ c
j ,ci) =

cov(λ c
j ,ci)

sd(λ c
j )sd(ci)

= 1. Baseline (grouped) estimates

imply an upper bound for match effects in the cognitive dimension of sd(λ c
j )× sd(ci) = 0.08×0.24 = 0.019.
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Table 5: Moments due to skill returns under random versus actual sorting.

Mean ×100 Standard deviation Skewness
Random Actual Random Actual Random Actual

(1) (2) (3) (4) (5) (6)

λ c
j ci 0.00 0.75 0.05 0.05 0.52 0.90

λ n
j ni 0.00 0.13 0.03 0.03 0.34 0.68

λ c
j ci +λ n

j ni 0.00 0.88 0.05 0.06 0.28 0.55

Notes: Central moments of the distribution of skill returns assuming either the actual allocation or a
counterfactual where workers are randomly assigned to firms. Mean earnings µ ≡ E(λ c

j ci + λ n
j ni) rise

due to matching (compare Columns (2) and (1)). Dispersion σ ≡ sd(λ c
j ci+λ n

j ni) rises modestly (Column
(4)) compared to random assignment (Column (3)). Skewness µ̃3 ≡ E[(λ c

j ci +λ n
j ni −µ)/σ ]3 is almost

twice as large relative to random assignment (last two columns). Baseline grouped estimation. Sample
period: 1999–2008.

Random assignment. To construct a random assignment counterfactual, we re-weight all skill

types within a firm according to their population share while preserving the observed firm size

distribution. Table 5 compares the first three moments of the distribution of earnings to moments

obtained under the assumption of random assignment.

As expected, the average returns’ gap (comparing columns (1) and (2) in Table 5) is in line

with the efficiency gains reported in Tables 3 and 4. The standard deviations of skills premia are

only marginally different (columns (3) and (4)): this is not surprising since higher between-skill

inequality in the non-random allocation (Figure 3) is offset by declines in within-skill inequality

due to the similarity of worker skills within firms. The muted changes in the second moment of

the distribution point to a subtle distinction highlighted in the theoretical literature (Becker and

Chiswick, 1966; Sattinger, 1993; Lindenlaub, 2017): the most conspicuous changes induced by

complementarities occur in the third moment of the earnings distribution. Columns (5) and (6)

suggest that the skewness of log earnings is twice as large under the non-random allocation of

workers. The matching of high skill individuals to high return firms results in a thickening of

the right tail of the earnings distribution (Figure 3). To sum up, returns’ heterogeneity provides

a natural way to interpret the asymmetries in the distribution of earnings and reconcile models

28



of sorting with the well-established evidence on between-firm variation. Since the distribution

of firm sizes is unchanged in our counterfactuals, sorting has no effect on the moments of firm

intercepts λ 0
j .

6 Extensions and Robustness

Does the assignment of skill vary with industry and occupation? In robustness exercises we

test for return heterogeneity within narrowly defined industry and occupation groups. To aid

interpretation of our baseline findings, we also examine the correlation of skill returns with firm

characteristics. Specifically, we link external data about firms’ balance sheets and innovation

to our sample of employers and examine the relationship between capital composition and skill

returns. Finally, we assess the sensitivity of our estimates to alternative firm clustering approaches

and to potential measurement error in skill proxies.

6.1 Industry and Occupation Specific Skill Returns

To explore whether skill returns reflect sector and job characteristics, we augment the baseline

specification (6) with a full set of industry×occupation interactions with cognitive and noncogni-

tive traits. Estimates in Appendix F.1 show that fine industry and occupation-specific skill returns

(returns that vary by industry×occupation group) account for a minor share of firm-level hetero-

geneity. This confirms that most of the returns’ heterogeneity occurs at the firm level, as opposed

to the more aggregate industry or occupation level.

Aggregating to industry or occupation. While most return heterogeneity occurs at the firm

level, some industries or occupations may exhibit higher skill returns on average. To explore

this possibility, we project the baseline λ c
j and λ n

j estimates on industry-sector indicators and on

employment shares for occupation groups (Appendix F.1). We find that high cognitive returns

are frequent in Business-Services and IT as well as in firms with a large share of professional
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occupations. Noncognitive returns tend to be higher in the personal services sector and in firms

that have large shares of managerial and services/sales jobs.

6.2 Capital Composition, Innovation, and Skill Returns

We explore some potential sources of returns’ heterogeneity by linking balance sheet and inno-

vation data to the sample of employers.

Capital composition. Differences in capital composition may reflect systematic aspects of pro-

ductive and organizational structure. An advantage of the Swedish setting is that most private

sector firms are limited liability corporations with publicly available financial statements. We use

their balance sheet data to measure different capital components per employee. We aggregate

workplaces to the organization level where this information is reported. In what follows we re-

fer to these aggregates as firms. Results in Appendix F.2 show that intangible capital (especially

patents, licenses, and capitalized R&D expenses) is strongly positively associated to cognitive

returns. The notion that intangible capital and intellectual property are complementary to high

skilled labor within a firm is consistent with production arrangements that leverage innovation.

Physical assets and machinery, on the other hand, are larger items in firms that exhibit lower

returns to cognitive skills. This is unlike noncognitive skills, whose returns are modestly higher

in firms with more physical capital. The findings support the view that skills should be modeled

separately rather than collapsed into a single index.

Measures of innovation activities. To further qualify these findings, we use the Swedish ver-

sion of the European Community Innovation Survey (CIS) and examine the relationship between

skill returns and innovation activities. In each wave of the CIS, a representative sample between

2,000 and 5,000 firms reports whether they conducted any product (including new services) or

process (including organizational structure) innovations in the survey year or the preceding two

years. Lindner et al. (2022) argue that the CIS provides direct and reliable measures for different

types of firm-level technological change. Results in Appendix F.2 show that innovation activities
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are positively, and almost linearly, associated with cognitive returns. This is especially apparent

in the case of product innovations where, moving from the lowest to the highest λ c
j firms, the

share of firms which introduce such innovations rises from 25 to 65 percent. Innovation expendi-

tures (inputs) are larger for higher λ c
j firms, suggesting that high return firms differ in their ability

to bring forward innovations. This reinforces the evidence from studies linking cognitive skills

to worker-level innovation (Aghion et al., 2023; Bell et al., 2018).

6.3 Changing the Cluster Design

Does the firm heterogeneity’s contribution to earnings dispersion vary with the number of firm

classes and the observables used to cluster firms? Using only ten classes (Bonhomme et al.,

2019; Lamadon et al., 2022) marginally lowers the absolute contribution of firm heterogeneity

and raises the importance of skill returns relative to the intercepts. Using more observables to

cluster firms (e.g., firm employment and the standard deviations of earnings and skills within

the firm) delivers estimates of firm effects in line with baseline estimates. If we only use data

on within firm earnings to define classes (Bonhomme et al., 2019; Lamadon et al., 2022), skill

returns’ contribution does not change significantly relative to the case where many observables

are used. All these estimates are in Appendix Table F.6.

Number of clusters. The baseline grouping with one hundred clusters delivers conservative

estimates of the contribution of firm heterogeneity to earnings dispersion. Appendix Figure F.6

shows the standard deviation of log earnings attributed to different layers of firm heterogeneity

when we increase the number of clusters from 20 to 200. Under the assumption of only twenty

firm clusters, the impact of skill return heterogeneity is substantial, with a contribution of 5 log

points to dispersion as opposed to 9 log points due to firm intercepts. Increasing the number of

clusters results in a stronger influence of firm heterogeneity on overall inequality, and the absolute

values of firm effects estimated from finer clusters become similar to those obtained using the

bias correction approach with no clustering. Interestingly, the relative contribution of each layer

of heterogeneity is stable throughout. When no clustering is imposed and estimates are adjusted
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using the bias correction method, the absolute impact of firm heterogeneity on earnings is larger

but the relative impact of different components (intercept vs skill returns) is unchanged (Table 3).

This confirms that alternative empirical approaches deliver comparable estimates of the relative

contribution of skill return heterogeneity to firm-level variation.

6.4 Measurement Error in the Skill Measures

In Appendix C we examine the potential impact of measurement error in skill proxies. First, we

consider the impact of different degrees of (classical) measurement error on estimates of returns’

dispersion. In this way we show that measurement error has a discernible effect but does not alter

the key insights of our analysis. For example, halving the reliability ratio of cognitive measure-

ments (denoted by rc, see definition in appendix) reduces the estimated dispersion of cognitive

returns by about 30%. Similar impacts are present in noncognitive returns when we halve the

reliability of the noncognitive measure (denoted by rn). Introducing additional noise in the skill

measures leads to roughly linear responses in the downward bias of the estimated dispersion of

returns, sd(λ c) and sd(λ n). We find no evidence of spillover effects: that is, additional noise

in one attribute (say, cognitive) does not materially affect the dispersion of the other attribute’s

returns (say, noncognitive).

Given these findings, in the second part of Appendix C we suggest a procedure to quantify the

impact of measurement error on our baseline estimates. This analysis accommodates alternative

assumptions about the intensity of measurement error. Assuming conventional reliability ratios

for the skill proxies (Lindqvist and Vestman, 2011; Grönqvist et al., 2017), we show that our base-

line estimates are rather conservative. For example, setting reliability ratios to rc ∈ [75%,85%]

and rn ∈ [50%,70%], cognitive returns’ dispersion would be around 0.09–0.095 and noncognitive

returns’ dispersion around 0.06–0.065. A comparison of these values to the estimates reported in

Table 1 (namely, 0.08 and 0.05) indicates that the contribution of skill returns to wage dispersion

may be larger than our baseline estimate. Further lowering the reliability of skill measures results

in even higher heterogeneity in skill returns.
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7 Conclusion

We present evidence of skill returns’ variation across employers and of worker–firm complemen-

tarities. To identify the distinct layers of firm heterogeneity, we link administrative employer–

employee population records to high-quality information about the cognitive and noncognitive

attributes of workers. We adopt several approaches to estimate firm-level parameters. Each ap-

proach imposes different restrictions; however, estimates of the relative magnitude of skill returns,

as opposed to skill-independent firm fixed effects, are stable throughout.

Our findings can be summarized as follows: (1) Similar skills command different returns

across firms. Differences occur along both the cognitive and noncognitive dimension. Within-

firm returns to each attribute are weakly correlated with one another. (2) Returns heterogene-

ity generates incentives for sorting; indeed, workers with larger endowments of cognitive and

noncognitive skills populate firms with higher returns to those attributes. The intensity of sorting

in each skill dimension depends on the dispersion of that skill’s return across firms; as dispersion

grows, so does the incentive for skilled workers to seek a better match. (3) The gains from sorting

across employers are nonmonotonic in worker skills. High skill workers benefit from heterogene-

ity in returns. Considerable costs are borne by workers with intermediate skills because of the

opportunity cost from matching with less productive firms. The least skilled workers experience

little loss from firm heterogeneity as their skill returns are low regardless of the employer. (4) Pos-

itive assortative matching has implications for the distribution of earnings, which becomes more

skewed due to the matching of high skills to high returns. Sorting boosts average earnings and the

economy-wide skill premium. (5) Data from firms’ balance sheets indicate that firms with high

cognitive returns engage in more innovation and hold more intellectual capital. Noncognitive re-

turns, however, do not vary with intellectual capital and are only modestly higher in firms with

more physical capital. This discrepancy lends support to the view that skills should be modeled

separately rather than collapsed into a single index.
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A Data and Samples Construction

A.1 Data
Base sample. The main data source for our analysis is the Longitudinal Integrated Database
for Health Insurance and Labor Market Studies (LISA) by Statistics Sweden (SCB). LISA con-
tains employment information (such as employment status, organization and workplace identi-
fiers, industry and, from 2001, occupation), tax records (including labor and capital income) and
demographic information (such as age, education) for all individuals 16 years of age and older
domiciled in Sweden. LISA starts in 1990, with the most recent data including 2017.

Our measure of earning returns is annual labor income from the employer with highest record-
ed earnings. This is available for all workers, not top-coded, and includes end-of-year bonuses
and performance pay. LISA reports a unique identifier for each individual’s “company of em-
ployment”, a so-called organization number, as well as a workplace identifier, which is the com-
bination of organization number, employment location, and industry. To be consistent with the
earning measure, and with the firm literature (see, among others, Card et al., 2013), we use the
workplace with the highest earnings in a given year as the worker’s “firm”.

We keep workers dependently employed in the private nonprimary sector who earn above the
Prisbasbelopp (the minimum amount of earnings that qualifies for the earnings-related part of
the public pension system; see also Edin and Fredriksson, 2000). In 2008, the Prisbasbelopp
was 41,000 kr or approximately 6,200 USD. We drop all observations with incomplete data
(missing test scores, age, or workplace) and restrict the sample to 20–60 year old males. This
process results in a sample of approximately 1 million unique workers, 26 thousand firms, and
6.6 million worker× year observations for the main sample period of 1999–2008.1 Column (1)
of Table A.1 reports summary statistics for the resulting sample.

Measures of cognitive and noncognitive traits. A strength of our data source is that we have
access to extensive and consistent measures of workers’ cognitive and noncognitive attributes.
This information comes from military enlistment tests, which were mandatory for Swedish males
before 2007 and typically taken between age 18 and 19. In the early 2000s, Sweden started
requiring progressively fewer males to do military service. The service was abolished in 2010.
Before 2007, however, all males were required to take the military enlistment tests and test scores
are available for almost 90 percent of males born up to the 1980s (e.g., see Figure A.1 in Böhm
et al., 2023).

One might worry that certain individuals could deliberately perform badly on these tests to
avoid military service. There are, however, several pieces of evidence suggesting this was not a
major problem. In particular, we emphasize that employers routinely put considerable weight on
military service performance and anecdotal evidence suggests that some positions – like being
an officer in the navy – were important for the networks individuals would obtain; a substantial
fraction of individuals working in influential positions within Swedish society went through these

1We also document results for two alternative periods, 1990–1999 and 2008–2017.
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military service assignments. Consistent with these observations, and perhaps more importantly,
military test scores have been shown to significantly predict future earnings at long intervals after
the tests, as well as other labor market outcomes such as managerial positions and incidence of
unemployment (see, e.g., Lindqvist and Vestman, 2011).

The enlistment process for military service spans two days and evaluates a person’s medical
and physical status as well as cognitive and mental abilities. We use the tests of cognitive and
noncognitive ability, which are well established in the labor economics literature, for our analysis.
The test of cognitive ability consists of four different parts (logic, verbal, spatial, and technical
comprehension), each of which is constructed from 40 questions. These are aggregated into an
overall score. The test is a rich measure of general competence and intelligence and it has a
stronger fluid IQ component than the American AFQT, which focuses more on crystallized IQ.
The aggregate cognitive score ranges from the integer value 1 (lowest) to 9 (highest), according
to a STANINE (standard nine) scale that approximates a Normal distribution with a mean of 5
and standard deviation of 2 (meaning that a gap of two scores covers a standard deviation).

Noncognitive ability is assessed through a 25-minute semi-structured interview by a certified
psychologist. Individuals are graded on, among others, their willingness to assume responsibil-
ity, independence, outgoing character, persistence, emotional stability, and power of initiative
(Swedish National Service Administration, referenced by, among others, Lindqvist and Vestman,
2011). The psychologist weighs these components together and assigns an overall noncognitive
score on a STANINE scale. Lindqvist and Vestman (2011), on p. 108f, discuss in detail how the
noncognitive score is related to, and different from, other measures often used in the literature
on personality and labor market outcomes. Rather than assessing a unique trait, the noncognitive
score assesses the ability to function in a demanding environment (military combat). Previous
work provides robust evidence that these traits are also rewarded in the labor market.2

Test scores and later life outcomes. An important advantage of the military test scores is that
they allow for a professional standardized measurement of different ability dimensions over a
large population. Military enlistment scores are by design exogenous and predetermined with
respect to individuals’ career choices. Although cognitive and noncognitive ability are not fixed,
they are hard for individuals to manipulate after late childhood or early adulthood (Hansen et al.,
2004; Heckman et al., 2006). Crucially, as we show in Figure A.1, the tests are strongly associ-
ated to labor market outcomes and accurately predict earnings several decades later. Figure A.1
compares the earnings of workers with different STANINE scores in our sample (residualized
using full age× year dummy interactions) and documents highly significant differences at ages
35 and 50, across both cognitive and noncognitive competencies. These plots emphasize the last-
ing informational content of the tests and their relevance for long term labor market outcomes.
Strong significance at long lags is not always the case with ability tests in survey data and is

2Individuals who score sufficiently high on the cognitive test are also evaluated for leadership ability, again on a
STANINE scale. The leadership score is meant to capture the suitability to become an officer. Since leadership is only
assessed for a subset of individuals, we focus on cognitive and noncognitive ability in our analysis. Noncognitive
ability and leadership ability are also highly correlated; in our data the correlation is above 0.8, while the correlation
of cognitive and noncognitive is 0.3.
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(A) Cognitives

(B) Noncognitives

Figure A.1: Average Earnings of Males at Age 35 and 50, by Test Score Group.
Notes: Earnings for different test score ranks {1,3,5,7,9}; values are residualized using full age × year dummy
interactions. Sample period: 1990–2017. 95% confidence intervals indicated by brackets.
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partly due to the fine-grained and homogeneous nature of the procedures used to elicit different
attributes, resulting in measures that can be mapped into earnings for the whole population of
interest over its working life cycle.3

A.2 Requirements for Estimating High-Dimensional Models
Estimation requires restrictions on the data samples that guarantee that distinct firm effects can
be recovered without biases. These restrictions depend on the empirical approach adopted.

Connected sets. The final sample must consist of firms that are connected to each other through
worker mobility. This entails working with a connected component of the firm–worker graph
(Abowd et al., 2002; Bonhomme et al., 2023). Distinct connected sets may exist within a large
sample of employment matches and empirical analyses often focus on the largest set (or ‘maxi-
mally connected subgraph’). When considering different skill levels (say high and low cognitive
skills) the requirement is that we use a set which is connected for each skill level (“dual” or
“double” connected in Card et al., 2016; Kline et al., 2020, respectively). As we show below, the
connectedness restrictions become less stringent when observations are defined at the level of
firm clusters rather than individual firms.

Limited mobility bias. While connectedness leads to unbiased identification of model parame-
ters, researchers are usually interested in variance components. These may be biased if sampling
errors in parameter estimates enter the variance components in a quadratic form. The squared
sampling error may not converge to zero as the number of firms increases. Intuitively, the bias
arises from an insufficient number of movers into and out of the firm, hence “limited mobility
bias”, so that variances are overstated and covariances understated (Andrews et al., 2008).

The magnitude of the bias is inversely related to the degree of connectivity of the firm-worker
graph, with the graph being disconnected as limiting case (Jochmans and Weidner, 2019). For
details, see Bonhomme et al. (2023, Section 3). Fortunately, the literature on panel data has made
good progress in addressing this problem.

One approach defines the relevant level of firm unobserved heterogeneity as the “class” of
a firm, corresponding to a cluster of similar employers (Bonhomme, Lamadon, and Manresa,
2019). While the class can be arbitrarily close to an individual firm, this may not be desirable
because the number of job movers per firm will become smaller and result in an incidental param-
eters bias (i.e., reinstate the limited mobility problem). Under the assumptions of this approach,
unobservable firm heterogeneity operates at the level of firm classes. The latter can be estimated
in a first step through k-means clustering based on earnings and skills within each firm. This
achieves two objectives: first, it enhances tractability; second, it delivers well-centered estimates
of the contributions of worker and firm heterogeneity to earnings dispersion. Clustering trades

3Aghion et al. (2023) further show that cognitive military test scores similar to ours strongly predict whether an
individual becomes an inventor in Finland, another important later in life outcome and closely related to our analyses
in Section 6.2.
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off restrictions on the dimensionality of the underlying groups for increased connectedness be-
tween firm classes. Notably, this method does not require shedding observations to generate a
connected set.

A different approach builds on variance component estimators designed for unrestricted linear
models with heteroscedasticity of unknown form. This removes the bias by resorting to leave-
out estimators of the variances of errors from the linear model. For each worker–firm match, an
estimate of the error variance is obtained from a sample where those observations are left out. The
leave-out procedure delivers unbiased estimates in finite samples (Kline, Saggio, and Sølvsten,
2020) and facilitates tests of linear restrictions.

This estimation strategy requires that firms remain connected by worker mobility when any
single mover is dropped, which involves pruning the original sample to ensure that the connected-
ness condition is met by all leave-out subsamples. This reduces dimensionality and computation
time (see Appendix B).

Implementation of the clustering and bias correction approaches. Implementation of the
grouping approach requires clustering firms into classes. We define 100 classes using a k-means
algorithm based on average earnings as well as average cognitive and noncognitive skills of all
workers (stayers and movers). Having a sufficiently large set of classes accommodates rich het-
erogeneity and ensures stability while still delivering a major dimension reduction. Using infor-
mation beyond wages has been proposed in the structural literature (Eeckhout and Kircher, 2011;
Hagedorn et al., 2017; Bartolucci et al., 2018; Bagger and Lentz, 2019). In our implementation
this is further motivated by the theoretical restriction that firm-specific production arrangements
affect both the skill composition of the workforce and their wages. Alternative clustering criteria
(e.g., adding within-firm dispersion of skills and wages, or employment levels) as well as alter-
native numbers of classes deliver similar results (Section 6.3). The availability of skill measures
makes it feasible to estimate specifications that feature firm effects in both levels and returns.
Previous work has shown that class membership and fixed effects can be accurately estimated
with sufficiently many workers. Using skill proxies also avoids incidental parameter biases in
estimated returns due to few panel observations per worker.

Implementation of the bias correction approach relies on the leave-one-out double-connected
set of firms. We prune the sample to contain firms that remain connected along both skill dimen-
sions (cognitive and noncognitive) for different levels (high and low) when each single observa-
tion is dropped. The implementation accounts for correlation of error terms within an individual’s
spell at a given employer (Kline et al., 2020). This is done by averaging the data to the worker–
firm match level. The resulting leave-match-out set is double-connected (in both skill dimensions)
and smaller than the original sample but allows for estimation at the individual firm level. The
extensive size of the Swedish population data assuages concerns about sample sizes. Appendix B
discusses theoretical details of each approach and their implementation. In Table A.1 we report
statistics for the underlying samples.

7



A.3 Estimation Samples
Clustered estimation: sample and firm grouping. We concentrate on the largest set of firms
connected via worker mobility. This corresponds to moving from column (1) to (2) in Table A.1,
and is in fact not strictly necessary: for estimating clusters only mobility between firm classes is
required, a condition almost trivially satisfied here. Nonetheless, we keep with existing literature
and require connected firms; this is not a consequential sample restriction, as shown in Table A.1.
The latter finding indicates that even our initial restrictions are enough to lead to a sample of
relatively large and well-connected firms. Overall, there are 25,783 unique firms and 510,077
workers who move between firms at least once during 1999–2008 in column (2) of the table.

Next, we employ the k-means algorithm (see also Bonhomme et al., 2019, Section 4) to group
firms into 100 clusters. We do this by using variation in mean earnings, mean cognitive, and mean
noncognitive skills, which reflect the dimensions of firm heterogeneity that we are interested in.
In particular, differing technologies should lead to variation in both firms’ skill composition and
earnings. We estimate model (6) using this sample and the definition of firm clusters (i.e., the j
subscripts refer to the 100 clusters). Results are reported in Column (1) of Table 1. Section 6.3 in
the paper and associated Appendix F.3 examine robustness with respect to alternative clustering
criteria as well as to the number of firm classes.

Bias-correction estimation: leave-one-out match-level samples. The estimation of variance
components with the bias correction requires a set of firms that are leave-one-out connected
by mobility of high and low skill workers in both the cognitive and noncognitive dimension. We
meet this condition by only sampling firms that are leave-one-out connected through: (i) low skill
workers (c ≤ 5,n ≤ 5), (ii) low in one and high in the other dimension workers (c ≥ 6,n ≤ 5 or
c ≤ 5,n ≥ 6), and (iii) generally high-skill workers (c ≥ 6,n ≥ 6). A leave-one-out connected set
of firms remains connected when any one worker is removed. This requires finding the workers
that constitute cut vertices or articulation points in the corresponding bipartite network (Kline
et al., 2020, Computational Appendix 2.1).

The algorithm to construct our estimation sample works as follows:

Step 1: We use Python’s NetworkX package to identify the articulation points of the worker–firm
graph, remove them and find the largest connected set that remains, then add back those
articulation points that are connected to this largest leave-one-out connected set.

Step 2: We identify the largest leave-one-out connected set separately for the three skill groups
(i)–(iii) and only keep those firms that are in the intersection of these sets.

We repeat Steps 1 and 2 until there is no reduction in the size of the graph (i.e., the three largest
leave-one-out connected sets coincide). This final set is leave-one-out connected for the three
skill groups.

We estimate the model at the worker–firm match level to account for potential serial corre-
lation within worker–firm employment spells. That is, we collapse the data to means and drop
workers who stay in the same firm throughout the period, since in the match-level estimation
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Table A.1: Summary statistics for the estimation samples

Full sample Largest connected Leave-one-out Match-level
(1) (2) (3) (4)

Number of observations 6,610,567 6,609,865 3,267,381 1,188,618
Number of stayers 578,146 578,146 - -
Number of movers 510,077 510,077 477,424 477,424
Number of firms 25,839 25,783 19,085 19,085

Average log annual earnings 7.84 7.84 7.83 7.83
StDev log annual earnings 0.60 0.60 0.64 0.71

Average cognitive skill 5.28 5.28 5.44 5.44
Average noncognitive skill 5.13 5.13 5.23 5.23
Average age 37.32 37.32 36.35 36.35

Notes: Summary statistics for successively more restricted samples. Column (1) are all males aged 20–60 with non-
missing employer, earnings, and test scores 1999–2008 at firms that exist at least five years with at least ten sample
workers on average. Column (2) extracts the largest connected set of firms and their employees. Column (3) extracts
the leave-one-out connected set of firms and removes workers who stay in the same firm in all years they are observed.
Column (4) collapses the column (3) sample to worker–firm matches (summary statistics weighted by underlying
frequencies). Earnings are real annual labor income in 2008 Swedish kronor. Cognitive and noncognitive scores are
in Stanine scale. Our estimation samples are in bold font, (2) for clustering and (4) for the bias-correction approach.

these do not contribute to identifying the firm effects. We thereby follow exactly Kline et al.
(2020, Appendix A)’s recommendations for estimating variance components in panels of T > 2.

The final firm-level sample to estimate (6) is summarized in Column (4) of Table A.1. This
consists of 19,084 unique firms and 477,423 mover workers within the firm-level sample. The
leave-one-out connectedness requirement increases employer size as it reduces the number of
firms (26%) relatively more than the number of workers (7%). However, these reductions seem to
have moderate effects. The average and dispersion of earnings do not change much but workers
in the firm-level sample with larger firms are slightly younger and more skilled. The smaller
number of observations in the match-level sample, without stayers and collapsed to the worker–
firm match level, also reduces the computational burden (see footnote 6 below). For comparison,
we also show results for the leave-one-observation-out sample in Table E.1 and, as expected,
estimated dispersions of firm returns are substantially larger. In that sense, the match-level results
in the main text are conservative.

9



B Overview of Econometric Methods
Throughout the paper we use high-dimensional firm effects specifications featuring firm-specific
returns to cognitive and noncognitive skills. Estimates from these models are employed to study
quadratic forms of model parameters. The baseline linear model is4

log(wi jt) = µi +λ
0
j + ci ·λ c

j +ni ·λ n
j + εi jt .

Of particular economic interest is the set of second moments of firm and worker specific pa-
rameters. For instance, in the standard double fixed effect model, one might interpret cov(µ,λ 0)
as a measure of sorting of high-type workers into high-type firms. However, the naive plug-in
estimates of these moments are prone to biases. In fact, developing unbiased estimators of such
quadratic forms is the object of several papers in the firm heterogeneity literature (Andrews et al.,
2008; Bonhomme et al., 2019; Kline et al., 2020; Bonhomme et al., 2023). Since our interest is
in studying similar second moments, in what follows we briefly overview some details about the
methods we employ to estimate firm effects.5

B.1 Estimating Bias-Corrected Quadratic Forms
We begin by rewriting our baseline specification as:

log(wi jt) = µi +λ
0
j + ci ·λ c

j +ni ·λ n
j + εi jt ,

≡ Xi jβ + εi jt (B.1)

where β = [µ;λ 0;λ c;λ n]′ ≡ [µ1, ...,µI; λ 0
1 , ...,λ

0
J ; λ c

1 , ...,λ
c
J ; λ n

1 , ...,λ
n
J ]

′ is the parameter vector
and Xi j = [1i, 1 j, ci1 j, ni1 j] is the data matrix.

The symbol 1i denotes a I × 1 indicator vector whose elements are all zero except the ith

coordinate (corresponding to worker i) which is set to 1. Similarly 1 j is a J ×1 indicator vector
for firm j.

Kline et al. (2020) suggest an unbiased estimator for arbitrary quadratic forms involving the
coefficients of (B.1) in the form of β ′Aβ , for given matrix A. By appropriately choosing the A
matrix, one can recast all the second moments of firm parameters λ 0

j , λ c
j , and λ n

j into quadratic
expressions of the form β ′Aβ .

Constructing quadratic forms. We begin by defining three row vectors associated to differ-
ent firm parameters: X0

i j = [01×I, 1 j, 01×J, 01×J], Xc
i j = [01×I, 01×J, 1 j, 01×J], and Xn

i j =
[01×I, 01×J, 01×J, 1 j], where i identifies worker and j is firm. Also, we let X denote the ma-
trix that results from vertically stacking all the observations in row vector Xi j. Then, X0, Xc, and

4In the specifications studied in the main body we also include a broad set of control variables which are ignored
here for notational simplicity.

5For in-depth discussions of these estimators see Kline et al. (2020) and Bonhomme et al. (2022, 2019).

10



Xn denote the matrices that result from vertically stacking X0
i j, Xc

i j and Xn
i j. Finally, we define

A0 =
1√
N

(
X0 −X0

)
Ac =

1√
N

(
Xc −Xc

)
An =

1√
N

(
Xn −Xn

)
where X0

= 1
N [0N×I, 1N×J, 0N×J, 0N×J], X

c
= 1

N [0N×I, 0N×J, 1N×J, 0N×J], and
Xn

= 1
N [0N×I, 0N×J, 0N×J, 1N×J]. One can use the A matrices above to estimate second moments

of interest, e.g. VAR(λ 0) = β ′(A0′A0)β or COV(λ c,λ n) = β ′(Ac′An)β . In what follows we set
A = A′

1A2 to estimate θ = β ′Aβ , where A1 and A2 could be any of A0, Ac, and An (depending on
which moments we are interested in).

Plug-in estimator. The plug-in estimator θ̂PI = β̂ ′Aβ̂ can be obtained by simply using the OLS
estimates of β̂ in the quadratic form defining θ . However, the plug-in estimator is biased and its
expected value is

E[θ̂PI] = θ + trace(A×VAR[β̂ ]) = θ +
N

∑
k=1

Bkkσ
2
k (B.2)

where S = X′X, Bkk is the k-th diagonal element of B = XS−1AS−1X′ corresponding to observa-
tion k, and σ2

k is the variance of error term of observation k. Therefore, the bias in the plug-in
estimator can be corrected by using unbiased estimates of σ2

k , which is the route we take when
estimating the model at the level of individual firms.

Bias-corrected quadratic forms. We use leave-k-out OLS estimators of β , denoted by β̂−k,
that are obtained from a sample where the observation k is excluded. This delivers an unbiased
estimator of σ2

k such that
σ̂

2
k = yk(yk − xkβ̂−k), (B.3)

where yk is the dependent variable (i.e. log earnings) of observation k and xk is the corresponding
independent variables vector (i.e. row k of X). Using the σ̂2

k above, we compute the bias corrected
estimator of θ as

θ̂KSS = β̂
′Aβ̂ −

N

∑
k=1

Bkkσ̂
2
k . (B.4)

Large Scale Computations. Estimating θ̂KSS is computationally expensive for large data-sets
with many estimated parameters such as ours. Like Kline et al. (2020), we use a variant of the
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random projection method of Achlioptas (2003, known as Johnson-Lindenstrauss Approxima-
tion, or JLA) to estimate the σ̂2

k and Bkk required in the estimation of θ̂KSS. JLA suggests the
following approximation:

P̂kk =
1
p
||RPXS−1xk||2

B̂kk =
1
p
(RBA1S−1xk)

′(RBA2S−1xk)

σ̂
2
k,JLA =

yk(yk − xkβ̂ )

1− P̂kk
(1− 1

p
3P̂3

kk + P̂2
kk

1− P̂kk
),

where p∈N is a number much smaller than the total number of estimated parameters. That is, we
can achieve a material reduction in the dimensionality of the problem. The RP,RB ∈ {−1,1}p×N

are random matrices of order p×N featuring elements equal to +1 and -1 with equal probabili-
ties. This makes computations significantly faster when parameters are estimated at the level of
individual firms.6

B.2 Cluster-Based Estimation
Models with two sided heterogeneity rely on job movers to identify the unobserved firm and
worker parameters. In typical employer–employee linked data sets the number of job movers per
firm tends to be small, which leads to the well known limited mobility bias in quadratic forms
of these estimates. To alleviate this problem, group based estimates have been suggested in the
literature. In this approach, firm parameters are assumed to only vary across groups or clusters of
firms, rather than individual firms. Under this assumption about the underlying data generating
process and further assuming that the number of groups is limited, the number of job moves per
group of firms is sufficiently large, which alleviates the small sample bias concern.

Partitioning returns across clusters. To adapt this framework to our setting, we begin by
rewriting the baseline specification as

log(wi jt) = µi +λ
0
g( j)+ ci ·λ c

g( j)+ni ·λ n
g( j)+ εi jt ,

where g : {1, ...,J} → {1, ...,K} is a partitioning function that maps firm j into cluster g( j) that
the firm j belongs to, and K is the total number of groups. These groups could in principle be the
individual firms, i.e., g( j) = j, but only in models with a reduced number of groups is the limited
mobility bias less of a concern.

6Estimating the bias-corrected second moments of parameters in model (6) on the data in Column (4) of Table A.1
takes about 20–30 hours using Python and the JLA approximation with p = 50 depending on the Swedish server’s
workload. Setting p = 50 is in line with Kline et al. (2020) and we have tested that further increasing p does not
change our results.
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Two-step estimation. We estimate the model in two steps i.e. (i) partition firms into K disjoint
groups (ii) estimate the model using the firm groups. Bonhomme and Manresa (2015) show that
a k-means estimator can consistently identify the firm classes up to a relabeling of groups. In the
first step, as discussed in Section 2.2, we use the average earnings as well as average cognitive
and noncognitive traits of their workers to group firms. Intuitively, the earnings and average skills
in firms with identical intercepts and returns should be the same and one could then use these
observed firm variables to define separate firm classes. The structural literature advocates going
beyond earnings when clustering firms (Eeckhout and Kircher, 2011; Hagedorn et al., 2017;
Bartolucci et al., 2018; Bagger and Lentz, 2019), since a classification may fail to be identified
when two firm classes have identical earnings distributions in the cross section.7

Once firm groups are defined, firm and worker parameters are identified (up to the normal-
ization discussed in Section 3.1 of the main text) under the assumptions of serial conditional
independence of earnings and random job mobility (Bonhomme et al., 2019), and estimated us-
ing panel regressions in conjunction with skill proxies.

B.3 Basic Test of Returns Heterogeneity: Bias-Corrected Slopes
In Section 2.3 of the paper we test the hypothesis that firm effects are independent of worker
skills using an additive specification with binary skill levels (high vs low test scores) for each
skill attribute. To run these tests we construct subsamples corresponding to the largest connected
sets of, respectively, high and low ability workers and select firms that are in both of these sets
(double-connectedness in skill levels).

We first classify workers into high cognitive (Stanine C = 1[c > 5]) and high noncognitive
(N = 1[n > 5]); then, we select observations within a two-year set to separately estimate linear
binary models of worker and firm effects of the form log(wi jt) = µS

i + θ S
j + εi jt for cognitive

skills, S ∈ {C = 0,C = 1} or noncognitive skills, S ∈ {N = 0,N = 1}. Figure 1 in the main body
plots shows results when grouping firms into 100 clusters for t ∈ {2004,2007} (see Bonhomme
et al., 2019). We use non-adjacent years (in fact, two years apart) to mitigate the impact of
partial employment spells during contiguous years when workers switch firms. Independence of
skill premia from skills would not be rejected if the estimated slopes in the scatter plots were
not significantly different from one in a standard t-test. However, the null hypothesis that firm
effects are the same for high- and low-skill workers are strongly rejected for both cognitive and
noncognitive skills.

The clustering accounts for the incidental parameter bias due to limited worker mobility. To
assess the robustness of these findings we run the same tests using bias-corrected slopes (see
Kline et al., 2020). Since the analysis is carried out separately for cognitive and noncognitive
attributes, double-connectedness in skill levels does not (yet) require that firms be linked through
mobility of both skill dimensions (in other sections we examine set connectedness for the case
where multiple skills are considered in the same specification).

7For example, a firm class may have higher intercepts and the other higher returns but worker sorting is such that
observed earnings are the same. See also discussion in Bonhomme et al. (2019, page 14).
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Figure B.1: Firm effects heterogeneity: cognitive and noncognitive skills. Bias-Corrected Slopes.
These figures plot the averages of firm effects for low-skill workers (θ S=0

j ) against the averages of firm effects for
high skill workers (θ S=1

j ), where S ∈ {C,N}. All sets of firm effects are demeaned. The sample in panel (A) consists
of 9,268 firms that are leave-one-out connected in both high and low cognitive skills; in panel (B) we use 10,208
firms connected in both high and low noncognitive skills. The “plugin slope” is the coefficient from a person-year
weighted projection of θ S=0

j onto θ S=1
j . The “bias-corrected slope” adjusts the plug-in slope for attenuation bias by

multiplying its value by the ratio of the plug-in estimate of the person-year weighted variance of θ S=1
j to the bias-

adjusted estimate of the same quantity. “Test Statistic” refers to the realization of ẑH0/
√

ˆvar(ẑH0) where ẑH0 is the
quadratic form associated with the null hypothesis that the firm effects are equal across skill groups. From Theorem
2 in Kline et al. (2020), ẑH0/

√
ˆvar(ẑH0) converges to a N ∼ (0,1) under the null hypothesis that θ S=0

j = θ S=1
j for,

respectively, all 9,268 and 10,208 firms.
Sample restriction: years 2004 and 2007 only. Tests for other year pairs are in Table B.1.

Panels (A)–(B) in Figure B.1 plot a scatter of estimated firm fixed effects for high-skill (x-
axis) and low-skill (y-axis) workers. The samples consist of firms that are in the leave-one-out
connected sets of both high and low ability workers. Each panel refers to a given skill attribute,
covering the years 2004 and 2007. Panel (A) shows results for cognitive skills (9,268 firms) while
Panel (B) plots those for noncognitives (10,208 firms).

A comparison of firm effects (θ S
j ) for high and low skill workers illustrates that the statistics of

firm effects (like their variances and correlations) can be biased if estimated from few moves of
workers into and out of each firm. Ignoring estimation biases results in firm effects for high and
low skill workers that are positively but weakly correlated within firms. The regression slope from
mechanically projecting θ S=0

j onto θ S=1
j is 0.31 for cognitive traits and 0.35 for noncognitives.

We refer to these slopes as the “plug-in” estimates. The “bias-corrected slope” adjusts the plug-in
slope for attenuation bias by multiplying its value with the ratio of the plug-in estimate of the
person-year weighted variance of θ S=1

j to the bias-adjusted estimate of the same quantity. The
“Test Statistic” is the realization of ẑH0/

√
ˆvar(ẑH0) where ẑH0 is the quadratic form associated

with the null hypothesis that the firm effects are equal across skill groups. From Theorem 2
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in Kline et al. (2020), ẑH0/
√

ˆvar(ẑH0) converges to a N ∼ (0,1) under the null hypothesis that
θ S=0

j = θ S=1
j for, respectively, all 9,268 and 10,208 firms.

The bias correction raises estimated slopes to 0.63 and 0.81, respectively. Under the null
hypothesis of no heterogeneity in skill returns, however, the slopes should be statistically indis-
tinguishable from one and the scatters should align along the dashed 45° lines. This is not the
case, as the bias-corrected test statistics of equal firm effects for high and low skill workers have
z-values above 4 for both cognitive and noncognitive returns. We therefore reject the hypothesis
that firm effects are independent of worker skills. In fact, all our estimates indicate slopes that
are well below one. Table B.1 reports additional tests, which similarly reject the null hypothesis
of homogeneous returns in several alternative samples.8

Table B.1: Tests for equality of firm effects by high- versus low-skill workers (by
year combination and cognitive / noncognitive)

Year origin Year destination Skill Test Statistic # Firms Test Statistic
Firm-level Grouped

(1) (2) (3) (4) (5) (6)

1999 2002 C 3.66 8,757 9.22
1999 2002 N 2.49 9,766 12.45
2000 2003 C 2.60 8,653 8.66
2000 2003 N 0.39 9,648 8.14
2001 2004 C 2.76 7,922 9.93
2001 2004 N 1.78 8,941 7.65
2002 2005 C 0.60 7,904 10.83
2002 2005 N 3.50 8,772 6.96
2003 2006 C 4.04 8,335 13.88
2003 2006 N 0.85 9,258 7.00
2004 2007 C 4.18 9,269 17.33
2004 2007 N 4.56 10,209 6.30
2005 2008 C 3.26 9,846 10.74
2005 2008 N 2.54 10,825 5.38

Notes: Table B.1 expands on Figure 1 to show test statistics associated with the null hypothesis that
firm effects (θ S=0

j ) and (θ S=1
j ) are equal across skill level, where skill S ∈ {C,N}. Test statistic for

firm-level bias-adjusted estimates as in Figure 1(a)–(b) are shown in column (4). The associated
number of double-connected firms in each of the skill types and year combinations are reported in
column (5). The last column reports the corresponding test statistic among 100 firm classes using
the clustering approach as in Figure 1(c)–(d).

8Tests of equal slopes are based on an upper bound for the estimated error variance var(εi jt). This leads to
conservative test statistics compared to the split-sample estimate in Figure 1 of Kline et al. (2020). Joint tests of
the equal effects hypothesis across more than two periods are unfeasible as they introduce issues with clustering of
errors at the firm level. No robust procedure is currently available to handle such issues. We thank Raffaele Saggio
for discussions about implementing these tests.
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Testing equality of firm effects in alternative year pairs. In Section 2.3, and Figure B.1, we
choose the years 2004 and 2007 to test the equality of firm effects for high versus low skilled
workers. Two years are selected to exclude potential serial correlation within employment spells
due to estimated standard errors (see Kline et al., 2020, Computational Appendix 2.5).

Years are non-adjacent, in order to remove partial employment years when workers switch
firms, while not too far apart to minimize any potential changes in firm effects over time. The
sample is selected on firms that are leave-one-out connected in both high and low levels of the
respective skill dimension (“double-connected”).

To gauge robustness, we also replicate the analysis for alternative duplets of years. Like in
Section 2.3, we focus on testing the null hypothesis that firm effects are equal for high and low
skills groups; the hypotheses are separately tested for cognitive and noncognitive skills. Table B.1
shows the resulting test statistics and sample sizes of the respective double-connected individual
firms for several year pairs using the bias-correction approach. The last column reports the corre-
sponding test statistics among 100 firm classes using clustering as in the main text.

B.4 Moving Across Firms: Event Studies
Heterogeneity in skill returns can be further illustrated through event studies that track wage
changes for different workers as they move across firms (e.g., Bonhomme et al., 2019; Lamadon
et al., 2022). In what follows, we estimate wage changes for workers of different skills who make
similar switches.

We consider a balanced sample of workers observed for at least three years in the origin firm
before their move and require that workers be observed for at least three years in the destination
firm after the switch. Next, for each attribute we define high-skill dummies C = 1[c̃ > 0] and
N = 1[ñ > 0], where c̃ and ñ are mean zero residualized cognitive and noncognitive skills. 9 To
allay endogeneity concerns, we construct firm-level skill premia using coworkers’ wages. That
is, in each year we compute the difference in the average log earnings between high-skill and
low-skill coworkers within each firm (done separately for cognitive and noncognitive attributes).
Then, we average this difference over all the firm’s years.

Panel (A) of Figure B.2 shows the effect of workers moving to a new firm where the coworker
cognitive skill premium is at least ten log points higher than in the origin firm. The variable
of interest is the wage of high-skill workers relative to low-skill ones making the move. No pre-
trend is visible in relative earnings; we do find a significant and discontinuous increase upon entry
into the higher-return firm and, thereafter, a flattening of relative earnings around a level that is
1.5–2 log points above their pre-switch value. These estimates lend support to the hypothesis
of significant differences in skill returns. Estimates are almost a mirror image when we examine
workers switches to a firm with lower cognitive skill premia (namely, at least ten log points below
the origin firm), shown in Panel (B) of Figure B.2. The point estimate of the difference is close to
three log points. That is, skilled workers’ relative wages decline when they move to lower-return

9In the baseline event studies we residualize each skill measure (cognitive or noncognitive) with respect to the
other in order to reduce possible confounding effects due to covariation between attributes.
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(D) Switch to firm with lower coworker N-premium

Figure B.2: Event studies of relative wage changes for high versus low skill workers after switch-
ing across firms with different coworker skill premia.
Notes: Top panels: cognitive skills (C). Bottom panels: noncognitive skills (N). Switches occur between t =−1 (last
year in old firm) and t = 0 (first year in new firm). Balanced sample of moves with standard errors clustered at the
worker level. 95% confidence intervals drawn around point estimates.

firms. Wage changes after switches are qualitatively similar along the noncognitive dimension,
shown in the bottom panels of Figure B.2. While magnitudes are smaller, relative earnings are
impacted also in the noncognitive dimension.

Overall, the event studies indicate roughly symmetric relative wage effects and no clear pre- or
post-trends. Estimates are comparable in magnitude to those in Fredriksson et al. (2018) who use
coworkers’ skills to examine the effects of job mismatch at one year lags and beyond. In the fol-
lowing we explore alternative implementations of the event studies where we define skill premia
using model estimates of heterogeneous returns taken from Section 3 (as opposed to coworker
wages). Findings based from these exercises indicate patterns of firm-level heterogeneity that are
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close, both qualitatively and quantitatively, to estimates from the full model of Section 3. More-
over, we report evidence that skill returns are attribute-specific, in the sense that relative wage
gains for cross-moves (e.g., high-versus-low cognitive workers switching to higher noncognitive
premium firms) are close to zero and not significant.

Event studies: Additional evidence and extensions. Figure B.3 shows estimates of relative
wage changes in event studies of moves between higher and lower skill returns λ c

j ,λ
n
j firms,

where skill premia are defined according to returns estimated in the full model (6). These esti-
mates are qualitatively similar to those shown above and provide a more direct interpretation of
the magnitudes of estimated effects: the moves between high and low returns firms are associated
with changes of ∆λ c

j ≈ 0.05 and ∆λ n
j ≈ 0.04 on average in the respective dimension (not visi-

ble in the figure). On average the c̃ and ñ residual skill differences between high- and low-skill
classified workers are about 0.3. Therefore, the average effect sizes implied by the full model (6)
for such switches are approximately 0.05 · 0.3 = 0.015 and 0.04 · 0.3 = 0.012, respectively. Es-
timates of changes in relative wages from the event studies in Figure B.3 are almost as large as
model-based estimates: about 0.012–0.013 in the top panels for the cognitive skill dimension
and 0.008–0.010 in the bottom panels for noncognitives. Also these event studies exhibit no
clear pre-trends before the switch and broadly symmetric relative wage effects after the moves to
higher-return firms vis-a-vis lower-return firms.

Finally, Figure B.4 illustrates estimated cross-effects from event studies based on the coworker
wage measure of skill premia (that is, the same measures and approach as in Figure B.2).
Panel (A) displays the wage change of a high (residualized) cognitive skill c̃ worker, relative
to a low skill one, moving to a new firm where the coworker noncognitive skill premium is at
least ten log points higher than in the old firm. The estimated wage change is small and insignif-
icant. Similarly, in Panel (B) moving to a lower noncognitive premium firm has essentially zero
effect in the initial year (t = 0) and exhibits negative and insignificant point estimates of wage im-
pacts in the years t = 1 and t = 2. Relative wage effects for high (residualized) noncognitive skill
ñ individuals moving to firms with higher (Panel C) or lower (Panel D) cognitive coworker skill
premia are again flat and close to zero. Compared with the significant positive own-effects of Fig-
ure B.2, this is evidence of skill return heterogeneity across firms that is mostly attribute-specific
rather than indirect.
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(D) Switch to firm with lower coworker N-premium

Figure B.3: Event studies of relative wage changes for high versus low skill workers after switch-
ing across firms with different estimated skill returns (λ c

j and λ n
j ).

Notes: Top panels: cognitive skills (C). Bottom panels: noncognitive skills (N). Switches occur between t =−1 (last
year in old firm) and t = 0 (first year in new firm). Balanced sample of moves with standard errors clustered at the
worker level. 95% confidence intervals drawn around point estimates.
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Figure B.4: Event study of cross effects: relative wage changes for high versus low skill workers
after switching to a higher skill premium firm (in the respective other skill dimension).
Notes: Top panels: cognitive skills (C). Bottom panels: noncognitive skills (N). Switches occur between t =−1 (last
year in old firm) and t = 0 (first year in new firm). Balanced sample of moves with standard errors clustered at the
worker level. 95% confidence intervals drawn around point estimates.
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B.5 Identification of Complementarities with Unobserved Skills
Complementarities between productivity attributes and employers are not generally identified if
skills have more than one dimension unless an observable skill proxy is available. For illustration,
consider a wage equation featuring firm-level returns to cognitive (c) and noncognitive (n) traits:

log(wit) = λ
0
j +λ

c
j ci +λ

n
j ni + εit (B.5)

Throughout this section we maintain the assumptions of connectedness (that is, we assume that
employers are connected through workers’ flows). We begin with the case of unobserved skills
and examine identification in a large sample consisting of workers who move from firm j to j′

and from j′ to j between two periods t = 1,2 (Bonhomme et al., 2019, BLM). For clarity, we
restrict attention to the simplest case where only two firms j and j′ are present and show that
returns are not generally identified if there are two skill dimensions.

Identification of heterogeneous returns in the absence of skill measures. Let E j j′[.] denote
the expectation of the argument over the workers who move from firm j to j′ between t = 1 and
t = 2. For instance, E j j′[log(wi1)] denotes the average log wage of workers who moved from j
to j′ at the end of period 1 (i.e., when working at firm j). Lacking measures of ci and ni, only the
following four average wages can be defined from worker moves across firms:

E j j′[log(wi1)] =λ
0
j +λ

c
j E j j′[ci]+λ

n
j E j j′[ni]

E j′ j[log(wi2)] =λ
0
j +λ

c
j E j′ j[ci]+λ

n
j E j′ j[ni]

E j j′[log(wi2)] =λ
0
j′ +λ

c
j′E j j′[ci]+λ

n
j′E j j′[ni]

E j′ j[log(wi1)] =λ
0
j′ +λ

c
j′E j′ j[ci]+λ

n
j′E j′ j[ni]

Or in matrix notation:
1 E j j′ [ci] 0 0
1 E j′ j[ci] 0 0
0 0 1 E j j′ [ci]
0 0 1 E j′ j[ci]




λ 0
j

λ c
j

λ 0
j′

λ c
j′

+


E j j′ [ni] 0
E j′ j[ni] 0

0 E j j′ [ni]
0 E j′ j[ni]

[
λ n

j
λ n

j′

]
=


E j j′ [log(wi1)]
E j′ j[log(wi2)]
E j j′ [log(wi2)]
E j′ j[log(wi1)]

 (B.6)

Lemma 1. Suppose that E j j′[ci] ̸= E j′ j[ci]; then we can write
λ 0

j
λ c

j
λ 0

j′

λ c
j′

=
1

E j′ j[ci]−E j j′ [ci]


E j′ j[ci] E j j′ [ci] 0 0
−1 1 0 0
0 0 E j′ j[ci] E j j′ [ci]
0 0 −1 1




E j j′ [log(wi1)]
E j′ j[log(wi2)]
E j j′ [log(wi2)]
E j′ j[log(wi1)]



− 1
E j′ j[ci]−E j j′ [ci]


(
E j′ j[ci]E j j′ [ni]−E j j′ [ci]E j′ j[ni]

)
λ n

j(
−E j j′ [ni]+E j′ j[ni]

)
λ n

j(
E j′ j[ci]E j j′ [ni]−E j j′ [ci]E j′ j[ni]

)
λ n

j′(
−E j j′ [ni]+E j′ j[ni]

)
λ n

j′
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Remark 1. Suppose that E j j′[ci] ̸= E j′ j[ci]. Then, if λ n
j = λ n

j′ = 0 or E j j′[ni] = E j′ j[ni], the ratio
of returns across two firms j and j′ can be written as

λ c
j′

λ c
j
=

E j j′[log(wi2)]−E j′ j[log(wi1)]

E j j′[log(wi1)]−E j′ j[log(wi2)]
(B.7)

Equation (B.7) is constructed by picking the second and fourth row on the right-hand side of
Lemma 1 and dividing them by each other. Unsurprisingly, this shows that, if λ n

j = λ n
j′ = 0, the

specification in (B.5) reduces to a wage equation with complementarities in the one-dimensional
skill model (BLM, 2019). By the same token, if E j j′[ni] = E j′ j[ni] = n, there is no variation in
the average noncognitive skill dimension of movers and the noncognitive return is absorbed into
the intercept. In this case, with a change of variable λ̃ 0

j = λ 0
j −nλ n

j , the model again reduces to
a one-dimensional skill model (single index representation).

Equation (B.7) is a restatement of an established identification result about the ratio of returns
with a single unobserved skill dimension (BLM, 2019). The ratio of returns to unobserved skills
is identified from differences in the average log wages of movers between firms j and j′, even
though the absolute returns are not generally identified. The condition E j j′[ci] ̸= E j′ j[ci] requires
that the average skill of movers from j to j′ is not the same as that of movers from j′ to j. This is
necessary for identification in a model with a single index for unobserved skills.

Remark 2. Suppose that E j j′[ci] ̸= E j′ j[ci]; then without further restrictions it follows that

λ c
j′

λ c
j
=

E j j′[log(wi2)]−E j′ j[log(wi1)]−
(
E j j′[ni]−E j′ j[ni]

)
λ n

j′

E j j′[log(wi1)]−E j′ j[log(wi2)]−
(
E j j′[ni]−E j′ j[ni]

)
λ n

j
(B.8)

That is, the ratio of returns to cognitive skills are not generally identified without recourse to
observable skill measures. The ratio of returns to noncognitive skills are not identified for the
same reason. The intuition is that, with multiple skill dimensions, the ranking of workers is not
unique; that is, a given difference in wages across firms may obtain from returns to different
attributes. Put differently, a given estimate λ c

j′/λ c
j based on (B.8) would depend on unknown

unobserved skill differences (E j j′[ni]−E j′ j[ni]) and returns (λ n
j ,λ

n
j′).

Identification of heterogeneous returns when skill measures are available. Equation (B.8)
is identified when skill measures are available, as one can simply restrict attention to worker flows
for which E j j′[ni] =E j′ j[ni]. One can also ensure that the condition E j j′[ci] ̸=E j′ j[ci] indeed holds
for the same worker flows. In fact, the returns λ c

j and λ c
j′ are separately identified by picking the

respective row from the right-hand side of Lemma 1 and conditioning on the appropriate skill
levels. In practice, we can identify a more general version of model (B.5) by relying on available
skill measures; specifically, we consider the specification:

log(wit) = µi +λ
0
j +λ

c
j ci +λ

n
j ni + εit , (B.9)
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where µi represent worker-specific intercepts. As in the event studies of Sections B.4, we consider
workers of skill types (ci,ni) and (ci′,ni′) transitioning between firms j and j′. The observed
difference between wages for type i workers in the two firms is, on average, equal to:

E j′[log(wi)]−E j[log(wi)] = (λ 0
j′ −λ

0
j )+(λ c

j′ −λ
c
j )ci +(λ n

j′ −λ
n
j )ni. (B.10)

Given this expression, the difference-in-differences for transitioning workers deliver the identifi-
cation result.

Remark 3. Define the subset of transitioning worker types such that ci′ ̸= ci but ni′ = ni. Then,
conditioning on this subset, it follows that

λ
c
j′ −λ

c
j =

(
E j′[log(wi′)]−E j[log(wi′)]

)
−
(
E j′[log(wi)]−E j[log(wi)]

)
ci′ − ci

(B.11)

Identification of noncognitive returns λ n
j and firm intercepts λ 0

j is similarly obtained from ap-
propriate comparisons of earnings and worker types following firm switches. As explained in
Section 3.1, and as common in worker–firm models, this identification is relative to a base firm
j′ or to the average of all firms (i.e., means of firm parameters are normalized).
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C Measurement Error in Skill Measures
A possible concern when using direct skill measures is their reliability. In what follows, we
examine the effects of measurement error on the estimates of heterogeneous skills returns. Ac-
counting for measurement error in high-dimensional models presents challenges as noise in each
skill might affect estimates of returns from all skills. Since work on measurement error is often
limited to single skill impacts, we develop a simple procedure to compare estimates of multiple
skill returns under different assumptions on the reliability of skill measures. The approach allows
for potential cross-effects from noise in different skills. We correct estimated returns by assum-
ing different combinations of measurement error in skill bundles and obtain informative bounds
on the magnitude of skill returns under conventional assumptions about the reliability of skill
measures.

Reliability ratios. We define the reliability ratio in each skill (s ∈ {c,n}) as:

rs =
sd(s∗i )

sd(s∗i )+ sd(us
i )
,

where s∗i are the true cognitive and noncognitive skills and us
i are “classical” i.i.d. measurement

errors uncorrelated across individuals and attributes. The latter assumption is partly motivated
by the lack of estimates for the correlation of errors across traits. Empirical studies often focus
on settings where measurement error in one variable is unrelated to errors in other variables.10

It is worth noting, however, that our suggested approach (described below) could be explicitly
adapted to settings where information is available about the correlation of errors across attributes.

Different estimates of reliability (“reliability ratios”) have been suggested for the Swedish
skill measures. For example, Grönqvist et al. (2017) employ instrumental variables to correct
for noise in skill measures when studying intergenerational mobility. Baseline reliability ratios
in their paper are 0.731 for cognitive and 0.498 for noncognitive skills. We adopt rc = 75% and
rn = 50% as lower bounds for reliability. Another prominent study on the Swedish enlistment
scores is Lindqvist and Vestman (2011). They find that reliability ratios are 0.868 for cognitive
and 0.703 for noncognitive; we use rc = 85% and rn = 70% as our mid-range estimate.

C.1 Correcting Estimates Using Reliability Ratios
We employ four steps to assess the sensitivity of skill returns estimates to alternative assumptions
about the reliability of skill measures.

1. We begin by using the baseline (observed) skill measures. Taking previous studies as a
reference, we define reliability ratios denoted as rc and rn, respectively, for cognitive and

10For example, Lindqvist and Vestman (2011), in their Appendix C, write: “...We further assume that all cross-
moments between the true variables and the measurement errors are zero.” Grönqvist et al. (2017, Section II) accord-
ingly refer to “classical” measurement error as defined right below.
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noncognitive attributes. The reliability ratios indicate the accuracy of the measurements.
Higher reliability ratios imply more accurate measurements.

2. To quantify the effects of measurement error, we introduce additional noise to the measured
skill values. By doing so, we incrementally lower the reliability of both cognitive and
noncognitive measures. This step allows us to assess the sensitivity of model estimates to
varying levels of skill measure inaccuracy.

3. Using the newly constructed skill measures, with reduced reliabilities, we estimate the mo-
ments of interest. These include variances, covariances, or other moments of the estimated
skill returns that we later employ in the analysis.

4. The last objective of the exercise is to project estimates of the moments of interest on the as-
sumed reliabilities. Having established the relationship between moments and reliabilities,
we are able to recover the values associated to full accuracy for cognitive and noncogni-
tive measures. The hypothetical full accuracy scenario provides a gauge of the costs of
imperfect skill measures as well as a robustness check of our baseline estimates.

C.2 Findings
In steps 1-to-3 above, we add measurement error to skill proxies and compute new estimates (with
100 firm groups). To account for possible cross effects, we consider a five-percentage point grid
that corresponds to different combinations of reliability ratios rc×rn ∈{50%,55%, ...,95%,100%}×
{50%,55%, ...,95%,100%}. The 100% reliability values indicate estimates obtained from the
original measures, with no additional noise, as reported in the Swedish enlistment scores. We
hold the standard deviations of skills fixed by scaling the modified measures. The scaling keeps
the data consistent with the convention of the Swedish enlistment agency, which targets a fixed
(Stanine) distribution in the population of test takers.

Figure C.1 shows the results of this exercise when we fix noncognitive and cognitive reliabil-
ities in, respectively, the left- and right-hand side panels11 while varying the reliability of each
variable of interest along the grid steps. We find that:

• Moving from right to left on the horizontal dimension of each panel (that is, adding noise)
leads to drops in skill returns dispersions that are visible but not extreme. Halving the infor-
mation in ci and ni (moving from 100% to 50% reliability) leads to about 30% reduction in
the standard deviations of λ c and λ n; this is not unexpected, since we are adding noise to
a right-hand-side variable. Moreover, it is interesting that the change in estimated disper-
sion is approximately linear in reliability. Cross-effects of noise are small since estimates

11Results for reliabilities fixed at other levels than 50%, 75%, and 100% are similar.

25



Figure C.1: Estimated intercept and returns dispersions when varying one skill’s reliability while
holding the other fixed.

Notes: The figure shows intercept and returns dispersions when classical measurement error is added to cognitive
and noncognitive skills. In each panel, one skill dimension’s reliability ratio is fixed while the other’s is varied from
50 to 100%, where 100% represents the measure as reported in the Swedish enlistment scores without further error
added.
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for a given skill do not substantively vary with the reliability level of the other (see next
bullet).12

• In multivariate analysis, biases due to measurement error in one variable could spill over to
coefficient estimates in the other.13 It is not obvious how the intensity of measurement error
in one skill measure should affect estimates of skill returns in the other. Unlike previous
studies, we explore the dispersion of return coefficients using a high-dimensional model
and we are not aware of any formal treatment of biases in higher dimensional settings.
Given these considerations, we develop a simple procedure to assess the empirical biases
introduced by noise in skill proxies. It turns out that, in our analysis, there are little or
no cross-effects on the estimated dispersion of returns along the whole reliability grid. As
mentioned before, estimated dispersion of returns in each skill varies linearly with the
changes in that skill proxy’s reliability.

• Since we find no evidence of substantial spillover effects on the dispersion of estimated
firm intercepts, we do not report additional details about the dispersion of the λ 0 parame-
ters.

• We also find that adding large amounts of measurement error in a given skill (say, cognitive
relative to noncognitive, for example assuming rc = 50%, rn = 100%) does not revert the
ranking of estimated dispersions in λ n relative to λ c. This corroborates our baseline finding
that the dispersion of cognitive returns is at least as large as that of the noncognitive. As
we show, this result is robust to different combinations of measurement error in skills.

Estimates under the assumption of higher reliability. Estimates of returns’ dispersion in
each skill change with the reliability of that skill and there is little evidence of spillover effects
from error in variables across skill returns. It is, therefore, informative to extrapolate estimated
dispersions under the assumption of higher reliability ratios; in particular, this is helpful to assess
the extent to which departures from full reliability affect baseline estimates. The exercise is
described in step 4 of the procedure outlined above and the results are shown in Figure C.2.

First, we replicate and plot the analysis from the previous steps, showing estimates of returns’
dispersions when moving to the left of the baseline estimates (that is, adding more noise). We
indicate the baseline estimates by cognitive/noncognitive reliabilities of 100% in the plots. As
more noise is added, the sd(λ c) and sd(λ n) decline almost linearly from 0.0797 and 0.0483 to
about 0.053 and 0.035, respectively.

12In the left panels of Figure C.1, moving from 100% to 50% reliability leads to a decline of sd(λ c) from 0.08 to
0.053, a drop of about 1/3. The extent of the decline and, largely, the level of dispersion do not depend on whether
the reliability in λ n is 50, 75, or 100 percent. In the right panels, moving from 100% to 50% reliability leads to a
decline of sd(λ n) from around 0.05 to 0.035, a decrease of about 30%. This is also independent of the reliability
level for the cognitive measure.

13E.g., see Lindqvist and Vestman (2011)’s Appendix C: “Since our skill measures are positively correlated
(0.388), classical measurement error in one skill measure will imply a bias away from zero for the other skill
measure.”
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Figure C.2: Extrapolation of returns’ dispersion, based on reliability values suggested in the
literature.

Notes: The figure shows estimates of cognitive (left panel) and noncognitive (right) returns dispersion under
different assumptions about measurement error in the Swedish enlistment data. First, the solid black lines to the left
of 100% reliability on the x-axes report the dispersion of, respectively, λ c and λ n that were also plotted in the top
panels of Figure C.1. To the right of the 100% value on the x-axes we show extrapolations from a linear fit through
these black lines. The shaded areas of rc ∈ [0.75,0.85] and rn ∈ [0.50,0.70] correspond to the ranges of reliability
that are conventionally suggested in the literature (Lindqvist and Vestman, 2011; Grönqvist et al., 2017). The
values on the y-axis sd(λ c) ∈ [0.0881,0.0963],sd(λ n) ∈ [0.0601,0.0762] provide the corresponding intervals for
the implied (and higher) returns’ dispersion.

28



Then, leveraging the linearity of the relationships, we extrapolate the estimates to the right
side of the reliability axis. To determine what level on the x-axis corresponds to full accuracy, we
make assumptions about the signal-to-noise content of skill proxies, based on the reliability ra-
tios suggested in existing papers (cited above). For cognitive skills, our range for the skill signal
is [100

85 ,
100
75 ]; for noncognitives, it is [100

70 ,
100
50 ]. The “informative” sections of the skill reliability

range are indicated by the respective shaded intervals in Figure C.2. On the y-axis, we report the
extrapolated estimates in the range of sd(λ c) ∈ [0.0881,0.0963] and sd(λ n) ∈ [0.0601,0.0762].
These correspond to even higher magnitudes of skill returns’ dispersion than our baseline es-
timates, which increases the relative importance of the mechanism we study. Since effects are
approximately linear, higher reliabilities would result in larger dispersion estimates. That is, our
baseline estimates are a lower bound of the skill returns’ dispersions.

To summarize, measurement error in skill proxies suggests that baseline estimates of the dis-
persion of firm-level returns are conservative. The effects of measurement error are, however, not
large enough to overturn the main insights of the baseline analysis (e.g., that the dispersion of
cognitive returns is at least as large as that of noncognitive returns). Assuming that measurement
error is of the magnitude found in the literature, firm-level returns’ dispersion would be around
1-to-1.5 percentage points higher for either skill, which amounts to an increase of around 10–20%
in the case of cognitives and 20–30% in the case of noncognitives.
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D A Labor Market with Two-Sided Heterogeneity and Multi-
Dimensional Skills

We examine the interaction of employer and employee heterogeneity within a model featuring
workers with different cognitive and noncognitive abilities. We consider a static setting with a
continuum of firms, each producing its own distinct product using labor. All firms benefit from
more able workers; however, each firm exhibits idiosyncratic returns to skills. Firm-specific skill
returns induce sorting of high-skill workers into high-return firms, something that the matching
literature has long emphasized. These layers of heterogeneity are embedded in a labor market
where employers choose how many workers to hire based on the demand for their output. Equi-
librium implies that the labor market clears.

D.1 Production and Market Structure
There is a measure one of workers who differ in their observable cognitive (c) and noncognitive
(n) abilities. We let G(c,n) denote the measure describing the distribution of worker types in the
economy. A worker’s utility from matching with a firm depends on the wage they receive from
that firm plus an idiosyncratic preference shock. For worker i, of type (c,n), the utility of working
at firm j with wage w j(c,n) is

ui j(c,n) = β log(w j(c,n))+νi j (D.1)

where νi j captures an idiosyncratic preference for working at firm j. We assume that shocks νi j
are independent draws from a Type I Extreme Value distribution. This specification could be
expanded to add firm-level variation in average amenities (Sorkin, 2018).

Workers choose the firms that give them the highest utility. Using standard arguments (Mc-
Fadden, 1974), the share q j(c,n) of type (c,n) workers who choose firm j has a logit form

log(q j(c,n)) = log(h(c,n))+β log(w j(c,n)). (D.2)

Equation (D.2) delivers the upward sloping labor supply equation faced by firm j, with elasticity
of supply β . The intercept h(c,n) is determined in equilibrium and guarantees market clearing
(every worker gets a job), that is

h(c,n) =
[∫

wk(c,n)β dF(k)
]−1

(D.3)

where F(·) is the probability measure describing the distribution of firms in the economy.
As in Lise and Robin (2017), the production function is defined at the level of the match

and we do not model complementarity between workers within a firm. A worker of type (c,n)
employed at firm j produces according to f j(c,n), where the function f j describes the output
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from the firm-worker match. Technology is CRS and a firm’s output is the sum of all employees’
products.14 Firm j’s total output is

y j =
∫

f j(c,n)q j(c,n) dG(c,n). (D.4)

Output market. Each firm j’s output is an intermediate input for a final good Y produced by

a representative firm through a CES technology. That is, Y =

[
J
∑
j=1

φ jy
σ−1

σ

j

] σ

σ−1

where σ > 1 is

the elasticity of substitution. Each intermediate’s share parameter φ j is the marginal contribution
of y j to output Y and can be interpreted as the output-market power of a firm. Therefore, in the
output market, each firm j faces a downward sloping demand curve for its product. Firm j’s
inverse demand is

log(p j) = log(φ j)−
1
σ

log(y j) (D.5)

where p j is product price, y j is output, φ j is a firm-specific (inverse) demand intercept, and σ is
the output demand elasticity with respect to price.

The intermediate firm’s problem. Given output demand and labor supply curves, firm j de-
cides how many workers to hire for each skill type. Firm j’s profit maximization problem is:

max
q j(c,n)

p jy j −
∫

w j(c,n)q j(c,n) dG(c,n)

s.t. y j =
∫

f j(c,n)q j(c,n) dG(c,n)

log(p j) = log(φ j)− 1
σ

log(y j)
log(q j(c,n)) = log(h(c,n))+β log(w j(c,n))

(D.6)

This problem has a closed form solution, with equilibrium wages in firm j

w j(c,n) =

(
β

1+β

) σ

σ+β f j(c,n)
(

σ−1
σ

φ j
) σ

σ+β[∫
f j(c,n)1+β h(c,n) dG(c,n)

] 1
σ+β

(D.7)

D.2 Base Pay and Skill Premia: Mapping Model to Firm Wages
Firms’ production choices can be characterized along the two input dimensions (cognitive and
noncognitive). Every worker has a type within the set (c,n), with the first letter denoting cognitive

14Additive separability is often assumed in matching models with one-to-many sorting. In the empirical section
we show how this technology specification delivers an accurate approximation of returns to different skill types.
While convenient, the separability assumption is not crucial for our findings about sorting and returns heterogeneity.
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level and the second noncognitive level. The wage premium associated to skill bundle (c,n) in
firm j is

e∆ j(c,n) =
f j(c,n)
f j(L, l)

(D.8)

for all (c,n). This corresponds to the wage relative to the low-type worker (L, l),
(

w j(c,n)
w j(L,l)

)
, since

everything else in the wage equation (D.7) cancels. The premium e∆ j(c,n) is proportional to the
(measurable) productivity of a (c,n) worker in firm j relative to a baseline worker of type (L, l)
The parameter ∆ j(c,n) subsumes two sources of variation: (1) the skill endowment bundle (c,n),
and (2) the return to that bundle in firm j. By definition, ∆ j(L, l) = 0 and one can redefine
baseline match productivity in firm j as Tj = f j(L, l), which is the output of workers of type
(L, l). Using Tj and ∆ j(c,n), we write the output of firm j as y j = Tj ∑

(c,n)
e∆ j(c,n)q j(c,n)dG(c,n),

where dG(c,n) with some abuse of notation denotes the total number of (c,n) type workers, and
recast the profit maximization as a choice over a discrete set of skill bundles (c,n).

Optimal hiring behavior in the discrete maximization problem implies:

w j(c,n) =
β

1+β︸ ︷︷ ︸
Monops.Markdown

× σ −1
σ

φ jTj

(
1
y j

) 1
σ

︸ ︷︷ ︸
Marg.Revenue

× e∆ j(c,n)︸ ︷︷ ︸
Skill Productivity

(D.9)

This expression captures different aspects of market structure. The marginal revenue is an increas-
ing function of a firm’s output market share φ j and of its total factor productivity Tj. The latter
parameter is normalized to Tj = f j(L, l), which is the output of a worker with the lowest cognitive
and noncognitive ability in firm j. The skill premium ∆ j(c,n) = log( f j(c,n)/ f j(L, l)) is the log
output in firm j of a (c,n) type worker relative to the lowest skill worker (L, l). the monopsonistic
firm sets wages at a fraction β

1+β
of the marginal revenue generated by the worker, with the frac-

tion approaching one in more competitive markets where the labor supply elasticity β is larger.
An extra unit of skill rescales marginal revenues proportionally to the firm’s skill return ∆ j(c,n).
In log form, the equilibrium wage lends theoretical underpinning the empirical specifications in
the paper. That is:

log(w j(c,n)) = α +Λ j +∆ j(c,n). (D.10)

The intercept α ≡ log
(

β

1+β

σ−1
σ

)
is common across firms and skills, while Λ j ≡ log

(
φ jTjy

− 1
σ

j

)
is the firm-specific baseline wage, which does not vary with worker skills; ∆ j(c,n) is a firm-
specific return to skill bundle (c,n). Under the model’s null hypothesis, the firm’s demand inter-
cept φ j is subsumed in the fixed effect component Λ j.

Optimal behavior implies that firms with higher returns to (c,n)-type skills tend to hire a
larger share of (c,n)-type workers. This observation suggests that firms with similar returns to a
skill type can be grouped together based on their share of workers with that particular type.
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E Additional Estimation Results

E.1 Results from Alternative Samples and Estimation Approaches
Columns (1) and (2) in Table E.1 show the standard deviations of individual firm effects when
we do not apply the quadratic-form correction (plug-in values) or when the sampling entails
leaving single observations (worker–year) out, rather than the whole worker–firm spell as we do
in Table 1 of the paper. As expected, when comparing to the baseline results, both these alter-
native specifications result in more pronounced firm heterogeneity. In this sense, our baseline
estimates provide a conservative view of firm return variation. Details about the different sam-
pling approaches (e.g. leaving out one worker-firm observation rather than the whole match) are
discussed in the Appendix Section A.3. Columns (3) and (4) in Table E.1 show results when we

Table E.1: Standard deviations of firm parameters in alternative estimations.

Firm-level (1999–2008): Grouped (alt. periods):
Plug-in Leave-obs-out 1990–1999 2008–2017

(1) (2) (3) (4)

sd(λ 0
j ) 0.32 0.22 0.10 0.09

sd(λ c
j ) 0.40 0.21 0.10 0.07

× 90th −10th pct, cog score (c) 0.30 0.15 0.07 0.06

sd(λ n
j ) 0.39 0.17 0.05 0.05

× 90th −10th pct, noncog score (n) 0.30 0.13 0.04 0.04

× 90th −10th pct, cumulative (c+n) 0.59 0.28 0.11 0.09

# unique firms 19,085 19,085 20,484 22,079

Notes: The table shows standard deviations of parameters λ 0
j , λ c

j , and λ n
j estimating (6) in alternative specifications and

periods. Column (1) are plug-in estimates at the firm-level without quadratic-form correction. Column (2) quadratic-
form corrects the firm-level variances leaving one observation (i.e., worker in a given year) rather than match (i.e.,
worker–firm spell) out at a time. Estimation period: 1999–2008. Columns (3) and (4) show the firm-clustered estimates
in alternative periods 1990–1999 and 2008–2017. Otherwise notes to Table 1 apply.

re-estimate the model using the clustering approach for alternative sample periods. Dispersion of
firm returns is slightly higher in 1990–1999 than in the baseline estimation period in Table 1. It
is slightly lower in 2008–2017, alongside a lower standard deviation of firm intercepts. Overall,
the dispersion of firm parameters appears remarkably stable over time.
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E.2 The Cross-Section of Skill Returns
To characterize the cross-sectional distribution of firm returns we adopt as a baseline the estimates
in Table 1 from the clustered-firms approach. Estimates based on the leave-out bias correction
indicate even larger returns heterogeneity.

Figure E.1 shows histograms of cognitive and noncognitive returns in the cross-section of
firm clusters. The average λ c

j and λ n
j are normalized to zero. Return heterogeneity is significant

in both dimensions although larger for cognitive traits, since sd(λ c
j ) = 0.080 and sd(λ n

j ) = 0.048.
Dispersion is stable across time periods, with sd(λ c

j ) = 0.095 and sd(λ n
j ) = 0.052 in 1990–

1999 and sd(λ c
j ) = 0.074 and sd(λ n

j ) = 0.048 in 2008–2017 (see Appendix E.1). Edin et al.
(2022) show that the average return to noncognitive skills increased while that of cognitive skills
declined (see also Beaudry et al., 2016; Deming, 2017, for the U.S.).15 Our analysis suggests
that, at the same time, the heterogeneity of skill returns across firms did not change differentially
for cognitive and noncognitive skills.
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(A) Cognitive, sd(λ c) = 0.080
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(B) Noncognitive, sd(λ n) = 0.048

Figure E.1: Histograms of Firm Returns (20 Bins)
Notes: Estimates of λ c (left panel) and λ n (right panel), based on 100 firm clusters weighted by employment.
corr(λ c,λ n) = 0.083. Grouped estimator for period: 1999–2008.

The employment-weighted correlation of returns among firm clusters, corr(λ c,λ n), is positive
at 0.083. Using the firm-level estimates of column (1) in Table 1, the bias-corrected correlation
is 0.27. Imperfect correlation lends support to the hypothesis that firm heterogeneity is genuinely
multidimensional and that parameters can be independently identified through observable proxies
that account for the skill-dependent ranking of workers.

15Hermo et al. (2022) show that also returns to cognitive skills’ sub-dimensions in Sweden have changed over
time.
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Earnings gaps and skill premia. The plots in Figure E.1 show that cognitive returns are con-
centrated between −15 and +20 log points. Relative to a worker from the 10th percentile of
skills, a worker from the 90th percentile who moves from the bottom to the top of the returns
distribution would gain 25 extra log points in earnings. That is, the difference in the cognitive
premium between these workers is the skill difference (0.875−0.125 = 0.75) multiplied by 35
log points. Complementarity of skills and returns implies that the earning function should be
convex over skills because large earning effects accrue from matching high c workers to high
λ c firms. Noncognitive returns have a similar range of variation and add significantly to these
earning differences. The impact of returns heterogeneity on the distribution of earnings hinges
on the intensity of assortative matching. In main text Section 4, we derive testable restrictions
to gauge the prevalence of assortative matching in data. Then, in Section 5, we examine how
firm heterogeneity, and the responses it elicits, shape the earnings distribution, and contrast our
estimates to a counterfactual with random assignment of workers.

E.3 Worker–Firm Matching
Does firm heterogeneity matter for the allocation of workers across employers? And how does
it affect the distribution of earnings? To examine these questions we adopt the analytical charac-
terization of matching proposed in Lindenlaub (2017), which describes one-to-one worker–firm
matching in a setting with multiple skill attributes. The following results apply to many-to-one
settings typically examined in matched employer–employee datasets like ours.

E.3.1 Skill Variation Across Firms

First, we introduce some notation. Firms differ in three dimensions: each firm has a different
wage intercept (λ 0) as well as cognitive (λ c) and noncognitive (λ n) returns. Picking up from
Section D.1, we call G(c,n) the measure of skills in the working population and let q j(c,n) be
the fraction of the total workforce of type (c,n) hired by firm j. Given the bilinear wage function,
labor supply equation (D.2) becomes

log(q j(c,n)) = log(h(c,n))+β (µ +λ
0
j +λ

c
j c+λ

n
j n), (E.1)

where β > 0 is an elasticity of skill supply to pecuniary returns and h(c,n) captures the relative
scarcity of each skill bundle (c,n). The employment relationship (E.1) concisely describes an
(empirically-consistent) upward sloping labor supply of type (c,n) to firm j.

Finally, we define Q j, the total number of workers in firm j, as

Q j =
∫

q j(c,n)dG(c,n).

Using this notation, the average cognitive and noncognitive ability of workers in firm j are:

c j =
∫

c
h(c,n)eβ (µ+λ 0

j +λ c
j c+λ n

j n)

Q j
dG(c,n) =

∫
c dM j(c,n)
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n j =
∫

n
h(c,n)eβ (µ+λ 0

j +λ c
j c+λ n

j n)

Q j
dG(c,n) =

∫
n dM j(c,n)

where M j is the probability measure of the skills’ distribution in firm j. The within-firm measure
M j does not depend on µ or λ 0

j and only varies with cognitive and noncognitive returns λ c
j and

λ n
j .

Assortative matching. Assortative matching, whether positive (PAM) or negative (NAM), can
be characterized by the properties of the matching function’s derivatives. We define matching
function ϕ(λ c

j ,λ
n
j ) = (c j,n j), which maps firms’ returns into their average worker skills. In

matching problems with one dimensional heterogeneity, this boils down to the sign of a sin-
gle derivative. With multiple attributes, all elements of the Jacobian play a role (see Lindenlaub,
2017).

Definition 1 (PAM as in main text). The sorting pattern is locally PAM if, for given (λ c,λ n), the
following holds:

(a) ∂c j
∂λ c

j
> 0; (b) ∂n j

∂λ n
j
> 0; (c) ∂c j

∂λ c
j

∂n j
∂λ n

j
− ∂c j

∂λ n
j

∂n j
∂λ c

j
> 0.

Proposition E.1. The Jacobian of the matching function evaluated at (λ c
j ,λ

n
j ) is equal to the

covariance matrix of the worker-skill distribution within firms with returns (λ c
j ,λ

n
j ). That is,

dϕ(λ c
j ,λ

n
j )

d(λ c
j ,λ

n
j )

= β covM j [c,n] = β

[
varM j [c] covM j [c,n]

covM j [c,n] varM j [n]

]
(E.2)

where the covariance is taken under the within-firm measure M j.

Proof.

dc j
dλ c

j
=

∫
β c2 h(c,n) eβ (λ c

j c+λ n
j n) dG(c,n)∫

h(c,n) eβ (λ c
j c+λ n

j n) dG(c,n)
−β


∫

c h(c,n) eβ (λ c
j c+λ n

j n) dG(c,n)∫
h(c,n) eβ (λ c

j c+λ n
j n) dG(c,n)


2

= β

∫
c2 dM j(c,n)−β

[∫
c dM j(c,n)

]2

= β ·varM j [c]

dc j
dλ n

j
=

∫
β cn h(c,n) eβ (λ c

j c+λ n
j n) dG(c,n)∫

h(c,n) eβ (λ c
j c+λ n

j n) dG(c,n)

−β

∫
ch(c,n) eβ (λ c

j c+λ n
j n) dG(c,n)∫

h(c,n) eβ (λ c
j c+λ n

j n) dG(c,n)
×

∫
nh(c,n) eβ (λ c

j n+λ n
j n) dG(c,n)∫

h(c,n) eβ (λ c
j c+λ n

j n) dG(c,n)

= β

∫
cn dM j(c,n)−β

∫
c dM j(c,n)×

∫
n dM j(c,n)

= β · covM j [c,n]

Similarly we can show ∂n j
∂λ n

j
= β ·varM j [n] and ∂n j

∂λ c
j
= β · covM j [c,n].
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We note two implications of Proposition E.1. First, given a positive elasticity β in (E.1), PAM
according to Definition 1 must hold as covariance matrices are positive semi-definite. We test
these restrictions in equation (8) and Table 2 of the main text.

Moreover, the matching function with bilinear returns offers a natural analogy to a moment
generating function. Further examination of this second property is left for future work.

A different test of sorting. An equivalent definition of positive assortative matching is:

Definition 2 (Alternative formulation of PAM). The sorting pattern is locally PAM if, for given
(c,n), the following holds:

(a)
∂λ c

j
∂c j

> 0; (b)
∂λ n

j
∂n j

> 0; (c)
∂λ c

j
∂c j

∂λ n
j

∂n j
− ∂λ n

j
∂c j

∂λ c
j

∂n j
> 0.

The Jacobian of the matching function becomes:

dϕ(c j,n j)

d(c j,n j)
=

 ∂λ c
j

∂c j

∂λ n
j

∂c j
∂λ c

j
∂n j

∂λ n
j

∂n j

 (E.3)

Intuitively, it does not matter for the empirical test of PAM whether firms choose workers or
vice versa. We therefore consider sorting regressions based on (9) in the main text. These linear
forms are similar to the projections of fixed effect onto firm characteristics used in the applied lit-
erature (Kline et al., 2020). A strength of this specification is that, under general assumptions, the
regression parameters can be correctly estimated from a cross-section of individual non-grouped
firms. If returns are measured with error, having λ c

j and λ n
j on the left-hand-side avoids biases in

the d-parameters of (9). One can then use these linear projections to test for PAM in the cross-
section of individual firms; this is true even if other statistics, such as the R2, are potentially
biased. One caveat is that, while point estimates from these regressions are generally unbiased,
standard errors must be corrected for the correlation across the first-stage estimates of the out-
come variable (firm parameters).16

Table E.2 reports estimates from projections in (9), obtained from non-grouped firm-level
data (employees’ cognitive and noncognitive skills are averaged into firm-specific c j and n j). It
is apparent that PAM cannot be rejected since own-partial derivatives and the determinant of
the Jacobian are positive throughout. The coefficients on c j for λ c

j are only about half as large
as on n j for λ n

j . Flipping this around, c j responds more to a given difference in returns, which
again implies stronger sorting on cognitive traits. Results are generally robust to controlling for
or weighting by employment size in the different columns of Table E.2.

E.3.2 The Distribution of Skills over Returns and First-Order Stochastic Dominance

A corollary of PAM is that, for each skill attribute, the distribution of higher-skilled workers
over firm returns should (first-order) stochastically dominate that of lower-skilled workers. For

16We use the correction proposed in equation (7) of Kline et al. (2020) to construct adjusted standard errors.

37



Table E.2: Projection of Individual Firms’ Returns onto their Average Skills.

Dependent Variables:
(1) (2) (3)

λ c
j λ n

j λ c
j λ n

j λ c
j λ n

j

c j 0.29 -0.41 0.29 −0.41 0.16 −0.44
(0.02) (0.02) (0.02) (0.02) (0.04) (0.04)

n j 0.15 0.61 0.15 0.61 0.40 0.56
(0.03) (0.03) (0.03) (0.03) (0.05) (0.05)

# firms 19,085 19,085 19,085
Controls No # employees No
Weights No No # employees

Notes: The table reports sorting coefficients d2 and d3 from estimating equation (9) using firm-level (non-grouped)
λ c

j and λ n
j . Projections of individual coefficients in estimation period 1999–2008. Standard errors are corrected to

account for the first-stage estimates of the outcome variable as in Kline et al. (2020, Section 4).

example, holding constant non cognitive traits n, the share of employees with higher cognitive
traits c should rise with a firm’s λ c. Equivalently, the frequency of higher n workers should
increase with λ n, holding c constant. Formally, positive FOSD implies:

if c1 > c2 then CDFc(c1,n,λ c)≤ CDFc(c2,n,λ c) for all n,λ c

if n1 > n2 then CDFn(c,n1,λ
n)≤ CDFn(c,n2,λ

n) for all c,λ n.

In Figure 2 of the main text we examine whether such patterns occur in our sample. We sep-
arately plot the λ c and λ n cumulative distribution functions of workers in different skill groups.
The top left panel shows that, holding n constant at the medium, the CDF of λ c shifts to the right
when we consider higher endowments of c. A similar finding emerges when looking at the CDF
of noncognitive endowments (n) over λ n (top right panel). Figure E.2 reports the corresponding
figures when holding the respective other skill constant at low or high (as opposed to medium)
level. All else equal, variation in each skill dimension is consistent with stochastic dominance
over the distribution of the corresponding firm returns. This supports the PAM hypothesis and
further validates the bilinear matching-return function.
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(A) λ c
j , FOSD (Cognitive) (B) λ n

j , FOSD (Noncognitive)

(C) λ c
j , FOSD (Cognitive) (D) λ n

j , FOSD (Noncognitive)

Figure E.2: Distribution of firm returns for different sets of worker skills.
Notes: The figure shows cumulative distribution functions for workers with low (c,n ≤ 0.25), mid (0.25 < c,n <
0.75), or high (c,n ≥ 0.75) skill ranks over the range of firm returns. Period: 1999–2008. Results from the grouped
estimator. FOSD: first-order stochastic dominance.
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E.4 Variance Accounting
To facilitate comparisons to existing work, it is useful to characterize the contribution of differ-
ent layers of firm heterogeneity to the variance of earnings. We perform this exercise for each of
the two estimation approaches (bias-correction and clustering). We also report similar decompo-
sitions for standard AKM estimators that do not explicitly account for firm-level heterogeneity
in skill returns. Finally, to illustrate robustness for each approach, we carry out the analysis for
the full sample (where every worker–firm match is observed for possibly multiple periods) and
for the collapsed match-level samples (where a worker–firm observation represents the average
value over possibly different periods when worker and employer are jointly observed).

Table E.3: Variance decomposition of log earnings (shares × 100). Firms clustered into
one hundred classes.

var(αit)
var(log(wi j))

var(ψi j)
var(log(wi j))

2cov(αit ,ψi j)
var(log(wi j))

(1) (2) (3)

Full sample Obs. (million) 6.48

Full model 60.8 3.8 11.2 total 75.8

AKM 61.0 3.7 11.0 total 75.7

Match-level collapsed sample Obs. (million) 1.19

Full model 62.0 4.5 14.0 total 80.5

AKM 62.1 4.4 13.9 total 80.4

Notes: Decomposition of the percentage in log earnings variance explained based on estimates from spec-
ification (6). We subsume worker-only contributions in αit ≡ µi +Xitbt and firm/worker contributions in
ψi j ≡ λ 0

j +λ c
j · ci +λ n

j · ni. We group firms into 100 clusters following the approach described in the text.
AKM shows results for an alternative model with no heterogeneity in firm returns (here we show fixed
effects for the firm groups, not individual firms). Estimation period: 1999–2008.

Notation. To control for variation due to worker-only components, we define αit ≡ µi +Xitbt .
This is consistent with the normalization outlined in Section 3.1 of the paper, where µi encom-
passes average returns κc · ci +κn ·ni across firms; the αit terms reflect both observed and unob-
served worker-level variation. The firm components (including interactions with worker skills)
is defined as ψi j ≡ λ 0

j +λ c
j · ci +λ n

j · ni. In a standard AKM specification this latter component
reduces to firm fixed effects.
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Table E.4: Variance decomposition of log earnings (shares × 100). Variance correction
approach: estimates based on sample o individual firms (bias-corrected).

var(µi)
var(log(wi j))

var(ψi j)
var(log(wi j))

2cov(µi,ψi j)
var(log(wi j))

(1) (2) (3)

Leave-one-out sample Obs. (million) 3.27

Full model 49.4 8.4 5.8 total 63.6

AKM 42.7 8.0 5.3 total 55.9

Match-level collapsed sample Obs. (million) 1.19

Full model 47.8 7.1 11.0 total 65.9

AKM 42.9 7.6 8.2 total 58.8

Notes: Decomposition of the percentage in log earnings variance explained based on estimates from
specification (6). We capture worker-only contributions in µi and firm/worker contributions in ψi j ≡
λ 0

j +λ c
j · ci +λ n

j ·ni. Estimation period: 1999–2008.

Results. Table E.3 shows the variance accounting when we estimate the baseline equation (6)
using 100 firm clusters for the 1999–2008 period. Results are similar for the 1990–1999 and
2008–2017 periods, and comparable to other cluster-based implementations for Sweden (Bon-
homme et al., 2019) and the U.S. (Lamadon et al., 2022). As in many other studies, worker
heterogeneity accounts for much of the total earnings variation while the covariance between α

and ψ is the second largest contributor to total variation (see also Bonhomme et al., 2023). One
would obtain similar results after restricting the specification to a standard AKM with no skill in-
teractions. This suggests that the significant heterogeneity in skill returns would be mechanically
attributed to employer and worker fixed effects. This is of concern when interpreting employer
fixed effects as earnings shifts that do not depend on skills.

Table E.4 shows the variance accounting exercise when the coefficients in (6) are estimated
using the bias-correction approach. Since this approach adjusts the quadratic forms for worker
effects downward, the contribution from worker fixed effects is somewhat lower than the clus-
tering approach although it remains by far the largest. Consistent with the estimates reported in
Table 1 of the paper, the direct impact of firm heterogeneity on total variation is larger than in the
non-grouped sample. However, due to the downward rescaling of the quadratic forms, the total
explained variation is lower than in the clustered estimation. The comparisons to the restricted
AKM specifications show that skill returns are mechanically conflated into the employer and
worker fixed effects.
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Finally, Tables E.5 and E.6 break down the relative contribution of different components of
firm effects to total variation. These exercises document that firm level heterogeneity in skill re-
turns accounts for a sizable share (at least 1/4) of overall firm-specific contributions to inequality
and of their covariation with unobserved worker heterogeneity. The latter covariation is quantita-
tively important if one considers that worker fixed effects include the cross-sectional average of
skills returns κc · ci +κn ·ni and account for well over 1/2 of wage dispersion.

Table E.5: Variance decomposition of log earnings (shares × 100), including time-
varying worker components. Firms clustered into one hundred classes.

(1) (2) (3)

Variances var(αit)
var(log(wi j))

var(λ 0
j )

var(log(wi j))

var(λ c
j ci+λ n

j ni)

var(log(wi j))
Obs. (million) 6.48

60.8 2.9 0.9

Covariances 2cov(αit ,λ
0
j )

var(log(wi j))

2cov(αit ,λ
c
j ci+λ n

j ni)

var(log(wi j))

2cov(λ 0
j ,λ

c
j ci+λ n

j ni)

var(log(wi j))
Total explained 75.8

8.8 2.4 -0.1

Notes: We group firms into 100 clusters following the clustering approach as described in the text.
Estimation period: 1999–2008. We subsume time-invariant and time-varying worker contributions in
αit ≡ µi +Xitbt .
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Table E.6: Variance decomposition of log earnings (shares × 100), only time-
invariant worker components. Firms clustered into one hundred classes.

(1) (2) (3)

Variances var(µi)
var(log(wi j))

var(λ 0
j )

var(log(wi j))

var(λ c
j ci+λ n

j ni)

var(log(wi j))
Obs. (million) 6.48

54.0 2.9 0.9

Covariances 2cov(µi,λ
0
j )

var(log(wi j))

2cov(µi,λ
c
j ci+λ n

j ni)

var(log(wi j))

2cov(λ 0
j ,λ

c
j ci+λ n

j ni)

var(log(wi j))
Total explained 67.8

7.7 2.4 -0.1

Notes: We group firms into 100 clusters following the clustering approach as described in the text.
Estimation period: 1999–2008. We capture time-invariant worker contributions in µi.
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E.5 The Uneven Gains from Sorting
Robustness to rescaling of skills and returns. The sorting gains discussed in the main text are
robust to rescaling of skills and returns since (i) multiplication of ci by a non-zero factor would
lead to a proportional change in the λ c

j estimates as these would be scaled down by the same
factor, leaving the product λ c

j ci unchanged. (ii) Shifting the level of skills, by adding a constant
x to ci, leaves λ c

j unchanged and shifts firm intercepts to λ 0
j −λ c

j x. Returns from working in firm
j become λ c

j (ci + x) but this is offset by λ 0
j −λ c

j x.
The total sorting gain, corresponding to the sum of both intercepts and returns (λ 0

j + λ c
j ci),

is hence fully invariant. This cumulative effect, calculated as the sum of columns (2) and (6)
in Table 4, induces even larger inequality and skewness across the range of skill levels. Match
effects are completely unaffected by rescaling, since they are defined relative to the demeaned c̃i.

Figure E.3: Gains from sorting across returns λ c
j for different cognitive skill levels.

lowest median highest
-4

-2

0

2

4

6

8

10

12

Notes: Gains are multiplied by 100 (i.e., in log points) for readability. All returns are differences relative to a
scenario with no heterogeneity in firm returns. Estimates are based on the grouping approach with detailed
numbers in Table 4. Sample period: 1999–2008.

The dashed line in Figure E.3 shows the total sorting gain in the cognitive dimension, that is
E(λ 0

j | ci)+ ci ·E(λ c
j | ci). This induces even wider earning differences between skill levels and

retains the strong convexity. The average effect, i.e., the aggregate gain from matching, is exactly
the same as for the thick dotted line ci ·E(λ c

j | ci) already seen in the main text.
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Table E.7: Gains from sorting across returns λ n
j for different noncognitive skill levels.

E(λ n
j | ni) Full gain Returns effect Match effect E(λ 0

j | ni)

(1) (2) (3) (4) (5)

skill level (ni):
1 (lowest, ni = 0) -1.52 0.00 -0.78 0.78 -2.76
2 -1.26 -0.16 -0.65 0.49 -2.01
3 -0.87 -0.22 -0.45 0.23 -1.15
4 -0.48 -0.18 -0.25 0.07 -0.04
5 (median, ni = 0.5) 0.06 0.03 0.03 0.00 0.02
6 0.42 0.26 0.22 0.05 0.39
7 0.68 0.51 0.35 0.16 0.91
8 0.84 0.73 0.43 0.30 1.45
9 (highest, ni = 1) 0.94 0.94 0.48 0.45 2.02

Aggregate 0.00 0.13 0.00 0.13 0.00

Notes: Gains are multiplied by 100 (i.e., in log points) for readability. All returns are differences relative to a scenario
with no heterogeneity in firm returns. Estimates are based on the grouping approach. Sample period: 1999–2008.
Column (1): expected marginal return conditional on skill. Column (2): total gain from sorting. Column (3): gain
from sorting for the average-skill worker. Column (4): gain from sorting in excess of an average-skill worker with
the same employer. Column (5): gain from sorting into intercepts.

Gains from sorting on noncognitive returns. Table E.7 reports the effects from the sorting
of noncognitive attributes ni across noncognitive returns λ n

j . These effects are comparatively
smaller than in the cognitive dimension, which reflects the lower dispersion of noncognitive
returns across firms (see Section 3) and the weaker sorting in that dimension (see Section 4).
Nonetheless, there is clear evidence of sorting also in the noncognitive dimension.

Column (1) in Table E.7 shows that workers with higher noncognitive endowments sample
from a distribution of employers with higher returns. Moving from ni = 0 to ni = 1 there is a
2.5 log points difference in E(λ n

j | ni). This again leads to non-monotonic gains, since high-skill
workers benefit the most from the sorting whereas the lowest-skill workers would benefit (or lose)
little from any skill returns. The workers who experience steep losses are those with intermediate
skills since they would gain from matching with high return firms but are not assigned to such
firms. Match effects in column (4) reflect the complementarity of high-skill workers with high-
return firms, and of low-skill workers with low-return firms, as well as the induced sorting. These
are again positive and raise aggregate earnings by 0.13 log points. In the last column of Table E.7,
inequality is further increased by the sorting of noncognitive attributes ni over λ 0

j intercepts.
Figure E.4 represents these effects visually. The earnings differences between skill levels are

clearly convexified by the sorting (thick dotted line), albeit the convexification is not as pro-
nounced as for cognitive traits. Interestingly, sorting over intercepts reverses this convexification
(dashed line), since the least skilled workers face particularly low λ 0

j (see column (5) of Ta-
ble E.7). As we emphasized in the main body, and as we see here, the purely redistributive fixed
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Figure E.4: Gains from sorting across returns λ n
j for different noncognitive skill levels.
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Notes: Gains are multiplied by 100 (i.e., in log points) for readability. All returns are differences relative to a
scenario with no heterogeneity in firm returns. Estimates are based on the grouping approach with detailed
numbers in Table E.7. Sample period: 1999–2008.

effects (due to sorting into firm intercepts with no complementarity) do not in general induce
skewness of the earnings distribution.
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F Extensions and Robustness
Firm heterogeneity in skill returns encourages sorting and affects the earnings distribution. One
may, however, question to what extent the assignment of workers to jobs occurs along the industry
and occupation dimensions. This motivates a robustness exercise where we explicitly test for
return heterogeneity within narrowly defined industry and occupation groups.

In addition, and to aid interpretation of our baseline findings, we examine the correlation of
skill returns with a subset of firm-level measurements. This is facilitated by external data about
firms’ balance sheets, capital composition and innovation activities that can be linked to our
sample of employers. The latter measures convey information about the nature of production
arrangements that may underpin firm differences in skill returns.

Finally, we examine the robustness of estimates under the clustering approach to alternative
choices about the number of firm classes and of variables used for grouping firms.

F.1 Industries and Occupations
Using occupation and industry identifiers we can assess whether return heterogeneity is genuinely
firm-specific. To this purpose we add industry and occupation interactions with cognitive and
noncognitive skills to the specification (6). That is, Xitbt now contains λ c

o ·c+λ n
o ·n as additional

controls where each o indexes one industry or occupation cell.
Table F.1 reports the results, with the first column referring to the baseline specification from

the main text for comparison. In column (2) we add industry-specific cognitive and noncognitive
skill returns (for 19 different sectors). The contributions of firm intercepts and of returns het-
erogeneity to earnings dispersion decline very slightly – from 0.10 to 0.09 for sd(λ 0

j ) and from
0.06 to 0.05 for sd(λ c

j ci + λ n
j ni). The overall effects remain similar. Column (3) adds detailed

five-digit industries, with up to 586 separate returns for each skill dimension; also in this case,
the contributions of firm-level parameters to overall dispersion remain stable.

Occupation information is only available in the LISA data from 2001 onward (and only par-
tially before then) so that the estimation sample shrinks. This can be seen, e.g., in the lower
number of unique firms in the bottom row of Table F.1.

Introducing occupation-specific returns has more influence on the firm-level parameters. In
column (4) of Table F.1 we allow for heterogeneous returns for eight major occupation groups
(similar to those used in Acemoglu and Autor, 2011). In this specification the standard devia-
tions of baseline cognitive and noncognitive returns, as well as their contributions to earnings
dispersion, decline by about one third compared to the benchmark in column (1). This partly
reflects variation in production arrangements within firms; to the extent this variation underpins
firm-specific skill returns, it is natural to expect it to be captured by occupation-specific returns.
Put differently, the firm-level occupation make-up is one of the primitives accounting for firm
heterogeneity in skill returns and, therefore, is a legitimate component of the total firm return.
Finer occupations in column (5) and even industry-sector×occupation-group interactions in col-
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Table F.1: Dispersion of estimated effects under industry / occupation controls.

Main Sector Industry Occup-Group Occupation Sec×OccGr
(1) (2) (3) (4) (5) (6)

sd(µi) 0.43 0.43 0.43 0.41 0.40 0.40

sd(λ 0
j ) 0.10 0.09 0.09 0.10 0.09 0.09

sd(λ c
j ) 0.08 0.08 0.07 0.05 0.05 0.05

sd(λ n
j ) 0.05 0.05 0.04 0.04 0.04 0.04

sd(λ c
j ci) 0.05 0.05 0.04 0.03 0.03 0.03

sd(λ n
j ni) 0.03 0.03 0.03 0.03 0.02 0.02

sd(λ c
j ci +λ n

j ni) 0.06 0.05 0.05 0.04 0.04 0.04

# unique firms 25,783 25,783 25,783 23,999 24,168 23,973

Notes: Parallel to Tables 1 and 3, this table shows standard deviations of worker and firm effects but controlling
for industry- or occupation-specific skill returns in equation (6). Column (1) repeats our specification from
the main text without such controls. Column (2) adds broad industry sector specific skill returns (19 unique
values per skill dimension). Column (3) adds detailed industry specific skill returns (up to 586 unique values
per skill dimension). Column (4) adds broad occupation group specific skill returns (8 values, these groups
can be seen in Figure F.2). Column (5) adds detailed occupation specific skill returns (113 values). Column
(6) adds industry-sector×occupation-group specific skill returns (152 values). Group-level estimates in period:
1999–2008.

umn (6), which proxy for specific jobs in a firm, have little additional effect on the contribution
of firm heterogeneity to earnings dispersion.17

Sorting patterns. Figure F.1 shows that the patterns of skill sorting across returns are effec-
tively unchanged when we control for industry and occupation-specific interactions. The range
of variation of firm-level returns is only slightly smaller, in line with the reduction of dispersion
in Table F.1. Sorting across firms remains strong and remarkably robust over the skill range.

17While results would not be much different than the industry-sector× occupation-group specification, we re-
frain from explicitly reporting estimates of detailed industry× detailed occupation-specific returns estimates. The
reason is that this has additionally more than 21 thousand nonmissing cell-specific returns (almost as many as there
are firms) for each skill dimension and thus reinstates an incidental parameter bias problem that the group-level
estimation shown here circumvents.
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Figure F.1: Average skill by estimated return under different industry / occupation controls.
Notes: Parallel to Figure 2, the figure plots binned scatterplots of firm-specific skill returns (vertical axis) with
average skills (horizontal axis) for the baseline specification shown in the main text; additionally controlling for
detailed industry specific skill returns (up to 586 unique values per skill dimension) in equation (6); controlling
for detailed occupation specific skill returns (113 values); and for industry-sector×occupation-group specific skill
returns (152 values). Group-level estimates in period: 1999–2008.

We conclude that firm-level differences are an important source of skill return heterogene-
ity. Accounting for industry and occupation heterogeneity provides further evidence of the large
differences that persist at the firm level; these differences do not reflect purely sectoral or occu-
pational variation. Rather, we find that even within the same narrow industries and occupations,
skills command significantly different returns across employers.

Aggregating returns to the industry and occupation level. Whereas most of the heterogene-
ity occurs at the firm level, one may ask which industries or occupations exhibit higher skill
returns on average. To answer this question, we first consider linear projections of baseline esti-
mates of λ c

j and λ n
j on a full set of seven industry sector dummies. The projections are similar

to those described in equation (9), where c j and n j are replaced by sector dummies, and yield
the average cognitive and noncognitive return in the respective industry compared to the omitted
“Manufacturing” sector.

Figure F.2A summarizes the results for the group-level estimates in the form of a coefficients
plot. Cognitive returns are especially high in the business services and IT sector, noncognitive
returns tend to be higher in wholesale and personal service related activities. By contrast, cog-
nitive returns are rather low in the omitted manufacturing sector itself (represented by the zero
line) and in utilities, transport, and services. Noncognitive returns in addition are remarkably low
in business services and IT.

Figure F.2B shows corresponding results from a linear projection of estimates of λ c
j and

λ n
j onto an exhaustive set of employment shares for eight broad occupation groups. The base-
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(A) Industry sectors (B) Occupation shares

Figure F.2: Skill returns by industry and occupation composition.
Notes. Panel (a): coefficients from the projection of skill returns λ c

j and λ n
j onto seven broad industry-sector dummies.

Sector dummies add up to one and the omitted sector is “Manufacturing”, i.e., coefficients indicate difference in
average skill return compared to average in manufacturing (λ c

j =−0.029 and λ n
j =−0.004 in that sector). Panel (b):

coefficients from the projection of λ c
j and λ n

j onto a full set of eight broad occupation employment shares in each
firm. Occupation group shares sum to one and the omitted group is “Operators / Assemblers”. Returns are estimated
for 100 firm classes. 95% confidence intervals based on robust standard errors clustered at the level of firm classes.

line omitted occupation are “Operators / Assemblers”, a large manufacturing-type occupation
group. As in Table F.1, and likely because they can vary within firms, occupations are somewhat
more related to cognitive and noncognitive returns. That is, firms with large shares of profes-
sional, technical, and clerical workers have significantly higher cognitive returns compared to
operator/assembler workers. Firms with larger shares of managers, technical workers, and ser-
vices/sales workers have both high cognitive and noncognitive returns. As for business services
and the IT sector, noncognitive skill returns are low among firms with a high share of professional
workers.18

Finally, results are robust to alternatively considering the firm-level estimates of λ c
j and λ n

j
from the (smaller) leave-match-out sample. This is shown in Figure F.3, next to the group-level
estimates. This approach is less precise and has wider confidence intervals but remains broadly
consistent with the group level projections. These exercises suggest that firms in certain indus-
tries, and with certain occupations, differentially reward particular skills. Yet, while such varia-
tion exists, skill returns (even conditional on, say, a given occupation) vary substantially across
firms. In fact, occupation composition can itself be an outcome partly driven by return differences
across firms.

18These low noncognitive returns are consistent with the cross-sorting we found in Section 4 if the very high
cognitive returns attract very cognitively able professionals to those firms. The professionals also have high noncog-
nitive skills but they accept the low noncognitive returns in the ”business / professional services” firms in exchange
for the exceptional returns on their cognitives.
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(A) Cognitive λ c
j , industry sectors (B) Noncognitive λ n

j , industry sectors

(C) Cognitive λ c
j , occupation shares (D) Noncognitive λ n

j , occupation shares

Figure F.3: Skill returns by industry and occupation, firm- versus group-level estimates.
Notes. See note to Figure F.2. Here we additionally plot the projections of firm-level λ c

j and λ n
j estimates onto broad

industry sector dummies and occupational employment shares, and then compare them to the projections of group-
level estimates from Figure F.2 separately by skill dimension.
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F.2 Capital Composition, Innovation, and Skill Returns
Balance sheets and capital components. We use a commercial data product, the “Serrano”
database provided by Bisnode AB, that collects and cleans information about each firm’s finan-
cials. Up to now, and consistent with prior work, we have referred to workplaces as “firms”.
However, for the balance sheet analysis we aggregate workplaces up to the organization level (a
broader notion of “firms”) for which both financial accounts and innovation activity are reported.
Since there are multi-workplace corporations, this reduces the number of observations by about
one third. Table F.2 reports estimates for projections of cognitive skill returns onto firms’ tangible
and intangible capital components. To account for zero-value observations for finer capital items
in the balance sheets, we use the inverse hyperbolic sine (arcsinh) transform.19

Capital composition is strongly associated to cognitive returns. Column (1) of Table F.2 shows
that tangible assets vary negatively with skill returns but intangible assets exhibit a strong positive
correlation. Column (4) illustrates that the negative relationship holds strong for physical capital
(buildings, land, and machinery) and the positive relationship is especially intense for intellectual
capital (patents, licenses, and capitalized R&D expenses). The notion that intangible capital and
intellectual property are complementary to high skilled labor within a firm is consistent with
production arrangements that leverage innovation. Relatively high physical assets and machinery,
on the other hand, are more frequent in firms that exhibit lower returns to cognitive skills.

These relationships are robust in several respects: they hold within industry sectors of the econ-
omy (columns (2) and (4) of Table F.2) and if we weight with firm employment size (columns (3)
and (6)). Tables F.3 and F.4 show that they hold in the leave-out firm-level samples as well as
when using dummy indicators (or logs) instead of the arcsinh transformation. Results for noncog-
nitive skills are less pronounced and returns are modestly higher in firms with more physical capi-
tal. This lends support to the notion that skills should be modeled separately rather than collapsed
into a single index. Perhaps unsurprisingly if one considers production arrangements, firms that
employ intangible and intellectual assets have substantially higher cognitive skill returns.20

Table F.3 shows the projections of skill returns estimated at the group level onto firm capital
components per employee in various robustness specifications. First we employ alternatives to
the arcsinh transformation of balance sheet items in the main text. Columns (1) and (2) use
dummies, which take the value of one when a firm reports a positive value of the respective
capital item as opposed to zero (missing values are still removed). We observe that tangible assets,
and in particular physical capital, is significantly negatively associated with cognitive returns
whereas intangible assets, and especially intellectual capital, is significantly positively related.
As a flip-side of this “extensive margin”, we also study the “intensive margin” where we use log

19The arcsinh approximates log(2x j) = log(2) + log(x j). Estimates are interpreted as semi-elasticities (unit
changes) for very small values of the transformed variable x j, and as elasticities for larger values. See Bellemare and
Wichman (2020) and note to Table F.2. Findings are robust to alternative approaches; Table F.3 shows that similar
results hold at the intensive margin (log transform of capital items) and at the extensive margin (firms with high
cognitive returns are more likely to report nonzero intangible assets).

20Even controlling for capital composition in equation (6), or allowing for interactions between capital and skill
in parallel to occupation-specific skill returns in Section 6.1, has little impact on the heterogeneity of firm-specific
skill returns that we uncover.
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Table F.2: Projection of Group Returns onto Firm Capital Composition.

Dependent variable: λ c
j ×100

(1) (2) (3) (4) (5) (6)

Tangible assets -0.83 -0.30 -0.53
(0.12) (0.06) (0.15)

Buildings, Land, Machinery -0.92 -0.35 -0.59
(0.13) (0.07) (0.15)

Other tangible assets 0.13 0.05 0.04
(0.07) (0.05) (0.14)

Intangible assets 1.02 0.63 0.85
(0.11) (0.06) (0.11)

Patents, licences, capt. R&D 1.17 0.70 0.72
(0.12) (0.07) (0.14)

Goodwill and other intangibles 0.52 0.36 0.52
(0.09) (0.06) (0.09)

R-squared 0.10 0.33 0.08 0.11 0.33 0.09
Number of firms 14,339 14,339 14,339 14,339 14,339 14,339
Sector fixed effects No Yes No No Yes No
Employment weighted No No Yes No No Yes

Notes: Projections of cognitive skill returns onto capital components per employee, using firms’ balance sheets.
Tangible fixed assets comprise of buildings and land; machinery and equipment; and other. Intangible fixed assets
include capitalized expenditure on research and development; patents, licenses, and concessions; goodwill; and
other. All variables are transformed using inverse hyperbolic sine, i.e., arcsinh(x j) = log

(
x j +

√
x2

j +1
)

. The
dependent variable λ c

j is multiplied by 100. Estimates are based on the sample of clustered firms; period 1999–
2008. Robust standard errors clustered at the level of each of the 100 firm groups.

transformations of the balance sheet items. As discussed, the number of non-missing observations
now drops and especially so for the detailed distinctions within tangible and intangible assets in
column (4). Nonetheless, qualitatively and statistically (as well as in terms of coefficient sizes)
the results are comparable to those based on the arcsinh transformation.

Table F.4 shows that the projection results onto capital components are remarkably robust
even if we instead use the firm-level estimates of cognitive returns. Finally, we note that the rela-
tionships with noncognitive returns are weaker, as shown in columns (5) and (6) of Table F.3. If
anything, patents, licenses, and capitalized R&D appear slightly negatively related to noncogni-
tive returns (goodwill and other intangibles positively). Overall, these results are consistent with
firms exhibiting heterogeneous production arrangements, whereby capital and employment struc-
ture vary substantially and lead to different returns to skill attributes, with the stronger impacts
holding in the cognitive skill dimension.
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Table F.3: Projection of Group Returns onto Firm Capital Composition.

Dependent variable: λ c
j or λ n

j ×100
(1) (2) (3) (4) (5) (6)

Tangible assets -3.69 -1.06 0.14
(0.87) (0.15) (0.09)

Buildings, Land, Machinery -2.86 -0.80 0.07
(0.81) (0.21) (0.10)

Other tangible assets -2.40 0.25 0.12
(0.35) (0.10) (0.05)

Intangible assets 2.95 0.97 0.03
(0.36) (0.10) (0.09)

Patents, licences, capt. R&D 3.49 0.64 -0.24
(0.44) (0.12) (0.10)

Goodwill and other intangibles 1.57 0.53 0.19
(0.27) (0.13) (0.06)

Number of firms 14,339 14,339 5,496 862 14,339 14,339
Dependent variable λ c

j λ c
j λ c

j λ c
j λ n

j λ n
j

Independent variables as dummy dummy logs logs arcsinh arcsinh

Notes: Results from regressions of skill returns onto capital components per employee from firms’ balance sheets.
Observations (firms) are unweighted with no further control variables. Columns (1) and (2) use dummies for whether
the firm reports a positive value of the respective capital item as opposed to zero. Columns (3) and (4) take logs
of the items’ values. Columns (5) and (6) use noncognitive instead of the cognitive return as dependent variable
with independent variables in arcsinh as in the main text Table F.2. Dependent variables λ c

j , λ n
j multiplied by 100.

Grouped estimates in period: 1999–2008. Robust standard errors clustered at the level of the 100 firm groups.

54



Table F.4: Projection of Firm-Level Returns onto Firm Capital Composition.

Dependent variable: λ c
j ×100 from firm-level estimates

(1) (2) (3) (4) (5) (6)

Tangible assets -0.45 -0.56 -0.88
(0.36) (0.41) (0.19)

Buildings, Land, Machinery -0.32 -0.45 -0.59
(0.44) (0.46) (0.25)

Other tangible assets -0.34 -0.38 -0.55
(0.40) (0.41) (0.22)

Intangible assets 1.03 0.76 0.57
(0.32) (0.33) (0.16)

Patents, licences, capt. R&D 1.33 1.03 0.75
(0.46) (0.47) (0.21)

Goodwill and other intangibles 0.46 0.33 0.37
(0.38) (0.38) (0.19)

Number of firms 10,258 10,258 10,258 10,258 10,258 10,258
Sector fixed effects No Yes No No Yes No
Employment weighted No No Yes No No Yes

Notes: Firm-level estimates of λ c
j in period 1999–2008. Robust standard errors in parentheses. Other than that, see

note to Table F.2.
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Innovation output. After linking the CIS survey responses to the administrative sample of
employers, in Figure F.4 we plot bin scatters of dummies (taking value one in the presence of
product/process innovations in the firm) versus cognitive skill returns.21 Firm innovation activ-
ities are positively, and almost linearly, associated with estimates of cognitive returns. This is
especially apparent in the case of product innovations where, moving from the lowest to the
highest λ c

j firms, the share of firms which introduce such innovations rises from about 25 to 65
percent. For process innovations the relationship is fainter and only borderline significant when
we also condition on product innovation (Table F.5). However, innovation activities still differ by
twenty percentage points between firms with the lowest and the highest skill returns.
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Figure F.4: Cognitive skill returns and firm innovation.
Notes: The figure plots a binscatter of firms’ innovation activities against cognitive skill returns (group-level esti-
mates during 1999–2008). Innovation activities are measured as indicators whether a firm has conducted any product
(including service, Panel A) or process (including organizational, Panel B) innovations. This information is from
various waves of a representative firm survey (European Community Innovation Survey, CIS). We average the re-
sponses (i.e., indicators) for the waves 1998–2000, 2002–2004, 2004–2006, 2006–2008, 2008–2010 relevant to our
estimation period. Underlying the plots are 4,138 unique firms. Regression slopes, controlling for a quadratic in firm
employment, are β = 1.21 (clustered S.E. = 0.13) and β = 0.55 (clustered S.E. = 0.10) for product and process
innovations, respectively.

Similar to the preceding analyses, the first part of Table F.5 shows estimates from projecting
cognitive skill returns onto both product and process innovations. As in Figure F.4, we control
for a quadratic in employment, since the probability of engaging in innovation rises with the
firm’s size. The results on product innovations remain strong, whether or not we use group-level
(column 1) or firm-level (column 3) return estimates or we control for industry sector fixed effects
(i.e., the 19 unique ones from Section F.1).

21We plot the raw relationship after controlling for (a quadratic in) employment, since the probability of engag-
ing in any innovation rises with a firm’s size. The controls do not substantively affect results. The corresponding
relationships for noncognitives are weaker and reported in Appendix F.2.
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Table F.5: Projection of Skill Returns onto Firm Innovation Activities.

Dependent variable: λ c
j ×100

(1) (2) (3) (4) (5) (6)

Innovation output:
Product innovation 3.73 2.89 7.77

(0.53) (0.37) (2.61)
Process innovation 0.29 0.48 4.09

(0.30) (0.25) (2.73)
Innovation spending:
Intramural R&D 0.39 0.30 0.46

(0.06) (0.04) (0.27)
Extramural R&D -0.01 0.06 0.03

(0.04) (0.03) (0.32)
Acquisition of machinery -0.14 -0.02 0.05

(0.04) (0.03) (0.27)
Other external knowledge 0.14 0.06 0.37

(0.04) (0.03) (0.31)

Number of firms 4,138 4,138 3,344 3,857 3,857 3,123
Sector fixed effects No Yes No No Yes No
Estimates (level) Group Group Firm Group Group Firm

Notes: The first three columns report estimates from regressions of cognitive skill returns onto indicators for
product and process innovations (as defined in the text and note to Figure F.4), controlling for a quadratic in firm
employment size. Column (1) uses group-level returns estimates, column (2) adds industry sector fixed effects,
and column (3) uses firm-level returns estimates. The last three columns regress returns onto firms’ innovation
expenditure items, which are arcsinh(x j) = log

(
x j +

√
x2

j +1
)

transformed. Otherwise specifications (4)–(6) are
parallel to (1)–(3). Returns estimated in period 1999–2008. Robust standard errors in parentheses and clustered
at the level of the 100 firm classes for the grouped estimates.

The relationship between skill returns and process innovations gets weaker when we condition
on product innovations, and it is only borderline significant.

Specific innovation activities. Next, we examine firms’ CIS-reported expenditures on specific
types of innovation activities. This is, again, done by using the arcsinh transformation. Column
(4) of Table F.5 shows that, consistent with the preceding findings, high cognitive returns firms
spend significantly more on intramural (or in-house) research and development. They also spend
somewhat more on purchasing external knowledge, and somewhat less on specific machinery.
These findings are robust to adding industry sector fixed effects or using estimates of firm-level
returns in columns (5) and (6).

Lastly, Figure F.5 shows the baseline binned-scatter plot of skill returns vis-a-vis product and
process innovations for the noncognitives. Broadly in line with our prior findings, there is no
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(A) λ n
j and product innovation (B) λ n

j and process innovation

Figure F.5: Noncognitive skill returns and firm innovation.
Notes: The figure plots a binscatter of firms’ innovation activities against noncognitive skill returns (group-level
estimates during 1999–2008). Innovation activities are measured as indicators whether a firm has conducted any
product (including service, Panel A) or process (including organizational, Panel B) innovations. This information
is from various waves of a representative firm survey (European Community Innovation Survey, CIS). We average
the responses (i.e., indicators) for the waves 1998–2000, 2002–2004, 2004–2006, 2006–2008, 2008–2010 relevant
to our sample period. Underlying the plots are 4,138 unique firms. Regression slopes, controlling for a quadratic
in firm employment, are β = 0.00 (clustered S.E. = 0.32) and β = −0.18 (clustered S.E. = 0.19) for product and
process innovation, respectively.

detectable relationship and, in contrast to λ c
j s, the λ n

j s do not actually predict higher innovation
activity.
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F.3 Clustering Strategies and Number of Firm Clusters
When using estimators based on firm clusters, one question is whether results are sensitive to
the grouping strategy. In what follows, we document how the dispersion (standard deviations)
of firm-level parameters, and their contributions to earnings dispersion, vary under alternative
restrictions on the number of clusters as well as on the observables used for the clustering.

Table F.6: Alternative clustering specifications.

Main 10 clusters only Adding variables Earning dist. only
(1) (2) (3) (4)

sd(µi) 0.43 0.44 0.43 0.43

sd(λ 0
j ) 0.10 0.07 0.10 0.11

sd(λ c
j ) 0.08 0.06 0.07 0.06

sd(λ n
j ) 0.05 0.03 0.04 0.03

sd(λ c
j ci) 0.05 0.04 0.04 0.04

sd(λ n
j ni) 0.03 0.02 0.02 0.02

sd(λ c
j ci +λ n

j ni) 0.06 0.04 0.05 0.05

# unique firms 25,783 25,783 25,711 25,783

Notes: Adding to the evidence in Tables 1 and 3, this table shows standard deviations of worker and firm effects under
alternative clustering specifications. Column (1) repeats the baseline specification from the main text, for comparison.
Column (2) shows estimates when using the means of earnings, cognitive and noncognitive skills within each firm
but just ten clusters. Column (3) shows results for 100 clusters after adding standard deviations of earnings, cognitive
and noncognitive skills and firm employment size as additional clustering variables. Column (4) shows results when
we only use quantiles of the earnings distribution (10th, 30th, 50th, 70th, and 90th) within each firm for clustering
and we impose 100 groups. All group-level estimates are based on the sample period: 1999–2008.

Table F.6 reports key results. For comparison column (1) replicates the baseline specifica-
tion in the main text. In column (2) we use only 10 (rather than the baseline 100) firm clusters;
this number is the same as in the main analyses of Bonhomme et al. (2019); Lamadon et al.
(2022). The contributions of firm intercepts and skill return heterogeneity to earnings dispersion
marginally declines, while the relative contribution of returns rises. When we use a richer set
of clustering variables – including firm employment size as well as the standard deviations of
earnings and cognitive and noncognitive skills, in addition to the means of these variables – re-
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Figure F.6: Dispersion due to firm heterogeneity (log earnings), by number of k-means groups.
Notes: The figure shows the earnings variation due to firm intercepts sd(λ 0), cognitive skill returns sd(λ c

j ci), noncog-
nitive skill returns sd(λ n

j ni), and overall skill returns sd(λ c
j ci +λ n

j ni) when we re-estimate the model with different
numbers of k-means clusters. Estimation period: 1999–2008.

turns heterogeneity does not change significantly either in relative or absolute terms, as shown in
column (3). Finally, column (4) shows that restricting the clustering strategy to earnings alone,
through the use of quantiles of the earnings distribution within each firm (see Bonhomme et al.,
2019; Lamadon et al., 2022), does not materially change the estimated impact of returns hetero-
geneity when compared to the other robustness checks. In all alternative specifications we also
confirm the presence of positive assortative matching patterns.

Finally, Figure F.6 shows estimates of the impact of firm heterogeneity under alternative num-
bers of clusters (which we let free to vary between 20 and 200). The relative contributions of
intercepts and skill returns change only marginally, lending further support to the results obtained
under the baseline cluster design.
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