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1 Introduction

Bargaining power and its sources have long interested economists and social sci-

entists more generally. Examples include bargaining between buyers and sellers

(Dunlop & Higgins 1942, Taylor 1995, Loertscher & Marx 2022), cartel members

(Napel & Welter 2021), employers and labour unions (Hamermesh 1973, Svejnar

1986, Manning 1987), husband and wife (Basu 2006, Browning et al. 2013, An-

derberg et al. 2016), the members of a political alliance (Diermeier et al. 2003,

Francois et al. 2015), or legislators (Snyder et al. 2005, Kalandrakis 2006, Napel &

Widgrén 2006, Ali et al. 2019, Nunnari 2021). In cooperative game theory, a vast

literature deriving power indices exists with the Shapley-Shubik index (Shapley &

Shubik 1954) or the Penrose-Banzhaf index (Penrose 1946, Banzhaf 1965, Dubey

& Shapley 1979) being the most famous examples. Cooperative game theory, how-

ever, does not model the process through which players interact with one another

and is thus not able to answer questions such as how the bargaining power of a

player depends on their ability to make a counter o↵er, delay agreement, or veto

certain outcomes. Understanding the role of such features is important for the

purpose of institutional design, for instance. In non-cooperative game theory, on

the other hand, the structure of the interaction between players forms an explicit

part of a game, but in this context much less e↵ort has been invested in devel-

oping measures of power. A common approach is to assume transferable utility

(henceforth TU) and self-interested players, in which case bargaining power can

be measured by the expected share of the surplus that each participant receives.

But if utility is non-transferable or at least one player feels some degree of altru-

ism, the utility a player achieves in equilibrium need not be informative about

this player’s bargaining power. To see this, consider the following example: Three

countries form a military alliance and need to decide how to respond to foreign

aggression. Country A is hawkish, Country B is dovish, and Country C prefers a

measured response. If the agreed policy coincides with that favoured by Country

C, it is not clear whether this outcome is due to the dominance of Country C or

represents a compromise between countries A and B. How can we put a number

on the bargaining power of each country?

In this paper, we provide a measure of bargaining power that can be applied

to any non-cooperative game that features a conflict of interest among players,

including games of incomplete information, but also to mechanisms or even social

choice functions. As the example in the previous paragraph shows, the outcome

of the game alone may not fully reveal each players’ bargaining power. The fun-
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damental idea underlying our approach is that we can instead calculate a player’s

power based on the e↵ect of hypothetical changes in this player’s preferences, hold-

ing all other aspects of the game fixed. In the case of the military alliance, for

example, we can consider what would happen to the agreement among countries

if country C was dovish or hawkish instead of moderate. If a shift in the position

of country C leaves the agreement almost unchanged, it appears that Country C

has little influence. If, in contrast, the outcome of the game always coincides with

the one preferred by Country C, this player can be considered decisive.

Despite the simplicity of this idea, any number of measures of bargaining power

can be constructed on its basis. To guide our choice between these measures, we

specify five Axioms that such a function should satisfy. These axioms reflect the

basic principle outlined above: The Axiom of Null players, for instance, states that

a player should be assigned a bargaining power of zero if changes in their utility

function never have any e↵ect on the outcome of a game. The Axiom of Local

Dictators, on the other hand, posits that some player n should be assigned a power

of one if, starting from the vector of players’ actual utility function, any shift in

the utility function of player n produces the same outcome as if all other players’

preferences were aligned with those of player n. A third axiom, Proportionality,

requires the measure of bargaining power to be based on a comparison of cause

and e↵ect. Simply put, if in one game a small shift in a player’s utility function

has a comparable e↵ect on the outcome of the game as a larger shift in another

game, then the bargaining power of the player should be proportionally higher in

the first game.

The Axiom of Invariance to Irrelevant Extensions addresses the question of

which hypothetical changes in preferences should form the basis of the calculation

of bargaining power. Since considering shifts of a player’s preferences to any pos-

sible alternative preference ordering is often not practicable, delimiting the range

of relevant preferences requires a judgement call on the side of the researcher

analysing a specific application. Nevertheless, expanding the set of hypothetical

preference orderings is in general always possible, and doing so does not a↵ect

the equilibrium of the game given players’ actual preferences. The axiom there-

fore requires bargaining power to be una↵ected by such extensions of the set of

preferences taken into consideration.

To specify the final axiom, we introduce the concept of a compound game,

which is a lottery that determines the game through which players interact. The

Axiom of Compound games essentially states that the bargaining power assigned

to a player in a compound game should be a weighted average of the bargaining
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power in each constituent game.

Our main result establishes that these five axioms characterize a unique func-

tion. This function is calculated based on a limited number of equilibria and has

a clear interpretation. Specifically, the measure calculates how much the outcome

of the game is a↵ected if the utility function of a player is replaced with that of

another player, with the actual utility function of the player serving as a metric

that is used to quantify the size of the impact. The e↵ect of the shift in the player’s

preferences is then expressed relative to the one that would occur if the player was

a local dictator. The final measure is the average of this quantity across shifts

to the utility function of each other player. The bargaining power of a player

calculated in this way thus answers the question of how much a player is able to

influence the outcome of the game compared to a local dictator.

We establish conditions under which, for games of transferable utility, our

measure is equal to the expected share of the total surplus a player receives in

equilibrium and thus equivalent to the conventional approach to calculating bar-

gaining power in this setting. Whereas the two approaches often coincide, they

can also produce notably di↵erent results as illustrated by the following example:

Suppose there are two players who need to divide a cake among themselves and

each player’s utility is given by the share of the cake they receive. With probabil-

ity .9 the whole cake is given to player 1 and the game ends. With the remaining

probability, player 2 is given the opportunity to propose a split. If player 1 accepts

such an o↵er, the split proposed by player 2 is implemented. If player 1 rejects,

both players receive nothing. In the unique subgame perfect equilibrium of this

game, player 2 proposes to keep the whole cake and player 1 accepts. The share

of the cake (and of the available surplus) that player 1 receives in expectation is

therefore equal to .9. However, the preferences of player 1 do not matter for the

outcome. For example, the outcome of the game would not change even if player

1 preferred to give all of the cake to player 2. Given that our measure is based

on the degree to which changes in a player’s preferences lead to changes in the

outcome, it assigns player 1 a bargaining power of zero rather than 0.9. While

arguments in favour of either approach to measuring bargaining power exist, the

key advantage of our method is that it is not limited to TU settings and can be

applied to any game of bargaining.

The bargaining power our measure assigns to a player is conditional on players’

preferences, which is in line with the well-known fact that aspects of preferences,

such as impatience or risk aversion, can matter for a player’s ability to achieve

favourable outcomes. It can also be of interest to abstract from preferences and
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evaluate power as determined by the rules of the game only, for example when

designing institutions before players’ preferences are known. Such an ex ante

measure of power can be constructed based on our ex post measure by specifying a

distribution that players’ preferences are drawn from and then calculating expected

ex post power under said distribution. When applied to weighted voting games,

we show that under suitable choices of the distribution of players’ preferences

the ex ante version of our measure reproduces the Shapley-Shubik index and the

Penrose-Banzhaf index.

We provide three additional applications of our theory, the first of which is

cartel formation. If firms are unable to make transfers between cartel members

due to the risk of being caught out, firms may negotiate over individual produc-

tion quantities. Knowing the influence that each firm had on the agreement can

provide a basis for apportioning compensation in case of conviction, for instance.

We show that under mild assumptions our measure of bargaining power takes a

particularly simple form in this setting and becomes equal to a firm’s profit in

equilibrium divided by the profit this firm would achieve if it was a monopolist.

With asymmetric costs or demand elasticities the latter number may di↵er widely

between cartel members. Even a firm with a small market share may thus turn

out to wield considerable influence.

The second application we consider is intra-household decision-making. The

literature of the economics of the household has an intrinsic interest in the dis-

tribution of power between husband and wife and its underlying determinants.

While the collective model of the household features explicit bargaining weights,

in non-cooperative models power is an implicit product of the entire environment.

Our measure can be used to quantify bargaining power in this setting and reveal

the driving factors through comparative statics. We illustrate this in the context

of a model analysed by Bertrand et al. (2020) and show that even a small gender

wage gap can lead to wide di↵erences in the bargaining power of husband and

wife.

As a third example, we examine bargaining power in a legislative context. The

decision-making power conferred onto the members of an institution is a crucial

aspect of the adopted rules of procedure. We calculate the power of the players

of two classic models of legislative bargaining, which can be seen as variations of

a common benchmark model. This example illustrates how applying our measure

to slightly modified extensive forms can reveal which aspects of the rules of the

game give a player more or less influence.

The remainder of this paper is organised as follows: In Section 2, we place
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our study in the context of the literature. Section 3 derives our measure of bar-

gaining power and explores its properties. Some extensions of the basic theory are

introduced in Section 4. Section 5 presents applications, while Section 6 concludes.

2 Related Literature

Our main contribution to the literature is to provide a method for calculating the

bargaining power of a player that can be applied to any non-cooperative model

of bargaining. In cooperative game theory, a vast literature exists that develops

power indices for so-called simple games with a particular interest in voting games

(see, for example, Penrose 1946, Shapley & Shubik 1954, Banzhaf 1965, Deegan

& Packel 1978, Johnston 1978, Holler 1982, Owen & Shapley 1989). Since a non-

cooperative game can generally not be expressed as an in some sense equivalent

cooperative game,1 there is no general way to apply power indices intended for

cooperative games to non-cooperative games. In non-cooperative game theory, in

contrast, the only approach to measuring power that is widely applied is to assume

transferable utility and selfish players, in which case power can be measured by

the share of the total surplus a player receives (Taylor 1995, Haller & Holden 1997,

Kambe 1999, Fréchette et al. 2005, Snyder et al. 2005, Kalandrakis 2006, Ali et al.

2019). Yet, transferable utility is a strong assumption since it requires that players

have access to a common currency with constant marginal utility (Myerson 1991,

p. 384). When utility is non-transferable, it is in some cases possible to express

the equilibrium of the bargaining game as a weighted mean of each player’s most

preferred outcome, either in terms of physical outcomes or in terms of utilities.

In games with more than two players such weights are often not unique, however,

as in the example of the military alliance we provide in the introduction. Larsen

& Zhang (2021) follow this approach to derive a measure of bargaining power for

two-player games. Their measure is outcome-based in the sense that it assigns

a player a high bargaining power if their utility is close to their best-possible

outcome. The same is not necessarily true for our measure, as illustrated by the

example in the introduction where player 1 is given a high share of the surplus

regardless of their choices and thus assigned a bargaining power of zero.

1
Papers that connect cooperative and non-cooperative game theory typically seek to provide

a non-cooperative justification for a cooperative solution concept by finding a specific non-

cooperative game that generates the same distribution of payo↵s as the cooperative solution.

See, for example, Hart & Mas-Colell (1996), Krishna & Serrano (1996), Serrano & Vohra (1997)

and Laruelle & Valenciano (2008).
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Steunenberg et al. (1999) develop a power measure for games where players’

utilities are a function of the distance between the outcome and their ideal point.

They assume a distribution that players’ preferences and the status quo are drawn

from and that the power of a player is inversely proportional to the average dis-

tance between their ideal point and the outcome across all possible draws. This

procedure cannot calculate power conditional on a specific constellation of prefer-

ences.

Napel & Widgrén (2004) introduce the idea of measuring power based on shifts

in players’ preferences. They propose a measure for games with a one-dimensional

outcome space and suggests di↵erent ways in which their approach can potentially

be generalised. While our measure can be applied to a wider set of games, another

key di↵erence between our approach and theirs is that Napel & Widgrén focus on

marginal shifts in preferences, while we shift player’s preferences to match those of

other players. A drawback of marginal shifts is that they may not reveal the full

extent of a player’s influence. To see this, consider the following example: Two

players need to agree on a point on the real line. Each players’ utility is equal

to minus the distance between the chosen point and their ideal point. The ideal

point of player 1 is equal to 1, that of player 2 equal to 2, and there is a status quo

given by 2.5. The game simply consists in player 1 making a take-it-or-leave-it

o↵er to player 2. Player 2 only accepts if the o↵er is weakly above 1.5 and player

1 thus o↵ers 1.5. A marginal shift in the ideal point of player 1 leaves the outcome

unchanged and the measure of Napel & Widgrén thus assigns player 1 a bargaining

power of zero. However, player 1 clearly has an influence on the outcome of the

game. Our measure assigns both players a bargaining power of .5.

Lojkine (2022) proposes to calculate the set of all outcomes that can arise in

the equilibrium of a game under any possible preference ordering of a player. The

power of a player is then given by the measure of this set. While this idea can in

principle be applied to any game, doing so in practice requires non-trivial choices.

Calculating the set of equilibria under all possible preference orderings is typically

not feasible and restrictions therefore need to be imposed. The power of a player

also depends on the chosen measure over outcomes, with no obvious options if the

outcome space is unbounded. Lojkine (2022) only discusses outcome sets that are

either finite or closed intervals.

We thus go beyond the existing literature by providing a new measure of

bargaining power, which is the first measure that can be applied to any non-

cooperative game of bargaining. Furthermore, we provide the first axiomatization

of a measure of bargaining power in the field of non-cooperative game theory.
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3 A Measure of Bargaining Power

In this section we present our approach to measuring bargaining power. We start

by formally defining the setting in which we develop our theory.

3.1 Theoretical Framework

Let � be a bargaining game. Play of � leads to a physical outcome o, such as a

distribution of resources, a contract, or a law. The set of all possible outcomes is

given by O and contains at least two elements, that is, |O| � 2. N denotes the

set of players with N = |N | and 2  N < 1. The preferences of player n over

the set O are represented by a utility function un. We assume that un attains a

maximum on O, that is, there exists an outcome ō 2 O such that un(ō) � un(o)

for any o 2 O. In addition, un(o) > �1 for any o 2 O. Denote by U the set of

all such utility functions that are considered relevant to the issue being modelled.

This definition is intentionally vague and the role of the set U will become clear

below.

Due to possible moves of nature or mixed strategies, an equilibrium of � gener-

ates a probability distribution over the set of outcomes O. We assume there exists

a function µ
⇤ that maps vectors of utility functions u 2 UN into probability mea-

sures over the set of outcomes O. This assumption is satisfied if the equilibrium

of � is always unique, possibly subject to some method of equilibrium selection.

We provide an extension to games with multiple equilibria in Section 4.2.2

The indirect utility function of player n is defined as the expected utility of

the player under the equilibrium distribution µ
⇤(u) over outcomes, that is,

vn(un,u) =

Z

O

un(o) dµ
⇤(u) .

Note that the utility function of player n appears twice in the definition of

the indirect utility function: once explicitly and once as part of the vector u.

Importantly, we do not require these utility functions to coincide. The indirect

utility function can thus be used to evaluate “hypothetical” outcomes that would

occur if the utility function of player n contained in u was di↵erent from the

first argument un. To avoid confusion, we henceforth follow the convention that

(vectors of) utility functions such as un or u refer to the utility functions contained

in the definition of the game �. We call these the “endowed” utility functions and

2
We abstract from issues such as equilibrium existence or measurability, which may require

additional restrictions on utility functions in practice.
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denote the set of endowed utility functions by UE ✓ U . In contrast, symbols

such as u0 or u0 denote arbitrary (vectors of) utility functions drawn from the set

U . Since we never consider indirect utilities where the first argument is di↵erent

from player n’s endowed utility function, we simplify notation by suppressing

dependence on the first argument and simply write vn(u).

We refer to the indirect utilities that arise if all players were to share the same

preferences as agreement payo↵s. To define these formally, let 1u0 be an N -vector

such that each element is equal to the same utility function u
0 2 U .

Definition 1 (Agreement Payo↵s). An agreement payo↵ of player n is an indirect

utility of the form vn(1u0) for some u
0 2 U .

Under the assumptions placed on un we have un(ō) � vn(1u0) > �1 for any

u
0 2 U . In many games, the agreement payo↵ vn(1un) under agreement on player

n’s endowed utility function represents the best feasible payo↵ from player n’s

perspective. In a public goods game, for example, agreement on player n’s util-

ity function would imply an equilibrium where all players apart from player n

contribute.

All games we consider satisfy the following assumption:

Assumption 1 (Conflict of Interest). For any player n there exists a player m

such that vn(1un) > vn(1um).

Assumption 1 states that every player strictly prefers agreement on their endowed

utility function over agreement on the endowed utility function of at least one other

player. This assumption requires not only that there are two players with distinct

preferences, but also that players collectively have at least some influence on the

outcome. Assumption 1 thus rules out any “game” where the outcome is indepen-

dent of any players’ choices. On the other hand, a game where all players have the

same most-preferred alternative can satisfy Assumption 1 as long as players do

not have the ability to implement the mutually preferred outcome with certainty

and some players disagree in their ranking of other outcomes. Assumption 1 could

thus be summarised as requiring that there is a conflict of interest between players

regarding the outcomes that are actually achievable. Since bargaining is a way

to resolve a conflict of interest, Assumption 1 represents an essential feature of a

bargaining game.

We furthermore assume that if the endowed utility functions of two players are

not identical, then neither are the corresponding agreement payo↵s.
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Assumption 2 (Regularity). Suppose un 6= um for n,m 2 N . Then vn(1un) 6=
vn(1um).

The measure of bargaining power that we derive based on a list of axioms below

can be applied to games that violate Assumption 2 and in this sense the assump-

tion is not essential. However, the axioms produce a unique function only when

restricting the set of games under consideration to those satisfying both Assump-

tion 1 and Assumption 2. Denote the set of indirect utility functions of player n

generated by all such games by Vn.

Given a suitable method of equilibrium selection, the above framework covers

a very broad range of games. For example, representing a game of incomplete

information in the above form is possible by making the state of the world a part

of the outcome of the game.

TU-games can be defined in our context as follows:

Definition 2 (TU-Games). A game � satisfies transferable utility if O = {o 2
[0, 1]N |

P
N

n=1 on  1} and each player’s utility function is given by un(o) = on.

The outcome of a TU-game is a vector that assigns each player a share of the

available surplus and each player’s utility is equal to the share they receive. Any

such game satisfies Assumption 1 and Assumption 2 as long as for any two players

n and m it holds that the share of the surplus that player n receives if all players

agree that player n should receive the entire surplus is infinitesimally larger than

the share that player n receives if all players agree that player m should receive

the entire surplus.

We further illustrate the concepts by means of the following example:

Example 1. Consider a game with outcome space O = [0, 1] and three players.

The utility function of player n 2 {1, 2, 3} is given by un(o) = 1� (o� in)2, where

in is the ideal point of player n. Let i1 = 0, i2 = 0.6, and i3 = 1. The set of

endowed utility functions is thus given by

UE =
�
u(o) = 1� (o� i)2|i 2 {0, .6, 1}

 
.

The set of all relevant utility functions is

U =
�
u(o) = 1� (o� i)2|i 2 [0, 1]

 
.

It is then possible to write the indirect utilities as functions of ideal points: vn(i1, i2, i3).
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The game starts with a move of nature that determines which, if any, of the

players can subsequently freely choose the outcome of the game. Player n is chosen

with probability �n. With probability �4, however, nature determines the outcome

to be equal to 0.

Since each player implements their own ideal point if given the opportunity,

the expected outcome of the games described in Example 1 is equal to .6 ·�2+�3.

Clearly, the influence of player 2 over the outcome of the game is increasing in

�2. Given various values of this parameter, Panel (a) of Figure 1 shows how the

indirect utility of player 2 depends on this player’s ideal point. If �2 equals zero,

hypothetical changes in i2 would not a↵ect the outcome of the game and the utility

of player 2 under their endowed ideal point remains constant. In general, the more

influence player 2 has, the more their indirect utility responds to changes in their

ideal point.

Panel (b) of Figure 1 plots agreements payo↵s of player 2 as a function of the

ideal outcome that players agree on. Since all players implement the same outcome

in this scenario, only changes in the parameter �4 are of consequence. In general,

player 2 prefers agreement on their own ideal point over agreement on any other

ideal point. However, the best feasible outcome from player 2’s perspective given

the rules of the game only coincides with their ideal point if �4 = 0. The example

indicates that the di↵erence between some player n’s best-possible outcome un(ō)

and the best-feasible outcome vn(1un) is a measure of the degree of control that

players collectively have over the outcome of the game.

Any of the games given in Example 1 satisfy Conflict of Interest and Regularity

if and only if �4 < 1: as long as at least one player has some control over the

outcome, players strictly prefer agreement on their own ideal point over agreement

on any other ideal point. While the choice of the set U of relevant utility functions

seems natural, it would be equally possible to include additional functions with

di↵erent curvatures or various local maxima, for example.

3.2 Axioms

Our aim is to derive a function ⇢n : Vn ! R that uses the information contained

in the indirect utility function of a player to assign this player a number that can

be interpreted as their bargaining power.3 Below we introduce axioms that this

3
Note that it would in principle be possible to let the bargaining power of a player depend

on all players’ indirect utility functions rather than just their own. Doing so would have the

potential advantage that the sum of bargaining powers can be normalized to equal one, for
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λ2 = 1

λ2 = 0.5

λ2 = 0

i1 = 0 i2 = 0.6 i3 = 1

i

v 2
(i 1

, i
, i
3)
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1

(a)

λ4 = 0

λ4 = 0.5

λ4 = 0.9

i1 = 0 i2 = 0.6 i3 = 1

i

v 2
(i,

 i,
 i)

.5

1

(b)

Figure 1: An Illustration of the Indirect Utility Function of Player 2 in Example
1
Notes: Panel (a) plots the indirect utility of player 2 as a function of this player’s

(counterfactual) ideal point for di↵erent values of �2, assuming �1 = �3 = (1 � �2)/2
and �4 = 0. Panel (b) plots agreement payo↵s of player 2 as a function of the ideal point

that players agree on for di↵erent values of �4. (Under agreement, the relative values of

�1, �2, and �3 do not a↵ect the outcome.)

function should satisfy, which require the following definitions. Throughout, we

refer to Example 1 for illustrative purposes.

First, a player n is a local dictator if—given the endowed utility functions of

the remaining players—the outcome of the game is always equal to the outcome

that would arise if all other players shared the preferences of player n, no matter

what the utility function of player n actually is. Let u0
u0
n u00 represent the vector of

utility functions created by taking some vector u0 and replacing the utility function

of player n with some function u
00 2 U .

Definition 3 (Local Dictator). Player n in some game � is said to be a local

dictator if µ
⇤(uun u0) = µ

⇤(1u0) for any u
0 2 U .

We refer to a player satisfying Definition 3 as a local dictator rather than simply

as a dictator since the property holds only for a specific vector of other players’

example. However, as we argue in Section 3.4, such a normalisation would not be compatible

with our axioms in any case. Without a clear reason to include other players’ payo↵s, we instead

opt for a simpler measure.
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preferences rather than for any such vector. In Example 1, a player n satisfies the

definition of a local dictator if and only if �n = 1��4. The definition therefore does

not imply that a local dictator has the ability to implement their most preferred

outcome with certainty. Instead, the defining property of a local dictator is that

their influence over the outcome is equal to the collective influence of all players.

A null player, on the other hand, is a player who never has any impact on the

outcome of the game.

Definition 4 (Null Player). Player n in some game � is said to be a null player

if µ
⇤(u0) = µ

⇤(u0
u0
n u00) for any u

0 2 UN
and u

00 2 U .

Assumption 1 rules out that a player could simultaneously be a local dictator and

a null player.4 In Example 1, player n is a null player if and only if �n = 0,

which implies that player n is both null and a local dictator if and only if �4 = 1.

As explained above, the latter case would, however, violate the Assumption of

Conflict of Interest.

Finally, a compound game is a game that starts with a random draw that

determines which of a number of other games is played. Importantly, all players

are aware of which game is selected and—given that equilibrium is assumed to be

unique—the behaviour of players is thus identical to the case where each game

is played in isolation. The constituent games of a compound game need to be

compatible in the sense that they share the same sets of outcomes and players.

Definition 5 (Compound Game). � is said to be a compound game if

i. there exists a finite set of games � = {�1,�2, ...,�G} possessing equal sets of

outcomes O and players N , and

ii. the game � begins with a commonly-observed move of nature that selects one

game from � to be played subsequently, and each game �g 2 � is chosen with

probability �g.

We write

� =
GX

g=1

�g�g .

4
A player can be both a local dictator and a null player only if µ⇤(1u0) = µ⇤(1u00) for any

u0, u00 2 U . To see this, suppose there exist u0, u00 2 U such that µ⇤(1u0) 6= µ⇤(1u00). Then n
being a local dictator implies µ⇤(uun u0) = µ⇤(1u0) 6= µ⇤(1u00) = µ⇤(uun u00). It follows that

n is not null, which would require µ⇤(uun u0) = µ⇤(uun u00). Assumption 1 is thus su�cient

to ensure that a player cannot be a local dictator and a null player at once since it implies that

not all agreement outcomes are equal.
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Any of the games in Example 1 such that �n < 1 holds for any n 2 {1, 2, 3, 4} can

be seen as a compound game.

We now state and discuss the axioms that we impose on the measure of bar-

gaining power ⇢n. Our goal is to measure bargaining power based on shifts in a

player’s preferences. The set U of relevant utility functions determines which possi-

ble shifts in preferences can be taken into consideration. For the practical purpose

of calculating bargaining power, including all utility functions corresponding to

any possible preference ordering over O in the set U is often not feasible. The

specification of the set U is then an essentially arbitrary choice of the researcher.

Given this element of arbitrariness, we impose that adding utility functions to the

set U should not a↵ect bargaining power. An additional reason for this restric-

tion is that extending the set U by including additional utility functions has no

e↵ect on the actual equilibrium of the game as long as the set of players remains

unchanged.

Axiom A1 (Invariance under Irrelevant Extensions). Given some game �, con-

struct a second game �+ by adding elements to the set of relevant utility functions

U while keeping all other aspects of the game fixed. Denote the indirect utilities of

some player n corresponding to the two games by vn and v+,n, respectively. Then

⇢n(vn) = ⇢n(v+,n).

In general, adding utility functions to the set U means that the indirect utilities

of the extended game contain information about how the outcome of the game

behaves under additional combinations of players’ preferences. An implication of

Axiom A1 is that this additional information is not taken into account. A mea-

sure satisfying this axiom is thus a “local” measure of bargaining power, specific

to players’ endowed utility functions. For example, a player’s bargaining power

in a war of attrition would depend on their and their competitor’s valuation of

the prize, rather than being a “global” measure of power across all possible com-

binations of valuations. In Section 4.1, we consider a method that uses our local

measure of power to calculate power across a range of possible preferences.

Axiom A2 (Null Players). If player n is a null player in a game � with their

associated indirect utility function given by vn, then ⇢n(vn) = 0.

Axiom A3 (Local Dictators). If player n is a local dictator in a game � with

their associated indirect utility function given by vn, then ⇢n(vn) = 1.

Axioms A2 and A3 impose that a local dictator is assigned a higher bargaining

power than a null player and further normalise the power of such players to one

and zero, respectively.

14



Axiom A4 (Compound Games). Let � =
P

G

g=1 �g�g and denote by vn, v1,n,

...,vG,n the corresponding indirect utility functions of some player n. If all con-

stituent games �1 to �G share the same agreement payo↵s, then for any player

n

⇢n(vn) =
GX

g=1

�g⇢n(vg,n) .

The Axiom of Compound Games states that the bargaining power of a player in

a compound game � should be equal to a weighted average of the bargaining power

of this player in each of the constituent games of �. This property is desirable

since equilibrium uniqueness and the assumption that players are aware of which

game is selected ensure that behaviour in each constituent game is the same as if

this game were played on its own. The outcome of the game as a whole is thus

a weighted average of the outcomes in each constituent game, as are the indirect

utility functions. Furthermore, the assumption of equal agreement payo↵s included

in the axiom implies that players collectively have the same degree of control over

the outcome of each game. The meaning of being a local dictator is thus the same

across games. In Example 1, consider the case that �4 = 0, which implies that

the players have full control over the outcome of the game. Then the probability

that player n is able to choose the outcome, �n, is an obvious measure of this

player’s bargaining power. The example indicates that it is natural to think of the

bargaining power of a player in a compound game as their expected power across

constituent games as required by the axiom.

Axiom A5 (Proportionality). Let vn be an indirect utility corresponding to a

game where player n is a null player. Denote by v
0
n
and v

00
n
indirect utilities corre-

sponding to two alternative games, where v
0
n
and v

00
n
are identical to vn except that

v
0
n
(uun u0) = vn(uun u0)� c and v

00
n
(uun u00) = vn(uun u00)� c for some c 6= 0 and

u
0
, u
00 2 UE \ un. Then

⇢n(v0n)

⇢n(v00n)
=

v
00
n
(1un)� v

00
n
(1u00)

v0
n
(1un)� v0

n
(1u0)

.

The central idea underlying our approach to measuring bargaining power is

that changes in the preferences of a player reveal information about this player’s

power through the e↵ect that such a change has on the outcome of the game.

Axiom A5 formalizes the intuition that if in one game a small shift in a player’s

utility function has a comparable e↵ect on the outcome of the game as a larger shift

in another game, then the bargaining power of the player should be proportionally

15



higher in the first game. The starting point of Axiom A5 is a game where player

n is a null player and replacing the endowed utility function of this player with

any other utility function accordingly has no e↵ect on the outcome. In each of the

games corresponding to the indirect utilities v0
n
and v

00
n
, on the other hand, exactly

one such shift has an impact on the outcome: replacing un with an endowed utility

function u
0 in the game leading to indirect utility v

0
n
and replacing un with the

endowed utility function u
00 in the case of the indirect utility v

00
n
. Furthermore,

measured in utils of player n, the size of the impact is the same in both games.

However, the size of the underlying shift in the preferences of player n may di↵er

across games. Specifically, u0 may represent a bigger change in the preferences of

player n relative to un than u
00 does, or vice versa. This raises the question of how

to quantify the size of such a shift. Note that for a player with a given degree of

power, a larger change in preferences produces a stronger impact on the outcome.

To fix the power of a player, we can consider the scenario where the player is a

local dictator and calculate how much a change in preferences would a↵ect the

outcome of the game in this case. If player n was a local dictator, replacing their

endowed utility function with some utility function u
0 would shift the outcome

from µ
⇤(1un) to µ

⇤(1u0). Expressed in utils of player n, the size of the shift in

preferences can thus be measured as vn(1un)� vn(1u0). Accordingly, the ratio

v
00
n
(1un)� v

00
n
(1u00)

v0
n
(1un)� v0

n
(1u0)

compares the size of the preference shifts from un to u
0 and from un to u

00 and

Axiom A5 imposes that the bargaining power of player n is proportionally higher

in the game where the relevant shift in preferences is smaller.

3.3 The Main Result

For the purpose of stating the main result, denote by U 6=n the set of endowed utility

functions such that agreement on any of these functions generates a di↵erent level

of utility for player n than agreement on their own endowed utility function would,

that is,

U 6=n = {u0 2 UE | vn(1u0) 6= vn(1un)} .

In the context of games satisfying Assumption 2 it holds that U 6=n = UE \ un.

We can now state our main result:

Theorem 1. A function ⇢n : Vn ! R satisfies axioms A1, A2, A3, A4, and A5
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if and only if

⇢n(vn) =
1

|U 6=n|
X

u02 U 6=n

vn(u)� vn(uun u0)

vn(1un)� vn(1u0)
. (1)

Proof. See Appendix A. ⇤

The measure of bargaining power introduced by Theorem 1 has a straight-

forward interpretation. Each of the terms of the sum calculates the e↵ect that

a change in the preferences of player n has on the outcome, with the endowed

utility function of player n serving as a metric. The e↵ect is then expressed as a

share of the one that would occur if player n was a local dictator, which is given

by vn(1un)� vn(1u0). Final bargaining power is calculated as a simple average of

these individual terms across the relevant range of preferences, where the latter

consists of the utility functions of other players that di↵er from that of player n in

the sense that they generate di↵erent agreement payo↵s. The question answered

by the function ⇢n is therefore simply how much influence player n has on the

outcome of the game relative to that of a local dictator.

As pointed out above, it holds for games satisfying Assumption 2 that U 6=n =

UE \ un. In such cases the sum in Equation (1) could accordingly be expressed

equivalently over elements of the latter set. However, summing over elements of

the set U 6=n ensures that the value of ⇢n is well-defined also in the context of games

violating Assumption 2.

In Appendix A we present the proof of Theorem 1 as a series of lemmas that

clearly show the additional restrictions that each axiom imposes on the shape of

the function ⇢n. First, the Axiom of Invariance under Irrelevant Extensions implies

that ⇢n can only depend on indirect utilities vn(u0) that are functions of vectors

of endowed utility functions, that is, u0 2 UN

E
. This is the case since, according to

the axiom, adding or eliminating utility functions from the set U should not a↵ect

bargaining power as long as all other aspects of the game remain unchanged. All

utility functions that are not endowed utility functions can therefore be deleted

without a↵ecting the value of ⇢n. Eliminating endowed utility functions, on the

other hand, is not possible since doing so would imply a change in the set of

players. Since the set of endowed utility functions is finite, ⇢n thus depends on a

finite number of indirect utilities.

Next, the Axiom of Compound Games has the consequence that ⇢n must be an

a�ne function on a class of games sharing the same outcome sets, sets of players,

and agreement payo↵s. To see this, note that the indirect utilities of a player in a

compound game � =
P

G

g=1 �g�g are a weighted average of the indirect utilities of
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each constituent game: vn =
P

G

g=1 �gvg,n. If all constituent games share the same

agreement payo↵s, the Axiom of Compound Games requires

⇢n

 
GX

g=1

�gvg,n

!
=

GX

g=1

�g⇢n(vg,n) .

Given that ⇢n is a functions of a finite number of utilities, which are real numbers,

a�nity implies the functional form

⇢n(vn) = � +
X

u02 UN
E

↵(u0) vn(u
0) ,

where � and each ↵(u0) are real numbers. The value of these coe�cients must be

constant across games with equal agreement payo↵s, but may di↵er between such

classes of games. In other words, the coe�cients may be functions of agreement

payo↵s.

The Axiom of Null Players imposes ⇢n(vn) = 0 if player n is a null player. The

definition of a null player implies that any indirect utilities vn(u0) and vn(u0u0
n u00),

which di↵er only in the included utility function of player n, take the same value.

However, the definition does not pin down the level of these payo↵s. For ⇢n to

take the value zero in any game in which player n is a null player, it is thus

necessary that ⇢n can be expressed as a function of di↵erences of indirect utilities

vn(u0)� vn(u0u0
n u00). Since any such di↵erence is equal to zero when n is null, the

constant � must also be equal to zero.

Note that uun u0 is a vector of utility functions that di↵ers from the vector of

endowed utility functions only in the utility function of player n. The definition

of a local dictator restricts any utility vn(uun u0) to be equal to vn(1u0). n being

a local dictator does not, however, restrict the values of other indirect utilities

where the utility functions of players other than n di↵er from their endowed utility

functions. To ensure that ⇢n(vn) = 1 if n is a local dictator as required by the

Axiom of Local Dictators, ⇢n thus cannot depend on indirect utilities other than

those of the form vn(uun u0).5

The above arguments establish that ⇢n takes the shape

⇢n(vn) =
X

(u0,u00)2 U2
E

↵(u0, u00) [vn(uun u0)� vn(uun u00)] . (2)

5
As was pointed out above, the coe�cients used to calculate ⇢n may depend on the values of

agreement payo↵s. The final expression for ⇢n given in Theorem 1 therefore contains agreement

payo↵s in additions to indirect utilities of the form vn(uun u0).
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It is then possible to factor out an arbitrary non-zero number C in the form

⇢n(vn) = C

X

(u0,u00)2 U2
E

↵(u0, u00)

C
[vn(uun u0)� vn(uun u00)] .

Since the values of coe�cients are at this point undetermined, we can redefine

their values to include the division by C. In order to satisfy the Axiom of Local

Dictators, the constant C multiplying the sum must be equal to one divided by

the value that the remaining part of the expression takes in case player n is a local

dictator, that is,

⇢n(vn) =

P
(u0,u00)2 U2

E
↵(u0, u00) [vn(uun u0)� vn(uun u00)]

P
(u0,u00)2 U2

E
↵(u0, u00) [vn(1u0)� vn(1u00)]

.

If the set of endowed utility functions contains only two elements—either be-

cause there are only two players or because various players share the same utility

function—the preceding expression simplifies to the form given by Theorem 1.

The role of the Axiom of Proportionality is thus to pin down the values of the

↵-coe�cients in the case of more than two endowed utility functions. The re-

mainder of the proof relies on the functional form for ⇢n given by Equation (2).

Denote by v
0
n
and v

00
n
indirect utilities as defined in the statement of the Axiom of

Proportionality. By the construction of the indirect utility v
0
n
, any of the utility

di↵erences in Equation (2) involving the payo↵ v
0
n
(uun u0) are equal to c or �c

while any other utility di↵erences are equal to zero. It follows that

⇢n(v
0
n
) = c

X

u0002 UE\u0

[↵(u000, u0)� ↵(u0, u000)] .

Denoting the sum in the preceding expression as ↵̃(u0), the Axiom of Proportion-

ality therefore implies

⇢n(v0n)

⇢n(v00n)
=

↵̃(u0)

↵̃(u00)
=

v
00
n
(1un)� v

00
n
(1u00)

v0
n
(1un)� v0

n
(1u0)

.

The fact that such an equality must hold for any pair of utility functions u0, u00 2
UE\un is su�cient to determine the value of each coe�cient ↵̃ up to multiplication

by a common constant �. More specifically, it must hold that

↵̃(u0) = �/[v0
n
(1un)� v

0
n
(1u0)] (3)
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for any u
0 2 UE \ un. Note that Equation (2) can be rearranged as follows:

⇢n(vn) = �
X

u02 UE

2

4
X

u0002 UE\u0

↵(u000, u0)� ↵(u0, u000)

3

5 vn(uun u0)

= �
X

u02 UE

↵̃(u0) vn(uun u0) .

After using Equation (3) to substitute for every ↵̃(u0) such that u0 2 UE \un, there

then remain two unknowns: the constant � and the coe�cient ↵̃(un). The Axiom

of Null Players and the Axiom of Local Dictators provide two equations that can

be solved for these unknowns, yielding

⇢n(vn) =
1

|UE \ un|
X

u02 UE\un

vn(u)� vn(uun u0)

vn(1un)� vn(1u0)
.

Recalling that under Assumption 2 it holds that UE \ un = U 6=n completes the

proof.

3.4 Additional Properties

In this section, we discuss properties of the function ⇢n introduced by Theorem

1 that are not directly stated in the axioms. For example, the Axiom of Com-

pound Games implies that ⇢n is a continuous function when restricted to a class

of games that share equal agreement payo↵s. In fact, ⇢n turns out to be a con-

tinuous function in general, which follows since Assumption 1 guarantees that the

denominator in Equation (1) is not equal to zero for any vn 2 Vn. This is an

attractive property since it implies that players are assigned a similar bargaining

power in games that generate similar indirect utility functions. Furthermore, the

function ⇢n is invariant under a�ne transformations of players’ utility functions,

which is reassuring since such transformations do not a↵ect behaviour.

It is also instructive to compare the properties of our measure of bargaining

power to those of the Shapley value. The Shapley value is a solution concept for

cooperative games and thus assigns each player a payo↵, while our measure is

intended for non-cooperative games. Nevertheless, both are functions that take a

description of a game and assign a real number to each player and two of the four

axioms that define the Shapley value are in fact related to axioms imposed by us.

In particular, both approaches rely on an Axiom of Null Players and the definition

of a null player is similar in both contexts. In addition, our Axiom of Compound
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Games is a weaker version of the Axiom of Linearity imposed on the Shapley value.

As a consequence, ⇢n is not a linear function and only a�ne on subsets of games

sharing the same agreement payo↵s. Shapley’s Axiom of Anonymity is not required

for our result, even though the function ⇢n is also invariant to the re-labelling of

players. On the contrary, the axioms of Invariance under Irrelevant Extensions,

Local Dictators, and Proportionality are unique to our setting. The clearest point

of departure, however, is that the Axiom of E�ciency requires the payo↵s assigned

to players by the Shapley value to add up to one. Such a normalisation is not

compatible with our axioms, in particular those that require the measure to be

local in the sense of depending on players’ endowed utility functions and the

corresponding equilibrium of the game. The reason is that locally all players may

be indistinguishable from null players in the sense that no individual player could

change the outcome even if they tried. All players are then assigned a bargaining

power of zero. A situation of this type can arise, for example, in an equilibrium of

a voting game where no player’s ballot can swing the outcome. An advantage of

not normalizing the sum of power coe�cients is that this sum reveals information

about the nature of the game, namely the degree to which players mutually block

each other from a↵ecting the outcome.

A final characteristic that we want to highlight in this section is the relationship

between our measure and the share of the surplus that a player receives in a TU-

game, which is commonly used to assess a player’s bargaining power in that setting.

As the following result demonstrates, the two approaches coincide under certain

conditions.

Proposition 1. In a TU-game, ⇢n(vn) = vn(u) if the outcomes µ
⇤(uun u0),

µ
⇤(1un), and µ

⇤(1u0) are Pareto e�cient for any u
0 2 U 6=n.

Proof. See Appendix B. ⇤

The proof of Proposition 1 proceeds by using the definition of a TU-game and

the assumption of Pareto e�cient outcomes to determine the values of the indirect

utilities entering ⇢n. First, Pareto e�ciency implies that one player receives all

resources if all players agree that this would be the ideal outcome. Accordingly,

vn(1un) = 1 and vn(1u0) = 0 for any u0 6= un. In addition, under the vector of utility

functions uun u0 all players prefer to redistribute resources from player n to some

other player, and Pareto e�ciency therefore implies vn(uun u0) = 0. Substituting

accordingly in Equation (1) yields the desired result. The intuition behind this

result is that e�ciency of the agreement payo↵s implies that the players collectively

have full control over the allocation of the surplus and so would a local dictator.
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A player’s bargaining power thus depends on what share of the total surplus they

have under their individual control. E�ciency of the outcomes µ⇤(uun u0) further

implies that any part of the surplus that player n receives in equilibrium is actually

due to their influence, rather than simply assigned to them due to some feature

of the rules of the game (recall the example in the introduction). The player’s

surplus share then fully reflects their bargaining power. Ine�ciency of any of the

outcomes listed in Proposition 1 implies that ⇢n(vn) = vn(u) does not hold in

general, even though the equality can arise coincidentally.

3.5 An Example

Before presenting more substantive applications of our measure of bargaining

power in Section 5, we illustrate its use through a simpler example.

Example 2. Consider a game in which three players need to agree on a point

in the set [0, 1] and bargaining takes place with an infinite time horizon. In the

first period, player 1 makes an o↵er to player 2. If player 2 accepts, this o↵er

is implemented and the game ends. If player 2 rejects the initial o↵er, player 2

plays Rubinstein bargaining with player 3 from the second period onwards. More

specifically, players 2 and 3 alternate in making o↵ers until an o↵er is accepted

by the other player, with player 2 making the first o↵er. The utility of player

n 2 {1, 2, 3} depends on the accepted o↵er o and the period of agreement T , and

is given by

u(o, T ) = �
T (1� |o� in|) ,

where � is a common discount factor and in is the ideal point of player n, with

i1 = 0, i2 = .5 and i3 = 1.

The unique subgame perfect equilibrium of the game in Example 2 in the limit

as � approaches 1 can be characterized as follows: In the subgame starting in

period 2, player 2 o↵ers the outcome (i2 + i3)/2 and player 3 accepts (Rubinstein

1982). In period 1, player 2 is willing to accept any o↵er they like at least as much

as the outcome in period 2. Player 1 o↵ers their preferred outcome among those

that player 2 accepts and the game ends in period 1. Under the ideal points given

above, the outcome of the game is equal to .25. This game puts player 3 in a

peculiar situation: if player 3 could commit to accepting any o↵er from player 2 in

period 2, the outcome of the game would be equal to 0.5.6 Player 3’s attempt to

6
Player 2 would then propose the outcome 0.5 in period 2. If player 2 is perfectly patient,

player 1 has no other option than o↵ering the same outcome in period 1.
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achieve a favourable result in the bargaining with player 2 thus backfires, leading

to an outcome that is overall worse for player 3.

Note that the game described in the preceding paragraph is similar in terms

of the constellation of ideal points to the example of the military alliance in the

introduction. As in that example, the outcome of the game by itself allows only

limited insights into the distribution of bargaining power. In the current example

one can conclude that player 1 must have some influence, but the relative impor-

tance of players 2 and 3 remains unclear. After going through the calculations

required to apply Equation (1),7 the results are ⇢1 = .5, ⇢2 = .5, and ⇢3 = �.25.

The most eye-catching aspect of these results is likely the negative bargaining

power of player 3, which reflects that player 3’s actions are to their own detriment

as pointed out above. Players 1 and 2, on the other hand, are found to be equally

powerful: player 1 has the ability to make the first o↵er, but this does not give

them the upper hand over player 2 since the latter is patient and has the option

to negotiate with player 3 instead.

4 Extensions

4.1 Ex Ante Power and Relation to Voting Power Indices

Our measure of bargaining power calculates power based on the endowed utility

functions and power may depend on preferences. In some sense this is natural: for

example, it is generally held that more impatient negotiators are at a disadvantage.

In some cases, and in particular for the purpose of institutional design, it can

nevertheless be of interest what degree of influence the rules of the game assign to

each player independently of preferences. Napel & Widgrén (2004) distinguish in

this context between an ex ante and an ex post perspective, that is, assessments

of power before or after players’ preferences have been revealed. Following their

approach, we can use our ex post measure to calculate power from an ex ante

perspective. Doing so requires specifying a distribution F that players’ preferences

are drawn from and ex ante power is simply equal to expected ex post power under

F . Depending on the chosen distribution, it may be possible to calculate this

7
Take the calculation of ⇢1 as an example. In this setting, replacing one player’s utility

function with that of another player simply requires shifting the former player’s ideal point to

match that of the latter. When players’ ideal points coincide, the outcome of the game is equal

to the common ideal point with certainty. When the ideal point of player 1 is set equal to that

of player 2, the outcome is equal to 0.5, while if the ideal point of player 1 is shifted to equal that

of player 3, the outcome is .75. We thus have v1(u) = .75, v1(uu1 u2) = .5, v1(uu1 u3) = .25,
v1(1u1) = 1, v1(1u2) = .5, and v1(1u3) = 0, which is all the information need to calculate ⇢1.
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expectation exactly, such as when F has finite support. Otherwise, expected power

can be calculated numerically by drawing preferences, calculating ex post power,

and repeating this process until the mean across draws converges. Denote by ⇢̄n(F )

the ex ante bargaining power of player n under the distribution F calculated based

on the ex post measure ⇢n.

In practice, care needs to be taken with respect to preference profiles that

violate Assumption 1, since the value of ⇢n is not defined in such cases. One option

is to specify F such that such cases do not occur. Alternatively, it may be possible

to resolve the problem by assigning a default value when ⇢n is not defined. For

example, if players’ utility functions are identical, it may be reasonable to assign

each player a power of zero or of 1/N . In other games, such as the example that

follows, a natural extension of ⇢n exists.

We now use the ex post and ex ante measures ⇢n and ⇢̄n to investigate the

relationship between our theory and the literature on voting power indices, which

calculate the power of players in weighted voting games. In such games, a com-

mittee decides whether to accept or reject a proposal. The outcome space is equal

to {0, 1}, where 1 corresponds to acceptance of the proposal, while 0 indicates

rejection. It is typically assumed that players have strict preferences over the

two outcomes and it is then without loss of generality to let all players’ utility

functions be given either by u
0 or by u

1, where u
i(o) = 1 if o = i and u

i(o) = 0

otherwise. Beyond the set of players, a weighted voting game is characterised by

a voting rule, which consists of a quota q > 0 and a vector of weights w 2 RN

+ ,

one for each member of the committee. Players simply vote in favour of or against

the proposal and the proposal is accepted if and only if the sum of all players’

weights who vote in favour is at least equal to q. All players voting in favour is

su�cient for acceptance, that is,
P

N

n=1 wn � q. Assume players vote sincerely.

Denote by S ✓ N the set of players who prefer acceptance under the endowed

utility functions u. In the language of cooperative game theory, the players in S

form a coalition and the value V of the game indicates whether a coalition wins:

V (S) = 1 if
P

n2S wn � q and V (S) = 0 otherwise.

Under any given constellation of preferences u and the corresponding profile

of votes, player n is said to be pivotal if them changing their vote would change

the outcome of the game. Since such a player satisfies the definition of a local

dictator, the measure ⇢n assigns them a power of 1. If a player is not pivotal,

their preferences do not matter for the outcome and ⇢n = 0. Note, however, that

agreement among the players implies that Assumption 1 is violated and the value

of ⇢n is not defined. It seems natural to introduce the convention that in such

24



unanimous games (that is, S = ; or S = N ), ⇢n = 1 if player n is pivotal and

⇢n = 0 otherwise. Under this convention, we have the following result.

Proposition 2. Let v
S

n
denote the indirect utility of player n corresponding to

a weighted voting game where the set of players S prefers acceptance. Assume

⇢n(vS=;n
) = 1 if wn � q and ⇢n(vS=;n

) = 0 otherwise. Also assume ⇢n(vS=N
n

) = 1 if
P

m2S\n wm < q and ⇢n(vS=N
n

) = 0 otherwise. Then there exist distributions FPB

and FSS such that ⇢̄n(FPB) is equal to the Penrose-Banzhaf index and ⇢̄n(FSS) is

equal to the Shapley-Shubik index.

Proof. See Appendix B. ⇤

Under suitable choices of the distribution of preferences F , ⇢̄n(F ) is thus equal

to the Shapley-Shubik index or the Penrose-Banzhaf index. These indices are

based on cooperative game theory, and showing that they are equivalent to ⇢̄n(F )

is possible since a weighted voting game is a rare case of a game that can naturally

be expressed in a cooperative or a non-cooperative form. In general, however,

voting power indices cannot be applied to non-cooperative games, for which our

measure is intended.

4.2 Games with Multiple Equilibria

Above we considered games with a unique equilibrium under any of the possible

constellations of players’ utility functions, or at least games where equilibrium

uniqueness applies under some suitable refinement. Instead of assuming that we

can assign a probability of one to a particular equilibrium, we can choose a more

general approach and specify a probability distribution over possible equilibria.

If the set of equilibria is finite, for example, it is possible to assume that every

equilibrium is equally likely. Since an equilibrium in our context is essentially a

distribution over outcomes, let ⌃(u0) denote the set of probability measures that

correspond to the equilibria that exist under some vector of utility functions u0.

Assuming that we can specify a probability measure �u0 on each ⌃(u0), we can

define the indirect utility of player n as

vn(u
0) =

Z

⌃(u0)

Z

O

un(o) dµ
⇤
d�u0 .

The measure of bargaining power of Theorem 1 can then be computed based on

this indirect utility function without any further adjustments. What is more,

the definitions and axioms presented above can be adapted to this more general
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setting with only minor changes and the proof of Theorem 1 applies verbatim. For

example, the definition of a Null Player in a game with multiple equilibria would

require that changes in this player’s utility function have no e↵ect on the set of

equilibria.

5 Applications

5.1 Cartel Formation

The formation of a cartel arguably constitutes a setting of non-transferable utility

since monetary transfers could be used as evidence of collusion in court. Since the

production levels that maximise joint profits may imply wide disparities between

the profits of individual cartel members, quantities may be subject to negotiation.

Suppose, for example, that N firms produce a homogeneous good, where each

firm has a constant marginal cost cn that di↵ers between firms. In this case the

sum of profits would be maximised if only the firm with the lowest cost produces,

but in the absence of a means to redistribute these profits the remaining firms

clearly have no incentive to agree to such terms. If the firms are later found

by the authorities to have engaged in collusive behaviour, the relative influence

of each firm in bringing about the agreement could be used for the purpose of

apportioning compensation.8 In order to determine this relative influence, it may

not be su�cient to know the market share or cost structure of each firm, for

instance because a relatively small or ine�cient firm could be pulling above its

weight due to political clout or connections to organised crime. Non-cooperative

cartel formation is a subject of ongoing research (Abe 2021, Korsten & Samuel

2023) and providing a fully-specified model is beyond the scope of this paper. Yet,

our measure of bargaining power takes a particularly simple form in this setting

under weak assumptions about the underlying process. These assumptions are i)

that a firm’s profit is fully reflective of its payo↵ in the game, which is reasonable if

other forms of compensation are not possible, and ii) that if a firm’s utility function

is replaced with that of another firm, it ceases production, implying a profit of

zero. Under these conditions our measure of bargaining power becomes equal to a

firm’s equilibrium profit divided by this firm’s individual monopoly profit. Simply

8
Napel & Welter (2021, 2022) respectively propose using the Shapley-Shubik index and the

Shapley value to assign relative responsibility for damages to the members of a cartel. The

drawback of these approaches is that one has to assume that a cartel among any subgroup of

firms is associated with a unique vector of production quantities, precluding bargaining among

cartel members.
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relying on market shares or shares of total profits may thus not accurately reflect

a firm’s role in the formation of the cartel. The reason is that total production

or total profits do not provide a relevant benchmark at the individual level. The

highest-possible profit an ine�cient firm could hope for may be substantially lower

than that of a competitor with lower costs. To illustrate, consider a case with three

firms and unit costs that are given by c1 = 0.1, c2 = 0.2, and c3 = 0.3 and an

inverse market demand equal to P = 1 � Q where Q is total production. Then

individual monopoly profits are given by 0.20, 0.16 and 0.12 in ascending order of

costs. The best possible payo↵ thus di↵ers substantially across firms and dividing

individual by total equilibrium profits would overstate the bargaining power of

e�cient firms and understate that of ine�cient firms.

5.2 Household Bargaining

The literature on intra-household decision making has an inherent interest in the

determinants of the balance of power between spouses. One approach, namely the

collective model of the household (Chiappori 1988, 1992), assumes e�cient out-

comes while the distribution of resources is determined by explicit parameters for

male and female bargaining power. The main competitor is the non-cooperative

model of the household (Lundberg & Pollak 1994, Konrad & Lommerud 1995,

Browning et al. 2010, Lechene & Preston 2011), which instead assumes that hus-

band and wife play a Nash equilibrium. In this case, bargaining power is an im-

plicit product of the decision-making environment. We use an application of this

framework presented in Bertrand et al. (2020) to demonstrate how our approach

can be used to evaluate the bargaining power of household members. We focus on

the second period of the model, after a man and a woman have decided to form

a household. At this point of the game, husband and wife simultaneously decide

how to allocate one unit of time between remunerated work and the production of

a public good within the household. For simplicity, we assume that there are no

spillovers from private consumption. The utility of household member g 2 {m, f}
is then given by

ug(tg, t�g) = (1� tg)wg + � log(tm + tf ) ,

where tg 2 [0, 1] is the share of time spent on producing the public good, wg is

the gender-specific wage, and � determines the weight of public good consumption

relative to private consumption. We follow Bertrand et al. (2020) and assume a

gender wage gap, wf < wm, and � < wm. Under these assumptions the man works
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full-time while the woman stays home if wf < � and works part-time otherwise.

In order to calculate players’ bargaining powers, we also need to determine

the equilibrium if the husband maximises the utility of the wife and vice versa.

Without spillovers from earnings, maximising the utility of the partner implies

dedicating all available time to producing public goods. If the wife shares the

utility function of the husband, the latter always works full time. In the reverse

situation, the wife also stays home if her wage is su�ciently low and works part-

time or full-time for higher wages. Given that the husband’s behaviour di↵ers

across these two scenarios for all parameter constellations under consideration,

the agreement payo↵s of both players are not equal and the game satisfies the

Assumption of Conflict of Interest. For � su�ciently large, on the other hand,

both partners would always prefer to stay home and there is no disagreement.

Figure 2 plots the bargaining powers of husband and wife as a function of

the female wage wf for the cases � = 0.2 and � = 0.6, assuming wm = 1. For

wf < �, the wife devotes all her time to the production of public goods, which

is also the behaviour that maximises the utility of the husband. Accordingly, the

husband is assigned a bargaining power of one and the wife a bargaining power

of zero. Once her wage becomes su�ciently high, the wife finds it attractive to

work part time. Doing so increases her utility and lowers that of her husband,

leading to a more equal distribution of power. However, the power of the wife

is substantially lower than that of the husband even if her wage is almost equal

to his. The reason is that even a slightly lower opportunity cost of domestic

labour on part of the wife allows the husband to free-ride on her e↵ort. For

wf = wm, the equilibrium remains unique under agreement on one player’s utility

function. However, multiple equilibria exist under the endowed utility functions

and bargaining power depends on the probability assigned to each equilibrium

(see Section 4.2). The figure assigns probability one to the equilibrium where

the husband works full-time, which may be due to a social convention. Assigning

the same probability to all equilibria, in contrast, would lead to equal bargaining

power and a discontinuity at wf = wm.

As Figure 2 shows, a higher value of the public good � polarises the distribution

of bargaining power, since the wife reduces her labour supply while the husband

continues to free-ride. A possible interpretation is that modern appliances that

generate a more quickly declining marginal productivity of housework lead to

greater equality within the household.
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Figure 2: Bargaining Power of Husband and Wife
Notes: The figure plots the bargaining power of husband (dashed lines) and wife (solid

lines) against the wife’s wage wf , assuming the husband’s wage wm is equal to 1. Black

lines correspond to a value of � of 0.2, while grey lines correspond to � = 0.6.

5.3 Legislative Bargaining

In this section, we apply our theory to two classic models of legislative bargaining:

the agenda setter model of Romer & Rosenthal (1978) and the gatekeeper model

of Denzau & Mackay (1983). We choose these examples since they feature non-

transferable utility and the outcome of the game is therefore not fully informative

about bargaining power. In both models, a committee brings a bill to the floor of

a legislative body, which then deliberates and eventually votes on the proposal. A

bill is a point x in the interval [0, 1] and if accepted, the bill replaces the status

quo q 2 [0, 1]. The utility of each player from the final outcome o is given by

�|o � in|, where in is the ideal outcome of player n. In the agenda setter model,

the committee puts forward a bill under a closed rule, that is, the bill cannot be

amended and the legislature simply votes subject to simple majority whether to

accept the proposal. In the gatekeeper model, an open rule is in place, meaning

that any legislator can propose amendments. The finally accepted proposal is

then always equal to the ideal point of the median legislator since such a proposal
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defeats any other. However, the committee has the ability to refuse to put forward

a bill, keeping the status quo in place. We introduce a third model as a benchmark,

where the committee has to present a proposal under an open rule, which renders

the committee powerless. Compared to this benchmark model, the former two

models each di↵er in one aspect of the rules of procedure: the agenda setter

model replaces the open rule with a closed rule, while the gatekeeper model gives

the committee the ability to withhold the bill. The committee is represented by

a single player and we assume here that the committee is not itself a member of

the legislature. Any influence of the committee accordingly derives from its choice

regarding the initial proposal. The set of players thus consists of one committee

and N � 1 legislators.

We follow Section 4.1 and calculate power in an ex ante sense. To do so, we

assume that ideal points and the status quo are drawn uniformly at random from

an evenly spaced grid between 0 and 1 with 100 elements. For each draw, we

calculate the bargaining power of the committee and of the legislators. We then

repeat this procedure until the average across draws converges.9 The results are

presented in Table 1. Note that the legislators are ex ante symmetric and thus

have the same bargaining power.

In the benchmark model, the committee is a null player and accordingly as-

signed a bargaining power of zero. In contrast, the committee has a positive

influence in both the agenda-setter and the gatekeeper model. Not surprisingly,

the closed rule of the agenda-setter model increases the power of the committee

relative to that of a legislator more than the mere ability to withhold legislation

in the gatekeeper model. The number of legislators decreases the influence of each

individual legislator, since each legislator becomes less likely to occupy the median

position, but has a minor e↵ect on the power of the committee. Since only the

position of the median legislator is of relevance for the decision of the committee,

one may ask why the influence of the latter depends on the number of legislators at

all. The reason is that an increase in the number of legislators makes the median

legislator more moderate in expectation.10 A more moderate median legislator,

9
We could also freely draw from the interval [0, 1]. However, in this case large values of ⇢n

can occur due to numeric issues when a denominator in Equation 1 becomes very small. Such

outliers would slow convergence of the average. Cases where the value of ⇢n is not defined

due to a failure of the Assumption of Conflict of Interest occur if and only if the ideal points

of all players coincide. Given the low probability of such draws, there is no need to specify a

corresponding default value for ⇢n.
10
To be precise, while the expected position of the median legislator is always equal to one-

half, the expected distance of the median legislator from one-half is decreasing in the number of

legislators.
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Benchmark Model Agenda-Setter Model Gatekeeper Model

Com. Leg. Com. Leg. Com. Leg.

N = 4 0 .47 .64 .11 .24 .24

N = 6 0 .28 .62 .07 .23 .15

N = 10 0 .15 .61 .04 .22 .08

Table 1: Bargaining Power in Three Models of Legislative Bargaining

Notes: N is the number of players: one committee and N�1 legislators. Columns titled

Com. show the bargaining power of the proposing committee, whereas columns titled

Leg. contain the bargaining power of each legislator.

in turn, is located closer to the status quo on average. Since the legislature never

accepts a proposal that is further away from the median legislator than the status

quo, the ability of the committee to a↵ect the outcome is therefore decreasing in

the number of legislators.11

6 Conclusion

Bargaining power is a key element of economic, political and social relations. Many

central questions in these fields are analysed through the lenses of non-cooperative

games, for which measures of bargaining power, however, have been proposed only

for specific settings. This paper introduces a novel method for measuring power in

any non-cooperative game of bargaining. The power of a player is calculated as the

extent to which shifts in this player’s preferences change the outcome of the game

relative to the change that would occur if the player in question was a dictator.

We show that no other function satisfies a number of axioms. For the special

case of TU-games, we compare our measure to the more conventional approach of

interpreting the expected surplus share of a player as their bargaining power. The

two approaches coincide when the equilibria of the game are Pareto e�cient, but

generally yield di↵erent results when they are not. Intuitively, ine�ciencies imply

that players collectively do not have full control over the distribution of the surplus

and our measure calculates bargaining power relative to the share of the surplus

that players can freely allocate. The measure can also be averaged over a possible

11
This observation is true both when considering the raw numbers in Table 1 and the ra-

tio between the bargaining power of the committee and the sum of bargaining powers of the

legislators.
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distribution that players’ preferences are drawn from, which makes it possible

to evaluate bargaining power in an ex ante sense, before players’ preferences are

known. We show that in the context of a weighted voting game, this ex ante

measure reproduces the Shapley-Shubik or the Penrose-Bhanzaf power index for

suitable choices of the distribution of preferences.

Given that non-cooperative games are explicit about the process of bargaining,

our measure is particularly valuable when assessing features of this process and

their role in determining the influence of a player. Such insights are crucial, for

example, when designing institutions that aim to achieve a specific distribution

of power among agents. We illustrate the usefulness of our approach through

applications to cartel formation, the non-cooperative model of the household and

legislative bargaining.
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Appendix

A Proof of Theorem 1

This appendix contains the proof of Theorem 1. The proof is presented in the

context of a fixed class of indirect utility functions V̄n ⇢ Vn that correspond to

games sharing a common outcome space, set of players, and agreement payo↵s.

We start by presenting three lemmas that successively introduce sharper re-

strictions on the function ⇢n(vn).

Lemma 1. A function ⇢n : V̄n ! R satisfies axioms A1 and A4 if and only if

⇢n(vn) = � +
X

u02 UN
E

↵(u0) vn(u
0) ,

where � and all ↵(u0) are real numbers.

Proof. Start by considering the implications of Axiom A1. Note that for any game

�+, eliminating all but the endowed utility functions from the corresponding set

of relevant utility functions U+ creates a second game � such that this pair of

games satisfies the conditions set out in Axiom A1. The indirect utility functions

corresponding to the two games, v+,n and vn, di↵er only in their domains: UN

+

and UN = UN

E
, respectively. Accordingly, it holds that v+,n

��
UN
E

= vn and it

then follows from Axiom A1 that ⇢n(v+,n) = ⇢n(vn) = ⇢n(v+,n

��
UN
E
). Conversely,

assume ⇢n(vn) = ⇢n(vn
��
UN
E
) holds for any vn 2 V̄n. For any v+,n created by adding

elements to the set of relevant utility functions U to create the set U+ it holds that

vn

��
UN
E
= v+,n

��
UN
+,E

, since both games share the same endowed utility functions. It

then follows that ⇢n(vn) = ⇢n(vn
��
UN
E
) = ⇢n(v+,n

��
UN
+,E

) = ⇢n(v+,n). The function

⇢n therefore satisfies Axiom A1 if and only if ⇢n(vn) = ⇢n(vn
��
UN
E
) holds for any

vn 2 V̄n. Since the set UN

E
is finite, ⇢n is therefore a function of a finite vector of

real numbers.

Let � =
P

G

g=1 �g�g with corresponding indirect utility functions vn, v1,n, ...,

vG,n 2 V̄n. Given that the class V̄n was defined to contain indirect utilities sharing

the same agreement payo↵s, Axiom A4 requires

GX

g=1

�g ⇢n(vg,n) = ⇢n(vn)

= ⇢n

 
GX

g=1

�gvg,n

!
,
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where the second equality follows since the indirect utilities of a compound game

are a convex combination of the indirect utilities of the constituent games. ⇢n is

therefore an a�ne function on V̄n. Given that it was established above that ⇢n is

a function of a finite vector of real numbers, a�nity of ⇢n is satisfied if and only if

⇢n(vn) = � +
X

u02 UN
E

↵(u0) vn(u
0) ,

where � and each ↵(u0) are real numbers. ⇤

Lemma 2. A function ⇢n : V̄n ! R satisfies axioms A1, A2, and A4 if and only

if

⇢n(vn) =
X

(u0
,u

00)

2 UN+1
E

↵(u0, u00) [vn(u
0)� vn(u

0
u0
n u00)] ,

where all ↵(u0, u00) are real numbers.

Proof. Given the functional form of ⇢n established in Lemma 1, it needs to be

shown what additional restrictions Axiom A2 imposes. It will be shown that it

must be possible to formulate ⇢n as a function of di↵erences in payo↵s of the form

vn(u0) � vn(u0u0
n u00). To see this, suppose that after rearranging the terms of ⇢n

to form pairs of utilities of the preceding kind, there remains one payo↵ vn(ũ) for

some ũ 2 UN

E
with non-zero coe�cient ↵(ũ) for which no pair can be formed. Let

vn correspond to a game where player n is a null player and thus ⇢n(vn) = 0. Since

all di↵erences in payo↵s of the form vn(u0)�vn(u0u0
n u00) are equal to zero if player

n is null, we have

⇢n(vn) = � + ↵(ũ) vn(ũ) = 0 . (4)

If there exist multiple games in V̄n such that n is null and the payo↵ vn(ũ) di↵ers

across some of these games, then the preceding equality cannot hold for all such

games and Axiom A2 would be violated. Suppose therefore that n being null

implies a fixed value of vn(ũ) across all elements of V̄n. It will be shown that this

assumption can only be satisfied if the utility functions of all players other then

n contained in ũ are equal. To the contrary, suppose that there exist players m

and k such that ũm 6= ũk. Then we can construct two games, �m and �k, for

which it holds, respectively, that µ
⇤
m
(u0) = µ

⇤
m
(1u0

m
) and µ

⇤
k
(u0) = µ

⇤
k
(1u0

k
) for

any u
0 2 UN . It follows that player n is null in both games. Furthermore, since

it must hold either that ũn 6= ũm or that ũn 6= ũk, Assumption 2 implies that

the payo↵ of player n under the vector ũ di↵ers across the two games, which is

the desired contradiction. n being null can therefore only imply a fixed value of
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vn(ũ) if the utility functions of all players other than n contained in ũ are equal

to some u
0 2 UE. In this case it follows from the definition of a null player that

vn(ũ) = vn(ũũn u0) = vn(1u0). Equation (4) then implies � = �↵(ũ) vn(1u0),

which contradicts that it is impossible to pair the payo↵ vm(ũ) with another of

the form vn(ũũn u). Given that all such pairs are zero if player n is null, it further

follows that ⇢n cannot contain any additional constant. ⇤

Lemma 3. A function ⇢n : V̄n ! R satisfies axioms A1, A2, A3, and A4 if and

only if

⇢n(vn) =

P
(u0,u00)2 U2

E
↵(u0, u00) [vn(uun u0)� vn(uun u00)]

P
(u0,u00)2 U2

E
↵(u0, u00) [vn(1u0)� vn(1u00)]

,

where all ↵(u0, u00) are real numbers such that the denominator in the preceding

expression is not equal to zero.

Proof. As a first step, it will be shown that an additional restriction implied by

Axiom A3 is that ⇢n can only depend on indirect utilities of the form vn(uun u0)

for some u
0 2 UE, that is, indirect utilities under vectors of utility functions that

di↵er from the vector of endowed utility functions only in the utility function

of player n. Given the functional form established by Lemma 2, suppose that

⇢n depends on a pair of indirect utilities vn(u0) � vn(u0u0
n u00) with a non-zero

coe�cient, where the utility function of some player other than n included in the

vector u0 di↵ers from their endowed utility function. At least one of these payo↵s

is not an agreement payo↵ and, without loss of generality, let this be the payo↵

vn(u0). Suppose vn corresponds to a game where player n is a local dictator and

⇢n(vn) = 1. Since n being a local dictator does not restrict the payo↵ vn(u0), we

can construct a second indirect utility v
0
n
where n continues to be a local dictator

by changing this payo↵ while holding vn otherwise constant. Given the already

established functional form of ⇢n, the perturbation in vn(u0) increases or decreases

the value of ⇢n(v0n) relative to ⇢n(vn), violating Axiom A3.

We have thus established that

⇢n(vn) =
X

(u0,u00)2 U2
E

↵(u0, u00) [vn(uun u0)� vn(uun u00)] . (5)

Let C 6= 0 be some real number. We can rewrite

⇢n(vn) = C

X

(u0,u00)2 U2
E

↵(u0, u00)

C
[vn(uun u0)� vn(uun u00)] .
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Since the exact values of the coe�cients are as of yet undetermined, we can redefine

them to include the division by C and simply write

⇢n(vn) = C

X

(u0,u00)2 U2
E

↵(u0, u00) [vn(uun u0)� vn(uun u00)] . (6)

Under Axiom A3, n being a local dictator implies

C

X

(u0,u00)2 U2
E

↵(u0, u00) [vn(1u0)� vn(1u00)] = 1 .

Solving for C and substituting back into Equation (6) yields the desired result.

Any such function satisfies Axiom A3 as long as the coe�cients are chosen such

that the value of C is not equal to zero. ⇤

It needs to be shown that the function given in the statement of Theorem 1 is

the only function among those given by Lemma 3 that satisfies Axiom A5.

If |UE| = 2, Lemma 3 pins down a unique function given by

⇢n(vn) =
vn(u)� vn(uun u�n)

vn(1un)� vn(1u�n)
,

where u�n is the unique element of the set UE \un. It remains to consider the case

|UE| > 2.

For what follows, it is convenient to revert back to the functional form estab-

lished by Equation (5) and write

⇢n(vn) =
X

(u0,u00)2 U2
E

↵(u0, u00) [vn(uun u0)� vn(uun u00)] . (7)

Let the indirect utilities vn, v0n and v
00
n
correspond to the definitions given in

the statement of Axiom A5. The only payo↵s that di↵er between these functions

are those corresponding to the vectors of utility function uun u0 and uun u00 .

These payo↵s are not agreement payo↵s since the vector u contains more than two

distinct utility functions by the assumption that |UE| > 2. The indirect utility

functions vn, v0n and v
00
n
therefore belong to the same class V̄n and the coe�cients

used to calculate the corresponding values of ⇢n are identical.

By construction, it holds that v0
n
(1un u�) � v

0
n
(1un u=) = 0 for any u

�
, u

= 2
UE \ u0 while v0

n
(1un u000)� v

0
n
(1un u0) = c and v

0
n
(1un u0)� v

0
n
(1un u000) = �c for
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any u
000 2 UE \ u0. Based on Equation (7), it follows that

⇢n(v
0
n
) = c

X

u0002 UE\u0

[↵(u000, u0)� ↵(u0, u000)] .

Repeating an analogous derivation for the indirect utility v
00
n
, we have

⇢n(v0n)

⇢n(v00n)
=

↵̃(u0)

↵̃(u00)
,

where

↵̃(u0) :=
X

u0002 UE\u0

[↵(u000, u0)� ↵(u0, u000)]

for any u
0 2 UE. Axiom A5 thus implies

↵̃(u0)

↵̃(u00)
=

v
00
n
(1un)� v

00
n
(1u00)

v0
n
(1un)� v0

n
(1u0)

,

or, equivalently,

↵̃(u0) =
vn(1un)� vn(1u00)

vn(1un)� vn(1u0)
↵̃(u00) ,

since all involved games share the same agreement payo↵s. Given that u0 and u
00

are arbitrary elements of the set UE \un, the preceding equality must hold for any

such pair, implying

↵̃(u0) =
vn(1un)� vn(1u00)

vn(1un)� vn(1u0)
↵̃(u00) =

vn(1un)� vn(1u000)

vn(1un)� vn(1u0)
↵̃(u000)

for any u
000 2 UE \ {un, u

0
, u
00}. It follows that

[vn(1un)� vn(1u00)]↵̃(u00) = [vn(1un)� vn(1u000)]↵̃(u000) =: �

must hold for any u
00
, u
000 2 UE \ un and, accordingly,

↵̃(u0) =
�

vn(1un)� vn(1u0)
(8)
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for any u
0 2 UE \ un. Equation (7) can be rearranged to yield

⇢n(vn) = �
X

u02 UE

2

4
X

u0002 UE\u0

↵(u000, u0)� ↵(u0, u000)

3

5 vn(uun u0)

= �
X

u02 UE

↵̃(u0) vn(uun u0) .

Using Equation (8) to substitute for every ↵̃(u0) such that u0 2 UE \ un produces

⇢n(vn) = � ↵̃(un) vn(u)�
X

u02 UE\un

�

vn(1un)� vn(1u0)
vn(uun u0) . (9)

If vn corresponds to a game such that n is null, then all the indirect utilities

included in Equation (9) take the same value. Denoting this value by v̄, Axiom

A2 then requires

⇢n(vn) = v̄

0

@� ↵̃(un) �
X

u02 UE\un

�

vn(1un)� vn(1u0)

1

A = 0 .

Since vn may be chosen such that v̄ 6= 0, it follows that

� ↵̃(un) =
X

u02 UE\un

�

vn(1un)� vn(1u0)
.

Substituting back into Equation (9) and rearranging yields

⇢n(vn) = �

X

u02 UE\un

vn(u)� vn(uun u0)

vn(1un)� vn(1u0)
.

If vn instead corresponds to a game such that n is a local dictator,

⇢n(vn) = �

X

u02 UE\un

vn(1un)� vn(1u0)

vn(1un)� vn(1u0)
,

which is only equal to 1 as required by Axiom A3 if

� =
1

|UE \ un|
.

Note that under Assumption 2 it holds that UE \ un = U 6=n. This completes the

proof.
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B Additional Proofs

Proof of Proposition 1. Pareto e�ciency implies that if all players agree that a

unique outcome would be optimal, then the equilibrium of the game must produce

this outcome with certainty. In a TU-game, under the vector of utility functions

1um all players agree that player m should receive everything. Pareto e�ciency

of the outcomes µ
⇤(1un) and µ

⇤(1um) for m 6= n thus implies vn(1un) = 1 and

vn(1um) = 0. Furthermore, Pareto e�ciency implies vn(uun um) = 0 since under

the vector of utility functions uun um all players other than n prefer more for

themselves while player n prefers more for player m. Using all of the above to

substitute in Equation 1, it follows that

⇢n(vn) =
1

|U 6=n|
X

u02 U 6=n

vn(u)� 0

1� 0

= vn(u) . ⇤

Proof of Proposition 2. We start by calculating the value of ⇢n for a given vector of

endowed utility functions u /2 {1u0 ,1u1}. It is clear that the agreement outcome

under the vector of preferences 1u0 (1u1) is equal to 0 (1) with certainty. If

player n is pivotal, the outcome coincides with that preferred by player n, which

implies vn(u) = 1 and vn(uun u0) = 0 for u
0 2 {u0

, u
1} \ un. It follows that

⇢n = 1 if player n is pivotal. If player n is not pivotal, switching the preference

of player n has no consequence for the outcome and ⇢n = 0. It follows that

⇢n(vSn ) = V (S [ {n})� V (S) if n /2 S and ⇢n(vSn ) = V (S)� V (S \ {n}) if n 2 S.

Define FPB(u) = 1/2N and FSS(u) = [|S|! · (N � |S|)!]/(N +1)! . We can now

establish that

⇢̄n(FPB) =
X

S✓N

1

2N
⇢n(v

S

n
)

=
X

S✓N
n/2S

1

2N
⇢n(v

S

n
) +

X

S✓N
n2S

1

2N
⇢n(v

S

n
)

= 2
X

S✓N
n/2S

1

2N
⇢n(v

S

n
)

=
X

S✓N
n/2S

1

2N�1
[V (S [ {n})� V (S)] ,
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where the third equality follows from the fact that for every S ✓ N such that

n /2 S there exists exactly one S
0 ✓ N such that n 2 S

0 and S = S
0 \ {n}. Since

pivotality of player n only depends on the other players’ preferences, it thus holds

that ⇢n(vSn ) = ⇢n(vS
0

n
). Furthermore,

⇢̄n(FSS) =
X

S2N

|S|! · (N � |S|)!
(N + 1)!

⇢n(v
S

n
)

=
X

S✓N
n2S

"
|S|! · (N � |S|)!

(N + 1)!
⇢n(v

S

n
)

+
(|S|� 1)! · (N � |S|+ 1)!

(N + 1)!
⇢n(v

S\n
n

)

#

=
X

S✓N
n2S

"
|S|! · (N � |S|)!

(N + 1)!

+
(|S|� 1)! · (N � |S|+ 1)!

(N + 1)!

#
⇢n(v

S

n
)

=
X

S✓N
n2S

(|S|� 1)! · (N � |S|)!
N !

[V (S)� V (S \ {n})] ,

where the third equality holds since ⇢n(vSn ) = ⇢n(v
S\n
n ), which follows as the value

of ⇢n only depends on whether player n is pivotal, which in turn only depends on

the preferences of other players. ⇤
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