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presenting a model in which agents with private information can simultaneously contact 

multiple trading partners. We highlight a new trade-off: facilitating contacts reduces 

coordination frictions but also the ability to screen agents’ types. We find that, when agents 

can contact sufficiently many trading partners, fully separating equilibria obtain only if 

adverse selection is sufficiently severe. When this condition fails, equilibria feature partial 

pooling and multiple equilibria co-exist. In the limit, as the number of contacts becomes 

large, some of the equilibria converge to the competitive outcomes of Akerlof (1970), 

including Pareto-dominated ones; other pooling equilibria continue to feature frictional 

trade in the limit, where entry is inefficiently high. Our findings provide a basis to assess the 
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1 Introduction

In this paper, we study an environment with two key ingredients, adverse selection and

search frictions. Real-life markets that feature these ingredients are abundant and include

labor markets, OTC markets, as well as insurance markets. In recent years, many of these

markets have seen technological innovations giving rise to online platforms that made it

easier for market participants to meet, thus lowering search frictions.1 A natural question

is how such innovations a↵ect the strategies of traders and the resulting prices at which

transactions occur and hence the properties of allocations obtained in those markets. An

understanding of the welfare e↵ects of lowering meeting barriers is important, also to guide

possible regulatory interventions regarding the organization of trades in markets.

Our paper aims to provide a theoretical framework that allows us to investigate the

question of how facilitating contacts a↵ects market outcomes in the presence of adverse

selection. The main innovation is to model lowering search frictions by letting agents contact

multiple potential trading partners simultaneously into an otherwise standard framework

of directed search. We demonstrate that this, in the presence of adverse selection, gives

rise to a new trade-o↵: facilitating contacts between market participants not only means

search frictions are smaller but also a↵ects the possibility of using the liquidity properties of

di↵erent markets to screen traders with private information. We show that the latter e↵ect

has significant implications for the properties of market outcomes. In contrast to the case

where agents can only contact one trading partner, equilibria in our setting may exhibit

partial pooling where agents of di↵erent types trade at the same price. A striking result we

obtain is that some of these equilibria feature ine�cient entry, even in the limit when agents

can contact infinitely many other market participants. Hence, frictional trade may persist

in the limit where the exogenous search friction vanishes.

Our analysis is cast in an environment as in Akerlof (1970), where sellers own an indivis-

ible object and are privately informed about its quality, which can be either low or high. For

expositional purposes, we adopt a labor market terminology throughout the paper: buyers

are firms and sellers are workers who have private information about their productivity and

can accept at most one job.2 However, other applications are relevant as well; for instance,

1As discussed by Fermanian et al. (2016) and Riggs et al. (2020), recent technological innovations (e.g.,
electronification) and regulatory changes (e.g., the Dodd-Frank Act) had a very significant impact on the
way many securities are traded in financial markets. These innovations, together with measures aiming to
increase transparency in trades, generated a substantial increase in contacts among market participants in
OTC markets, where corporate bonds and derivatives like swaps are mostly traded. In the new platforms
that emerged, customers can contact multiple dealers at the same time, both to have the quotes set by various
dealers streamed to them (RFS) and to send a contemporaneous request for quote (RFQ) to a selected subset
of dealers for a specific transaction.

2While application data is scarce, the available evidence indicates that the number of applications sent
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we can reinterpret sellers as asset owners, privately informed about the asset’s future value,

or producers with private information about the quality of their products.

The market works as follows. First, firms choose which wage to post, workers then send

applications to N � 1 firms, and, finally, firms make o↵ers. A worker’s strategy thus specifies

an application portfolio, trading o↵ higher wages against the lower associated probabilities

of getting a job o↵er. The matching between firms and workers is complicated by the fact

that workers may receive multiple o↵ers and can choose which one to accept. Hence, a firm’s

o↵er may be rejected. We assume that, when this happens, the firm can keep making new

o↵ers until an applicant accepts or the firm exhausts its applicant pool, as in Kircher (2009).

We now describe our results in more detail. The most novel and striking properties of

equilibria obtain when adverse selection is mild, i.e., the high types’ outside option is smaller

than the net productivity of low types. In this case, when workers can send su�ciently

many applications, multiple equilibria exist, all of which feature low and high types sending

a subset of their applications to the same firms. Hence, in equilibrium, there is at least one

submarket where the two types of workers pool their applications, so full separation cannot

be sustained. This result is in clear contrast with the properties of models à la Guerrieri

et al. (2010) where meetings are bilateral and the unique equilibrium is always separating.

More specifically, we show that an equilibrium exists where low and high types send a

subset of their applications to a single pooling market and characterize its properties. For

the low-type workers, the wage in the pooling market is the highest to which they apply,

while for the high types, it is the lowest. Hence, low types applying in the pooling market are

hoping for a ‘lucky punch,’ whereas high types view jobs o↵ered in this market as a fallback

option in case their preferred applications fail to generate o↵ers. With multiple applications,

the high-type workers’ opportunity cost of sending an application to a low wage is relatively

small, and the same is true for low-type workers applying to a high wage.

As the number of applications becomes large—that is, as exogenous search frictions

vanish—we prove that the probability that workers are hired in the pooling market converges

to one. There are, however, too many firms entering the market, so their hiring probability

is bounded away from one in the limit. Since firms need to be compensated for their entry

cost in equilibrium, workers pay for the excessive entry in the form of a wage below their

by workers has increased in recent decades (see e.g. Martinelli and Menzio, 2020), likely facilitated by the
increased use of online job search since the beginning of this century, as documented by e.g. Faberman
and Kudlyak (2016). Further, as discussed by Woltho↵ (2018), various pieces of evidence highlight the
importance of simultaneous search. First, data from online job boards shows that workers tend to send
multiple applications within even the shortest time span (a week or even a day). Second, surveys among
employers indicate that the most common reason for a worker to reject a job o↵er is the simultaneous arrival
of a more attractive o↵er. Informational asymmetries are also a natural feature of employment relationships,
especially at the onset, even though they tend to be mitigated over time with on-the-job learning.
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average net productivity. Equilibrium trading is thus frictional, even in the limit, as the

number of applications workers can send gets arbitrarily large.

When, instead, adverse selection is severe, there is always an equilibrium featuring com-

plete market segmentation, no matter how many applications workers can send. In such

an equilibrium, workers of di↵erent types apply to di↵erent firms. To sustain sorting, the

equilibrium probability of being hired in one of the high-type markets must be su�ciently

low so as to ensure incentive compatibility for low types. The larger the number of appli-

cations low types have at their disposal, the tighter this constraint becomes. In the limit,

as the number of applications low types can send becomes large, the equilibrium probability

of high-type workers being hired converges to zero. This property is notable, as it holds

despite high types sending an infinite number of applications. The result illustrates another

interesting implication of multiple applications: when adverse selection is severe, screening

based on market liquidity may still occur but requires a much bigger (extreme in the limit)

distortion of the trading probability.

We relate the limit results to the equilibrium outcomes in a perfectly competitive market

à la Akerlof (1970). In our setting, a separating equilibrium exists for any number of applica-

tions workers can send if and only if the corresponding Akerlof economy has an equilibrium

where only low-productivity workers are hired. Moreover, since high types are driven out of

the market as N grows, the Akerlof equilibrium is the limit point of the separating search

equilibria as N ! 1. The other potential Akerlof equilibrium in a two-type economy is a

pooling equilibrium where both types of workers are hired at a wage equal to their average

productivity. For the case of mild adverse selection, the excessive entry result shows that

there is a sequence of search equilibria such that, in the limit where N ! 1, both types of

workers are hired in the pooling market with probability one. The wage in that market is,

however, strictly below the average productivity in order to compensate firms for the risk of

remaining unmatched. We also show that we can find an alternative sequence of equilibria,

featuring two pooling markets rather than one, such that the equilibrium allocation of this

sequence converges to the pooling equilibrium of Akerlof (1970). Hence, in our search the-

oretic environment, the convergence to the set of equilibria obtained in Walrasian markets

à la Akerlof (1970) is possible but not necessary, and multiplicity persists in the limit as the

search friction vanishes.

We then show that, in contrast to the case of symmetric information, the welfare impli-

cations of increasing the number of applications under adverse selection are ambiguous. The

reason is that increasing the workers’ application capacity not only relaxes search frictions

but also a↵ects the set of allocations that are incentive-compatible. While low-productivity

workers always gain, high-productivity workers may gain or lose when the capacity to apply
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to multiple firms increases across the market. Focusing on the case where entry costs are

small, we show that starting from the single-application benchmark, high-productivity work-

ers lose from an additional application whenever adverse selection is severe or the fraction of

low-productivity workers in the market is su�ciently large. Surprisingly, in the latter case,

the loss occurs even when the additional application leads to partial pooling in equilibrium.

Moving from a separating equilibrium when workers send one application to a partial pooling

equilibrium when workers send two reduces the average wage at which high types are hired.

Since the average productivity in the pooling market is low, this more than o↵sets the benefit

of the associated increase in their trading probability. As a consequence, it can be beneficial

for a planner to restrict innovations that facilitate meetings among market participants.

The approach pursued in this paper di↵ers from the one followed in most of the search

literature, which restricts attention to bilateral meetings, either in a static environment or in

(the steady state of) a dynamic environment. In these settings, a reduction in search frictions

has been modeled as an increase in matching e�ciency, captured either by the probability or

the rate at which trading partners meet. Reducing search frictions in this way, however, has

generally no qualitative impact on the nature of equilibrium outcomes. Indeed, for the case

of directed search with adverse selection, Guerrieri et al. (2010) and Chang (2018) found that

the key properties of equilibrium outcomes remain unchanged as the matching technology

becomes e�cient or sequential meetings become arbitrarily frequent: the limit equilibrium

features perfectly segmented markets in which the lowest type trades with probability one,

while higher types trade with a smaller but still positive probability. Our analysis shows that

modeling declining search frictions as an increase in the number of simultaneous meetings

modifies the properties of equilibria in important ways and allows to get the competitive

market outcome as a limit equilibrium allocation when search frictions vanish.

In a similar vein, Diamond (1971) demonstrated for the case of sequential random search

à la McCall (1970) that when prices are endogenized, we obtain the surprising prediction that

the equilibrium always features monopoly pricing and does not converge to the competitive

outcome, even as search frictions become arbitrarily small. Butters (1977), Varian (1980) and

Burdett and Judd (1983) showed that allowing buyers to meet multiple sellers simultaneously

o↵ers a resolution to the Diamond paradox. Specifically, they found that competitive pricing

is obtained in the limit as the probability of meeting multiple trading partners converges to

one. Part of our contribution is to provide analogous insights for the case of directed search

with adverse selection.3

3We thank a referee for this valuable insight.
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Related literature. Our paper contributes to various strands of literature. The two most

related strands, as already discussed, concern models of simultaneous search and the work on

adverse selection in directed search environments. The first strand includes Chade and Smith

(2006), Albrecht et al. (2006), Galenianos and Kircher (2009), Woltho↵ (2018) and Albrecht

et al. (2020). Our model builds in particular on Kircher (2009), with respect to which we

innovate by allowing for searcher heterogeneity and introducing asymmetric information.

The second strand includes Gale (1996), Inderst and Müller (2002), Guerrieri et al. (2010)

and Chang (2018), relative to which we innovate by allowing for simultaneous search.

The consequences of multiple applications for the properties of equilibrium outcomes with

search frictions have interesting analogies to those of non-exclusivity in contracting without

such frictions. The latter also limits, though in di↵erent ways, the ability of firms to screen

workers. Our environment features exclusivity in contracting, as each worker can accept

only one o↵er, but not in applications, as a worker can apply to many firms and the set

of all his applications is not observable by firms. When firms compete with non-exclusive

contract o↵ers, Attar et al. (2011) find that pooling obtains in equilibrium under the same

condition as in Akerlof (1970), otherwise high quality sellers are excluded from trade and

the equilibrium is unique. Our analysis di↵ers in various respects. Unlike in Attar et al.

(2011), firms in our model face a capacity constraint in their hiring, which limits their market

power. As a result, the forces breaking separating equilibria and sustaining pooling trades

in the two setups are rather di↵erent. Furthermore, multiplicity of equilibria and ine�cient

entry are distinctive phenomena of our analysis. Finally, our setup also allows to investigate

the properties of equilibrium outcomes where firms can only submit a finite number N of

applications, so non-exclusivity at the application stage is only partial, gaining interesting

insights on the e↵ects of varying N .

To conclude, a number of papers on frictional markets with adverse selection share im-

portant analogies with our work in some aspects, but ultimately focus on rather di↵erent

questions from ours. Lester et al. (2019) consider a market where sellers may meet either

one or two buyers, but meetings are random. In their environment, the fact that sellers may

meet multiple buyers a↵ects the price at which they trade, but not their probability of trade,

because buyers have no capacity constraints. The main focus of their work is then on the

e↵ects of multiple meetings on buyers’ market power. Kurlat (2016) and Board et al. (2020)

also consider a labor market in which heterogeneous workers contact multiple firms, but the

main emphasis is on the matching that arises when firms are heterogeneous in their ability to

detect workers’ types. Lauermann and Wolinsky (2016) and Kaya and Kim (2018) consider

the e↵ect of vanishing search frictions, but in a sequential random search environment with

adverse selection and private noisy signals about the type of the informed party. Kim and
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Pease (2017) also study sequential search with adverse selection. In contrast to the previous

papers, they allow the privately informed party to choose the search intensity and show that

lower search costs may lead to worse equilibrium outcomes for the informed party. The result

relies on the observability of the informed party’s trading history, an important di↵erence

from our analysis in Online Appendix D.

The paper is organized as follows. Section 2 presents the framework. Some preliminary

properties are derived in Section 3. Section 4 characterizes search equilibria, first for the case

of severe adverse selection, then for the case of mild adverse selection. Section 5 discusses the

welfare e↵ects of increasing workers’ application capacities and potential policy implications.

Section 6 concludes. Proofs and additional results are relegated to the (Online) Appendix.

2 Environment

Agents. We consider a static labor market populated by a continuum of size one of workers

and a large continuum of firms. Both types of agents are risk-neutral. Workers supply and

firms demand one unit of indivisible labor. All firms are identical, but workers di↵er in their

productivity, defining their type, which is private information. In particular, a fraction � of

workers have low productivity, while the remaining ones are of high productivity. We will

index types by i 2 {L,H}.

Market interaction. The market interaction between workers and firms proceeds in mul-

tiple subsequent stages. In the first stage, firms decide whether to become active or not.

Active firms incur an entry cost k > 0 and subsequently post and commit to a wage p that

they will pay if they hire. The support of the distribution of posted wages is denoted by F .

After observing all posted wages, in the second stage, each worker sends N 2 {1, 2, . . .}
job applications to firms.4 As standard in the directed search literature (see e.g. Shimer,

2005) and motivated by the idea that coordination among a continuum of agents in decen-

tralized markets is unrealistic, we restrict workers to symmetric and anonymous strategies,

which creates the search frictions we study. That is, for each application a worker selects

a wage and then applies at random to one of the firms posting such wage. A worker’s ap-

plication portfolio is thus a list of N wages. As we will show, whenever a worker has the

opportunity to send an additional application, that application will be sent to a (weakly)

higher wage than the previous ones. It is then convenient to order the applications sent in a

weakly increasing order, so a portfolio is described by (p1, . . . , pN) 2 FN
, with p1  . . .  pN .

Although the worker sends all N applications simultaneously, it will often be useful to refer

4We will generally focus onN � 2, but includeN = 1 for completeness and comparison with the literature.
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to pn, i.e. the n-th lowest application, as the worker’s n-th application.

After all the applications are sent, matches are formed. Following Kircher (2009), we

assume that the matching of workers and firms on the network induced by the workers’

applications is stable, i.e., no firm remains unmatched when one of its applicants is hired

at a lower wage. One way to implement a stable outcome is via a sequential procedure in

the spirit of deferred acceptance (Gale and Shapley, 1962). First, each firm with applicants

randomly selects one of them and makes a job o↵er. Every worker then keeps the best job

o↵er he received under consideration (without loss of generality, in the event of ties, we take

this to be the o↵er with the highest index) and rejects all worse job o↵ers. Next, firms whose

job o↵ers are rejected select a di↵erent applicant (as long as they still have one) and make a

new job o↵er. After this, the process repeats until there are no more rejections or no firm can

make any additional o↵ers. At that point, workers accept the job o↵er under consideration.5

Finally, after matches are formed, production takes place and payo↵s are realized. A

match between a firm and a worker of type i results in an output vi, where vH � vL. The

firm’s payo↵ from the match is the di↵erence between this output and the wage p it pays.

In contrast, the worker’s payo↵ from the match is the di↵erence between this wage and his

outside option (or disutility from e↵ort) ci. This also depends on the worker’s type, with

cH > cL, motivated by the idea that high-productivity workers have better opportunities in

outside markets or self-employment. Unmatched workers and inactive firms receive a zero

payo↵. We assume the productivity of each type of worker, net of the firm’s entry cost,

exceeds the worker’s outside option: vi � k > ci, i = H,L. Hence, there are positive gains

from trade with each worker.

Queues. Consider a (sub)market p 2 F , defined as the collection of all the firms posting

this wage and of all the applications they receive. From the firms’ perspective, each applica-

tion has two unobservable but payo↵-relevant characteristics: i) its position n 2 {1, . . . , N}
in the sender’s application portfolio, which a↵ects the firms’ matching probability, and ii)

the type i 2 {L,H} of its sender, which a↵ects the firms’ payo↵ conditional on a match.

Define the queue length �n,i(p) 2 R+ as the endogenous ratio of the number of applications

with characteristics (n, i) to the number of firms in submarket p. As well-known in the

literature, the number of applications with characteristics (n, i) at a firm posting a wage

p follows a Poisson distribution with a mean equal to this queue length, independently of

the number of applications with other characteristics.6 Some of these applications however

5The same outcome can also be motivated as the result of a process in which the market clears from the
top, i.e., firms posting the highest wages make job o↵ers first, followed by firms posting the next highest
wages, etc.

6See Lester et al. (2015) and Cai et al. (2017) for a discussion of this property, which they call invariance.
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will end up being not relevant for the firm as the worker will turn down a job o↵er due

to the receipt of better o↵ers from other firms. Denote by ⇠n,i(p) 2 [0, 1] the endogenous

probability that an applicant with characteristics (n, i) accepts a job o↵er at p. The number

of e↵ective applicants with characteristics (n, i) at a firm posting wage p follows then a

Poisson distribution with mean (or e↵ective queue length) µn,i(p) = ⇠n,i(p)�n,i(p) 2 R+.

Payo↵s. The probability that a firm posting a wage p hires a worker depends on the

total e↵ective queue length in that market, obtained by aggregating the queues across all

applicants’ characteristics

µ(p) ⌘
X

n

X

i

µn,i(p), (1)

and is given by the probability the firm has at least one e↵ective applicant, ⌘ (µ(p)) ⌘
1� e

�µ(p). The hire will then turn out to be an L-type worker with probability equal to the

e↵ective fraction of L-type workers

�(p) ⌘
X

n

µn,L(p)/µ(p) (2)

and an H-type worker with complementary probability. The expected profit ⇡(p) of a firm

o↵ering wage p is then given by the probability of hiring a worker, times his expected

productivity minus p, less the entry cost:

⇡(p) = ⌘ (µ(p)) (�(p)vL + (1� �(p))vH � p)� k. (3)

Active firms choose a posted wage p so as to maximize their profit ⇡(p). Free entry implies

that in equilibrium these profits are zero.

The expected payo↵ of a worker applying to (p1, . . . , pN) also depends on the total e↵ec-

tive queue length at these wages. The worker obtains a payo↵ pn � ci if two conditions are

satisfied. First, the application to pn results in a job o↵er, which happens with probability

 (µ(pn)) ⌘ ⌘ (µ(pn)) /µ (pn). Second, none of the applications to higher wages pn+1, . . . , pN

result in a job o↵er, which is the case with probability
Q

N

j=n+1 (1�  (µ (pj))). The expected

payo↵ uN,i of a type i worker from the optimal choice of his N applications is then

uN,i = max
(p1,...,pN )2FN

NX

n=1

NY

j=n+1

(1�  (µ(pj))) (µn(p)) (pn � ci) .
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As in Kircher (2009), this payo↵ can be rewritten in a recursive way, where

un,i = max
p2F

 (µ(p)) (p� ci) + (1�  (µ(p))) un�1,i (4)

is the payo↵ of the first n applications, for all n 2 {1, . . . , N}, and u0,i = 0. Intuitively,

the worker’s n-th application leads to a wage o↵er p with probability  (µ(p)); with com-

plementary probability, the worker does not receive such an o↵er, but still has the chance

that one of his applications to lower wages is successful, yielding a conditional payo↵ equal

to un�1,i. Since un�1,i is the expected payo↵ from sending n� 1 applications to wages below

pn and trading at those wages occurs with probability less than 1, it follows from the above

equation that un,i is strictly increasing in n. Going forward, we will often refer to ci + un�1,i

as the worker’s e↵ective outside option when sending his n-th application, and to un,i as his

market utility from sending n applications.

Beliefs. In order to decide whether to post a particular wage p, a firm needs to form beliefs

about the applicant pool (µ(p), �(p)) that it will attract. Similarly, a worker considering

applying at wage p chooses on the basis of beliefs over µ(p). If the wage is part of the

equilibrium choices of firms, p 2 F , these beliefs are determined by the consistency conditions

with firms’ and workers’ strategies, as described above. In particular, worker optimization

implies that the e↵ective queue length µ(p) must satisfy

un,i �  (µ (p)) (p� ci � un�1,i) + un�1,i, (5)

with weak inequality for all (n, i) and with equality for at least one (n, i) if µ(p) > 0.

If, instead, the wage is not part of the equilibrium, we follow the standard assumption

in the directed search literature (see Wright et al., 2021) that these beliefs are pinned down

by the market utility condition, which aims to capture the consequences of deviations in our

continuum economy in the spirit of subgame perfection. In particular, the market utility

condition extends the optimization condition (5) to all p that are not part of an equilibrium.

That is, a firm posting p /2 F expects an e↵ective queue length µ(p) implying the smallest

job o↵er probability that is needed to induce one of the workers’ types to redirect one of

their applications to p, indeed in the spirit of subgame perfection. This also pins down

beliefs about the market composition: at this wage, the firm expects to attract applicants

of a certain type only if (5) holds with equality for that type for some n. That is, for any
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p /2 F , � (p) satisfies

8
<

:
� (p)µ (p) = 0 if (5) holds with strict inequality for i = L and all n

(1� � (p))µ (p) = 0 if (5) holds with strict inequality for i = H and all n.
(6)

Equilibrium. We can then define an equilibrium as follows.7

Definition 1. An equilibrium is a set of wages F posted by firms, e↵ective queue lengths

and compositions (µ(p), �(p)) for all p, and market utilities un,i for all n and i, such that the

following conditions are satisfied.

1. Worker Optimization: a worker of type i sends his n-th application to wage p 2 F only

if (5) holds as equality;

2. Firm Optimization: ⇡(p) = 0 for any p 2 F , and ⇡(p)  0 for any p /2 F ;

3. Consistency: for any p 2 F , µ(p) and �(p) are consistent with workers’ and firms’

strategies;

4. Out-of-Equilibrium Beliefs: for any p /2 F , �(p) satisfies (6) and µ (p) satisfies (5)

with weak inequality for any (n, i), and with equality for at least one (n, i) if µ(p) > 0.

In what follows, we shall refer to a submarket where only L-types (H-types) apply as an

L-type market (H-type market).

3 Preliminaries

3.1 Indi↵erence and Isoprofit Curves

Most of our analysis of workers’ and firms’ choices and hence of equilibria can be presented

graphically by considering workers’ indi↵erence curves and firms’ isoprofit curves. To facili-

tate this approach, we introduce these curves here and discuss some useful properties.

Isoprofit curves. As equation (3) shows, firms’ profits depend not only on the price p and

the e↵ective queue length µ, but also on the queue composition �. Hence, we need to specify

the value of � to be able to pin down a firm’s isoprofit curve as the set of all combinations of

µ and p satisfying the free entry condition. The two extremes in which the firm respectively

7To keep the notation simple in the main text, in the definition of equilibrium, we state the consistency
condition somewhat informally. We provide the full details in Online Appendix C.
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attracts only low (i.e. � = 1) or high types (� = 0) will prove to be particularly useful for

our analysis. The isoprofit curves in those two cases are defined as

⇧i ⌘
�
(µ, p) 2 R2 : ⌘ (µ) (vi � p) = k

 
, (7)

with i 2 {L,H}.

Indi↵erence curves. The indi↵erence curve In,i of a worker of type i sending his n-th

application consists of all combinations of µ and p that solve (5) with equality.

In,i ⌘
�
(µ, p) 2 R2 :  (µ) (p� ci) + (1�  (µ)) un�1,i = un,i

 
. (8)

Di↵erentiating (8) we see the slope of a worker’s indi↵erence curve equals

dµ

dp
= �  (µ)

 0 (µ)

1

p� ci � un�1,i
> 0.

This yields some helpful properties. The slope depends on the type of the worker (only)

through his e↵ective outside option ci + un�1,i. When this varies with i, the two types have

di↵erent marginal rates of substitution between wage and matching probability for their n-th

application, which creates scope for screening. For the first application, this is the case by

assumption since u0,L = u0,H = 0 and cH > cL. For subsequent applications n = 2, 3, . . .

however, the e↵ective outside option is endogenous. It is immediate to see from the above

expression that a worker’s indi↵erence curve becomes steeper as the index n of the application

increases. Intuitively, as the e↵ective outside option of a worker increases, he is willing to

tolerate a larger increase in the e↵ective queue length to obtain a higher wage. It is also clear

that, for the same index of the application, the high type has steeper indi↵erence curves,

i.e. cL + un�1,L < cH + un�1,H for all n. What is less obvious, however, is how cL + un�1,L

compares to cH + um�1,H for n > m. This question will be at the center of our analysis in

the following section.

3.2 Observable Types

It will be useful to describe first the equilibrium allocation that arises if worker types are

observable to firms and hence incentive constraints are absent, as obtained by Kircher (2009).

Equilibrium allocation. Due to free entry, the equilibrium allocation in this case can be

determined for each worker type i in isolation. It is entirely pinned down by the free entry

condition and the first-order condition of the firms’ choice problem, taking into account

beliefs as determined by market utility. Graphically, these beliefs are represented by the

11



upper envelope of workers’ indi↵erence curves In,i, n 2 {1, . . . , N}. The e↵ective queue

lengths and wages for the N applications of each worker are then determined by the tangency

points between the firms’ isoprofit curve ⇧i and this upper envelope, as illustrated in Figure

1. As shown by Kircher (2009), letting p
⇤
n,i

denote the wage to which a worker of type i

sends his n-th application, one can combine these conditions to recursively characterize the

equilibrium e↵ective queue length µ
⇤
n,i

⌘ µ(p⇤
n,i
) and the associated market utility u

⇤
n,i

for

each application n and each type i = L,H. The procedure is as follows: set u⇤
0,i = 0 and let

{µ⇤
n,i
, u

⇤
n,i
}N
i=1 be such that

k =
�
⌘
�
µ
⇤
n,i

�
� µ

⇤
n,i
⌘
0 �
µ
⇤
n,i

��
(vi � ci � u

⇤
n�1,i), (9)

u
⇤
n,i

= u
⇤
n�1,i + ⌘

0 �
µ
⇤
n,i

�
(vi � ci � u

⇤
n�1,i). (10)

Since the indi↵erence curves become steeper as the index n of the application increases,

the tangency point for this application moves up the firms’ isoprofit curve to a higher wage

and e↵ective queue length.

p

μ

1

2

3

Πi

I1,i

I2,i

I3,i

vi - k

Figure 1: Equilibrium wages and e↵ective queue lengths when the type is observable and
workers send three applications.

The allocation implied by (9) and (10) will be di↵erent for workers of di↵erent types, since

the firms’ willingness to o↵er a wage p with queue length µ depends on the worker’s type i,

determining the firm’s payo↵ vi from hiring the worker. Similarly, workers of di↵erent types

exhibit di↵erent preferences over portfolios of applications because their trade-o↵ between

the wage and the probability of being hired depends on their outside option ci. Hence, with

heterogeneous, observable types, the equilibrium features a separate submarket for each type

and each application (at least generically).
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Vanishing search frictions. Kircher (2009) shows that as the number of applications N

goes to infinity, the equilibrium allocation tends to the Walrasian outcome in which all firms

active in the market hire a worker with probability one and every worker finds a job. To see

this, notice first that the di↵erence uN,i � uN�1,i converges to zero as N ! 1, since uN,i

is strictly increasing in N and bounded above by the gains from trade, vi � ci � k. This

property implies that the e↵ective queue length µ
⇤
N,i

tends to 1, as can be seen from (10).8

Since limN!1 µ
⇤
N,i

= 1, every firm hires a worker, so the free-entry condition (9) requires

that a worker’s expected utility from his portfolio of applications, u⇤
N,i

, tends to vi � ci � k

as N ! 1. Because no firm would o↵er a wage greater than vi � k, this implies that in

the limit, a worker is hired at a wage vi � k with probability one. It further means that the

measure of firms posting wages that are bounded away from vi � k (for which the e↵ective

queue length is finite) tends to 0. In other words, all entering firms hire with a probability

of one in the limit. The impact of the search friction thus disappears in the limit where each

worker can submit infinitely many applications, and the equilibrium allocation converges to

the Walrasian outcome.

4 Equilibria with Adverse Selection

As seen in the previous section, allowing workers to apply simultaneously to multiple firms

mitigates the search friction and, therefore, increases the trading probability of workers and

firms when this friction is the only impediment to trade. We show next that in environments

with adverse selection, the same result may no longer hold, as incentive constraints limit

trades as well. The possibility of sending multiple applications diminishes the screening role

of market liquidity since workers can hedge against the possibility of not being hired in an

illiquid market by sending some of their applications to more liquid markets. Hence, in

markets with adverse selection, an interesting trade-o↵ arises: allowing workers to submit

multiple applications, on the one hand, reduces the search friction but, on the other hand,

restricts the possibility of screening workers. In what follows, we will analyze how this

trade-o↵ shapes the properties of equilibrium allocations.

Incentive constraints. When types are unobservable, the allocation described in the

previous section will often not be sustainable in equilibrium. The reason is that, due to the

interdependence of values, L-type workers may find it profitable to send some applications

to the submarkets designed for H-type workers. This point is illustrated in Figure 2, where

we display the equilibrium allocation when both types are observable. Graphically, there are

two relevant isoprofit curves for the firms, one for hiring the H-type and one for hiring the

8Since uN,i � uN�1,i ! 0, (10) implies that ⌘0 (µ(p)) = e
�µ(p) ! 0 and hence µ(p) ! 1.
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L-type. The H-isoprofit curve is shifted to the right with respect to the L-isoprofit curve

because for each e↵ective queue length µ, a firm is willing to pay a higher wage p for a worker

of high productivity. In Figure 2 incentive compatibility is violated for L-type workers when

they can send N � 2 applications. They can gain, for instance, by sending their second

application to the market where H-type workers send their first.

Note that the L-type incentive constraints may be binding already in the case where

workers send a single application. Multiple applications, however, tighten this constraint.

Indeed, if vH is strictly greater than vL, incentive constraints necessarily bind whenever the

number of applications that workers can send is su�ciently large. To see this, recall that

the equilibrium with observable types converges to the Walrasian allocation when N ! 1.

In this limit both types of workers are hired with probability one, but the expected wage

for the H-type, vH � k, is strictly greater than that for the L-type, vL � k. As a result,

L-type workers have strict incentives to send some of their applications to a market with a

wage strictly above vL � k. Hence, the allocation found in Section 3.2 does not constitute

an equilibrium when workers’ productivity is only privately known by them.

p

μ

1

2

3

1

2

3

ΠL ΠH

Figure 2: Equilibrium wages and e↵ective queue lengths for the low type (blue) and the high
type (red) when types are observable.

4.1 Severe Adverse Selection

The properties of the equilibrium allocation in our setting with multiple applications will

depend on the severity of adverse selection. We first consider the case where adverse selection

is severe, in the sense that the outside option of high-productivity workers is weakly greater
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than the net productivity of low types, i.e., cH � vL � k, or the lemons condition holds.9

Our first result shows that, as long as the lemons condition holds, the fact that workers

can send multiple applications does not fundamentally change the qualitative properties of

search equilibria compared to the case where they can only send a single application. To

recall, when workers apply to only one firm, we know from Guerrieri et al. (2010) and others

that the unique equilibrium features complete market segmentation: L-type workers apply

to a di↵erent market, with a lower price and a lower queue length, than the one to which high

types apply. In our setting, the lemons condition guarantees that such sorting is sustained

in equilibrium regardless of the number of applications workers can send.

Proposition 1. If cH � vL � k, for all N � 1 there exists a separating equilibrium, where

H-type workers apply to strictly higher wages than L-type workers.

The construction of a separating equilibrium is as follows. The markets in which L-

types apply are the same as in the equilibrium allocation of the observable type case: for

all n = 1, ..., N , (µn,L, pn,L) = (µ⇤
n,L

, p
⇤
n,L

). The presence of H-type workers thus has no

e↵ect on L-type choices. In contrast, the wages and e↵ective queue lengths of the H-type

markets are generally a↵ected by the incentive constraints of L-type workers. We construct

these markets sequentially. If the unconstrained solution for the H-types’ first application,

(µ⇤
1,H , p

⇤
1,H), satisfies the L -type incentive constraints, then the e↵ective queue lengths and

wages in all the H-type markets are determined as in the observable type case, i.e., for all

n = 1, ..., N , (µn,H , pn,H) = (µ⇤
n,H

, p
⇤
n,H

). If, on the other hand, (µ⇤
1,H , p

⇤
1,H) violates the

L-type incentive constraints, (µ1,H , p1,H) is given by the smallest e↵ective queue length and

wage on the isoprofit curve ⇧H such that incentive compatibility holds. In this case, to find

the H-type’s second application, we consider the tangency point between ⇧H and the H-type

worker’s second indi↵erence curve, i.e., the one corresponding to the e↵ective outside option

cH + u1,H . If this point satisfies µ2,H > µ1,H , incentive compatibility does not bind for the

second application and the same is true for the remaining applications. Otherwise, incentive

compatibility also binds for the second application of the H-type workers, in which case they

send their first and second applications to the same market. We repeat this procedure for

the next applications until we reach the last application n = N .

By construction, the candidate separating equilibrium satisfies the incentive constraints

of L-types. Hence, it constitutes an equilibrium as long as H-type workers have no incentives

to send some of their applications to L-type markets. Since p⇤
n,L

< vL�k  cH for all n � 1,

wages in the L-type remain strictly below the high types’ outside option, which means that

those incentive constraints are always satisfied.

9The lemons condition, as e.g. in Daley and Green (2012), is usually stated as cH > vL, for the case of
no entry costs.
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Note that, in equilibrium, H-type workers may send multiple applications to the same

submarket, as illustrated for the case of two applications in Figure 3. This feature does not

arise in the observable type case, as it is driven by the binding incentive constraints.

p

μ

1,L

2,L

1,H = 2,H

I1,L

I2,L

I1,H I2,H

Figure 3: Equilibrium wages and e↵ective queue lengths when workers send two applications,
and incentive constraints bind for both applications of the high type.

Vanishing search frictions. As the number of applications low-productivity workers can

send grows, their incentive constraints become increasingly tight, thereby pushing up the

queue length in the markets where high-productivity workers search. Intuitively, when work-

ers have a large number of applications at their disposal, the opportunity cost of diverting

one of these applications to an H-type market becomes very small. Incentive compatibility

then requires that, as N ! 1, the queue length in the markets to which H-types apply

tends to 1. Thus, as the number of applications grows, H-type workers face increasingly

congested markets. The following proposition shows that, in the limit, the increase in conges-

tion outweighs the larger number of applications for these workers, so that H-type workers

are eventually driven out of the market.

Proposition 2. Assume cH � vL � k. As N ! 1, the probability that an H-type worker

is hired in a separating equilibrium tends to zero. The market utilities for L- and H-type

workers take the following limits:

lim
N!+1

uN,L = vL � cL � k,

lim
N!+1

uN,H = 0.

To prove the result, we consider a candidate separating equilibrium whereH-type workers
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are hired with a strictly positive probability and then construct a profitable deviation for

low types. If low types follow the equilibrium strategy and send all their applications to the

respective L-type markets, their probability of being hired tends to one and their wage to

vL � k. Suppose instead an L-type worker sends half of his applications to the first N/2 L-

type markets and the remaining applications to the H-type market with the lowest e↵ective

queue length. Since N is arbitrarily large, the probability of being hired in one of the L-type

markets is still arbitrarily close to one and the wage is arbitrarily close to vL � k. We then

show that sending half of the applications to the H-type market allows the L-type worker

to be hired in that market with strictly positive probability. Since the wage in the H-type

market is greater than cH , which in turn is greater than vL� k, this portfolio of applications

generates a strictly higher expected wage and thus constitutes a profitable deviation.

4.2 Mild Adverse Selection

We now turn our attention to the most interesting case in our setup, where the lemons

condition fails: cH < vL � k. Under this condition, we will show that allowing workers to

send more than one application has two novel, important implications: (i) equilibria with

perfect market segmentation exist only if N is su�ciently small and (ii) pooling markets may

be active in equilibrium. Also, when (ii) occurs, there are typically multiple ways in which

workers of di↵erent types can pool some of their applications, so the equilibrium is no longer

unique.

We start by presenting the main result. The following proposition shows that there exists

a threshold for the total number of applications N such that a fully separating allocation

constitutes an equilibrium only when N is below that threshold, while a new type of equilib-

rium with a pooling market arises when N is above the threshold. The threshold is identified

by the number of applications at which the payo↵ of the L-types in the equilibrium of the

benchmark case with observable types becomes larger than the H-type’s outside option.

Formally:

l ⌘ min{n 2 N : u⇤
n,L

+ cL > cH}. (11)

To state the result, we will require that vH is su�ciently distinct from vL so that we are

su�ciently far from the private value case. This will imply, as we explain in what follows,

that in equilibrium H-types apply to weakly higher wages than L-types. In the proof of

Proposition 3 we provide an explicit lower bound for vH .

Proposition 3. Assume cH < vL � k.

1. A separating equilibrium where L- and H-types send their applications to distinct sub-

markets exists if and only if N  l.
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2. If N > l, there exists an equilibrium with a single pooling market. In this equilibrium,

L-types send their first l applications to separate submarkets and the remaining appli-

cations to the pooling market. In contrast, H-types send their last l applications to

separate submarkets and their remaining applications to the pooling market.

Separating equilibrium. We first look at the possible existence of a fully separating

equilibrium. As we prove in the Appendix, any such equilibrium must follow the same

construction as the one in Section 4.1.10 This construction implies, as we already men-

tioned, that the incentive constraints of L-type workers are always satisfied. However, since

limn!1 p
⇤
n,L

= vL � k and cH < vL � k, some wages in the L-type markets are now accept-

able to H-type workers when N is su�ciently large. The incentive constraints of the H-type

workers must therefore also be examined. A separating equilibrium exists as long as workers

of type H do not want to send any of their applications to one of the L-type markets.

A necessary and su�cient condition for this to be true is that the L-type workers’ ef-

fective outside option associated with their last application, cL + uN�1,L, remains below the

H-type workers’ outside option, cH , or equivalently, that N  l. When this happens, all

indi↵erence curves of L-type workers are flatter than those of H-type workers. This sorting

condition is precisely the feature that allows firms to screen high-productivity workers on the

basis of their greater propensity to accept longer queue lengths for higher wages. If instead

N is strictly greater than l, then the sorting condition is reversed for the last application(s)

of the L-type workers, and perfect market segmentation cannot be sustained in equilibrium.

Equilibrium with partial pooling. When the separating equilibrium fails to exist (N > l),

Proposition 3 says that there is a partial pooling equilibrium where L-type workers and

H-type workers send a subset of their applications to a single pooling market.

Let us first recall why a pooling market cannot be sustained in equilibrium when N =

1. Suppose an equilibrium existed with a pooling market (µ̄, p̄) attracting both types, as

illustrated by the green point in Figure 4. Since firms attract both types, the isoprofit curve

associated with zero profits lies between ⇧L and ⇧H , as illustrated by the green curve in the

figure. Due to the higher outside option, the indi↵erence curve of theH-type passing through

(µ̄, p̄) is steeper than that of the L-type. This di↵erence in marginal rates of substitution

implies that high types are willing to tolerate longer e↵ective queue lengths than low types in

any market with a wage higher than p̄. In other words, an H-type worker has more to gain by

applying to a wage above p̄ than an L-type worker. If a firm deviates and increases the wage

above p̄, it thus expects to attract only H-type workers. Hence, a marginal increase in the

10The property that H-type workers apply to strictly higher wages than L-type workers—even when the
lemons condition fails—is again guaranteed by the condition vH � v̄H .
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wage and the associated queue length leads to a discrete improvement in the composition of

the applicant pool and thus constitutes a profitable deviation, e↵ectively a cream-skimming

deviation.

p

μ mixed market

I1,L

I1,H

ΠL

ΠH

Figure 4: Cream-skimming deviation in the single-application case.

The result in Proposition 3 shows that this argument against pooling breaks down when

workers can send su�ciently many applications. Before discussing the construction in the

general case, we graphically illustrate the equilibrium in Figure 5 for the special case where

N = 2 and l = 1. There are three active markets: one with a low wage to which each low-

type worker sends his first application (1, L), one with a high wage to which each high-type

worker sends his second application (2, H), and one with an intermediate wage to which

each low- (resp. high-) type worker sends his second (resp. first) application. We refer to

the latter market as the pooling market since both types send applications there. Low types

apply to the pooling market, hoping to receive an o↵er at the wage posted in that market

but at the same time insuring themselves by also sending one application to a lower wage,

where the chance of getting an o↵er is higher. In contrast, for high types, the pooling market

represents the fallback option in case their application to a firm o↵ering a higher wage fails.

As in Figure 4, let p̄ and µ̄, respectively, denote the wage and the e↵ective queue length in the

pooling market. Note, however, that now the isoprofit (green) curve is di↵erent from the one

in Figure 4: the e↵ective composition in the pooling market is not equal to the population

average but worse than that because high types only agree to trade at the pooling wage p̄ if

they receive no o↵er in the high-wage market 2, H.

To be able to claim that the described allocation constitutes an equilibrium, we need to

verify that firms have no incentives to deviate by o↵ering a di↵erent wage. In particular,

we must rule out the profitability of cream-skimming deviations like the one we saw existed
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Figure 5: Wages and e↵ective queue lengths in an equilibrium with a pooling market with
N = 2.

for the pooling allocation in Figure 4, when workers could only send one application. To

assess the profitability of a deviation to a di↵erent wage, we must again determine which

type of worker this wage is more likely to attract. In Figure 5, the L-types’ indi↵erence

curve associated with their second application (the dashed blue curve) is steeper than the

H-types’ indi↵erence curve associated with their first application (solid purple curve). This

happens because in the case of l = 1, the L-types’ e↵ective outside option for their second

application, cL + u
⇤
1,L, is higher than the H-types’ outside option for their first application,

cH . We thus have a reversal of the sorting condition relative to Figure 4: this implies that it

is not the high types who have the most to gain from applying to wages slightly above p̄ but

rather the low types with their second application. Hence, a firm contemplating o↵ering one

of those wages expects to attract only L-type workers, rendering the deviation unprofitable.

For wages below p̄, it is again the low types who have the most to gain, this time by sending

their first application. Hence, firms can only worsen the composition of the set of workers

they attract by deviating to a wage slightly above or below p̄, which means that no profitable

cream-skimming deviation exists.11

The construction in Figure 5 can then be generalized as follows. Low and high types send,

respectively, their first and their last l applications to separate markets, while all remaining

applications are sent to a single pooling market with wage p̄. The terms of trade in the L-

11The reversal of the sorting condition is somewhat reminiscent of the violation of the single crossing
condition found by Chang (2018) in a competitive search model with two-dimensional private information.
In that case, the outside option of traders is exogenous but subject to idiosyncratic (liquidity) shocks. In our
setup, it is instead endogenous, so a given type of seller will have di↵erent preferences depending on which of
his applications we are considering. The implications for the analysis of equilibria are then rather di↵erent.
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type markets are the same as when their type is observable, while the terms of trade in the

pooling market are such that L-types are indi↵erent between sending their l-th application

to the pooling market or to the respective L-type market. The wages and e↵ective queue

lengths in the H-type markets are determined by the L-types’ N -th incentive constraint.

They can be constructed via the sequential procedure explained in Section 4.1.

In the proof of Proposition 3, we show that deviating to a price slightly below or above

p̄ does not allow a firm to improve the composition of the applicant pool in market p̄. This

requires u⇤
l�1,L + cL < cH and uN,L + cL � uN�l,H + cH , so that for wages just below p̄ the

one who gains most is the L-type redirecting his l-th application and for wages just above

p̄ it is the L-type deviating from his N -th application. While the first inequality is satisfied

by the definition of l, the second follows from u
⇤
l,L

+ cL � cH and the fact that both types of

workers send N � l applications to the pooling market and, therefore, have the same chance

of receiving an o↵er there. Hence, firms deviating to wages slightly below or above p̄ expect

to attract only low types. Finally, we need to verify that firms do not find it profitable to

attract L-type workers at any o↵-path wages. This requires that the L-types’ indi↵erence

curves in the candidate equilibrium do not intersect anywhere the isoprofit curve ⇧L. Our

assumption that vH is su�ciently large implies that this property is satisfied.12

Remark 1. We should point out that, besides the equilibrium we illustrated in Figure 5

and whose existence we established more generally in Proposition 3, other partial pooling

equilibria may exist. For instance, if the fraction of high types is su�ciently large, one

can construct equilibria with a single pooling market where low types send fewer than l

applications to separate markets and a larger number of applications than high types to a

pooling market. In these equilibria, the composition of applicants in the pooling market is

strictly worse than in the equilibrium we constructed. However, a fully pooling equilibrium

in which both types send all their applications to the same market never exists. In that case,

the same cream-skimming deviation argument as in the one-application case applies.

Vanishing Search Frictions. When the application capacity N increases, the equilibrium

number of applications that are sent to separate markets remains unchanged and equal to l,

12For a numerical example of the bound for vH , consider the specification vL = 2, cL = 0, cH = 1, k =
0.1, N = 2. It can be verified that u

⇤
1,L + cL ⇡ 1.40 > 1 = cH , so we have l = 1. Hence, the candidate

equilibrium, as described in Proposition 3, is of the partial pooling type (for all vH > vL and � 2 (0, 1)). For
� = 0.5, the bound for vH above which the partial pooling equilibrium is guaranteed to exist is v̄H ⇡ 2.33. If
the share of low-type workers is reduced to � = 0.3, this bound decreases to v̄H ⇡ 2.23. Hence, the higher the
share of high-productivity workers, the more permissive the condition on vH becomes. When vH lies below
this bound, an equilibrium with a single pooling market may not exist, as one of the L-type indi↵erence
curves going through the pooling market may intersect the L-type isoprofit curve. In such a case, firms have
a profitable deviation by posting a wage higher than the pooling wage to attract low types. A partial pooling
equilibrium can still be found for values vH < v̄H , but a di↵erent, more elaborate construction involving
multiple pooling markets is needed.
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so all additional applications go to the pooling market. As N ! 1, the indi↵erence curves

for the last applications sent by low types to the pooling market become increasingly steep,

and hence the queue lengths in the H-type markets tend to 1 (see Figure 6). As a result,

the probability with which an H-type worker is hired outside the pooling market converges

to zero, and the e↵ective composition in the pooling market converges to the population

average. Since the pooling market lies on the L-type indi↵erence curve associated with the

l-th application, the e↵ective queue length in the pooling market remains finite in the limit,

as illustrated in Figure 6.

p

μ

l,L

Figure 6: Wages and e↵ective queue lengths in the equilibrium with one pooling market.

This last property has significant implications for the characteristics of the allocation

obtained in the limit. Since the number of applications low and high types send to the

pooling market tends to infinity as N ! 1, a finite value of µ implies that the probability

with which any type ends up receiving an o↵er in the pooling market converges to one. That

is, the distortion that adverse selection causes in workers’ trading probability relative to the

case with observable types disappears in the limit. In contrast, the probability that a firm

hires a worker in the pooling market remains bounded away from one, and the wage remains

bounded away from �vL+(1��)vH � k. Hence, there is excessive entry in the limit.13 This

is an important result as it shows that, in the presence of adverse selection, the ine�ciency

13This result may suggest that a regulator would find it beneficial to tax entry in the pooling market.
However, referring to Figure 6, we see that such a tax would move the green isoprofit curve to the northwest,
thus moving to the left its intersection point with the indi↵erence curve Il,L, associated with the low types’
l-th application, which exacerbates the excessive entry problem. What the regulator should do is somewhat
the opposite: tax entry in the L-type markets and subsidize entry in the pooling market. The tax in the
L-type markets leads to higher queue lengths in those markets, pushing upwards the indi↵erence curve Il,L

and thereby increasing the queue length in the pooling market.
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of the search equilibrium may not vanish in the limit when workers can send infinitely many

applications to firms. The next proposition establishes this result formally.

Proposition 4. Assume cH < vL � k. Then, as N ! 1, at the equilibrium characterized

in Proposition 3, the workers’ probability of being hired in the pooling market converges to

one and their market utility satisfies

lim
N!1

(�uN,L + (1� �)uN,H) < �(vL � cL) + (1� �)(vH � cH)� k, (12)

hence there is excessive entry in the limit.

Proposition 4 follows directly from the equilibrium characterization in Proposition 3 for

the case N > l and the arguments provided above. In Appendix B.1, we show that the

result extends to all sequences of search equilibria with a single pooling market, as long as

vH is not too close to vL. Intuitively, e�ciency would require that the queue length in this

pooling market tends to 1 and the price approaches �vL + (1 � �)vH � k as the number

of applications per worker grows. We cannot have an equilibrium where only this market is

active, since firms can profitably deviate to lower wages yielding lower queue lengths. Even if

such wages only attract low-productivity workers, the deviation generates a strictly positive

profit for the firm since these workers have a high gain from insuring themselves with their

“early applications” (graphically, the indi↵erence curves associated with those applications

intersect the L-type isoprofit curve). To satisfy the incentive constraints of low-type workers,

we thus need to have a sequence of su�ciently many L-type markets with wages below the

pooling wage. This, however, would violate the incentive constraint of high-type workers,

who would now also want to send some of their applications there. The formal argument

in Appendix B.1 shows that this idea extends to cases in which some separating markets

are active in addition to the pooling market. Hence, under any construction with a single

pooling market, the queue length in this market must be su�ciently small, which means

that firms hire with a probability smaller than one.

The intuition behind the result is that, in order to have e�ciency, the probability of

trade for any application sent to the pooling market should be negligible. This creates

strong incentives for workers to hedge, which firms can profitably exploit.

4.3 Partial Convergence to Akerlof

As N grows, more and more firms and workers become connected with each other, leading

to a reduction of the underlying search friction. In the limit, as N ! 1, the exogenous

search friction disappears altogether. It is then of interest to compare the properties of the

equilibrium allocations we obtain in the limit with those of the equilibria of a Walrasian
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market à la Akerlof (1970), where agents are price takers and there are no search frictions.

Recall that, with binary types (and entry costs), there are two potential equilibria in an

Akerlof economy: a separating one where only low types trade at price vL � k and a pooling

one where both types trade at price �vL + (1� �)vH � k. The separating equilibrium exists

when the lemons condition holds, while the pooling equilibrium exists if cH  �vL + (1 �
�)vH � k. When cH 2 [vL � k, �vL + (1 � �)vH � k], the Akerlof economy thus has two

equilibria.

As shown in Proposition 2 for the case cH � vL � k, as N ! 1, all L-type workers

are hired at a wage equal to their productivity, while H-type workers are forced out of the

market. Hence, under the lemons condition, the search equilibrium allocation converges to

the equilibrium found by Akerlof (1970). When adverse selection is instead mild (cH <

vL � k), we have seen in Proposition 4 that there is a sequence of search equilibria where,

in the limit as N ! 1, all workers are hired in the same market, but there is excessive

entry. The wage in the pooling market is then bounded away from the average productivity

of these workers and thus does not correspond to the market price in the pooling equilibrium

of the Akerlof economy. Moreover, the utility levels attained in the search equilibrium are

lower than the ones in Akerlof’s pooling equilibrium. Hence, there are sequences of search

equilibria that do not converge to an equilibrium allocation with Walrasian markets.

Yet, as already noted in Remark 1, when pooling markets can be sustained in equilibrium,

multiple equilibria exist. An important question is thus whether we can find sequences of

search equilibria that converge to the e�cient pooling equilibrium of Akerlof (1970) when

cH is below the average productivity �vL + (1� �)vH � k. The following result shows that

this is indeed possible. Hence, even if not all sequences of equilibria converge to a Walrasian

equilibrium as in Akerlof (1970), any equilibrium of Akerlof (1970) can be obtained as the

limit of some sequence of search equilibria as N ! 1.

Proposition 5. Assume cH < �vL + (1 � �)vH � k. There exists a threshold v̄H such that

for all vH � v̄H the following holds.
14

For each " > 0 arbitrarily close to zero, we can find

some N" such that for all N > N", an equilibrium exists where

�uN,L + (1� �)uN,H � �(vL � cL) + (1� �)(vH � cH)� k � ". (13)

Starting with the case cH < vL�k, it is useful to recall that for the equilibria with a single

pooling market, e�ciency fails in the limit (see Proposition 4) because the e↵ective queue

length in the pooling market is finite, which is needed to ensure that incentive constraints

14The bound for vH needed in this result is the same as the one of Proposition 3; see Appendix A.3 for
an explicit characterization.
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are satisfied and no profitable deviation exists; hence too many firms enter in equilibrium. In

the proof of Proposition 5 in the Online Appendix, we show that, under the same parameter

conditions, a sequence of equilibria with two pooling markets exists where, as N tends to

infinity, the probability that both types of workers are hired converges to one and, in addition,

entry is e�cient so that firms hire with probability one. The key idea is the following.

The first pooling market takes care of the incentives of workers to hedge by sending some

applications to firms posting lower wages. But now a second pooling market is active and

the wage in this market increases with the total number of applications so that the queue

length approaches infinity in the limit. Since almost all applications are sent to the second

pooling market, firms’ entry is e�cient in the limit. The construction is illustrated in Figure

7.

Turning our attention to the case cH 2 [vL � k, �vL + (1 � �)vH � k), it is easy to see

that incentive compatibility for high types is not an issue here. Since the lemons condition

is satisfied and the wage in any L-type market is always below vL � k, H-type workers will

never want to send any of their applications to such markets. This implies that we can now

let the index of the first application that L-types send to the pooling market grow with N,

to get an arbitrarily high e↵ective queue length in this market. Hence, in the limit, firms

hire with probability one at a wage equal to the average productivity (minus entry costs).

Note further that, by varying how fast the index of this first pooling application grows with

N , one can support many additional equilibria in the limit, whose outcomes lie between

the two equilibrium allocations found by Akerlof, featuring complete pooling and complete

separation.

p

μ

l,L

Figure 7: Wages and e↵ective queue lengths in an equilibrium with two pooling markets.

To sum up, for any equilibrium in Akerlof (1970), we can find a sequence of search
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equilibria that converges to the same allocation as N ! 1. When cH < �vL+(1��)vH �k

holds, other equilibria exist and the multiplicity persists in the limit as the search friction

vanishes. This stands in contrast with the findings of Kircher (2009) for the observable type

case, where search equilibria are always unique. More strikingly, it also stands in contrast

with the results obtained when firms compete strategically in contract o↵ers without search

frictions. Both Attar et al. (2011), with general contracts under non-exclusivity, and e.g.,

Mas-Colell et al. (1995), with exclusive contracting when traded quantities are restricted to

{0, 1}, always find a unique equilibrium outcome, given by the Pareto-dominant equilibrium

allocation in Akerlof (1970).

A key role behind this di↵erence in equilibrium outcomes is played by the fact that in our

environment, firms are interested in hiring at most one worker, i.e., firms compete for workers

but face a capacity constraint. Without any capacity constraint, firms would find it profitable

to deviate from the separating equilibrium by posting higher wages to attract all workers.

In contrast, doing so when they have a capacity constraint would only attract the workers

who are most keen to apply to higher wages and these are the low types.15 Our analysis

therefore suggests that the decentralized property of markets and the fact that traders have

limited market power have important consequences in environments with adverse selection.

Remark 2. Competitive search models with adverse selection and a single opportunity to

contact a potential trading partner, such as Guerrieri et al. (2010), feature the stark property

that the equilibrium outcome does not depend on the type distribution. Thus, the presence

of low types severely distorts the equilibrium allocation for high types, even if the fraction

of low types in the population is very small. The discontinuity in this allocation at the point

where such fraction is zero is sometimes viewed as unappealing (see, for example, Lester et al.,

2019). The same criticism applies to our model if we consider the separating equilibrium.

However, as Proposition 5 shows, if � is close to 0, other equilibria with partial pooling

exist and the e�cient outcome can be approached in the limit as N ! 1. Hence, if we

focus on the most e�cient equilibrium, we can say that, compared to the single-application

benchmark, the discontinuity becomes smaller when workers can send multiple applications

and disappears when N ! 1.

5 Welfare Implications and Policy

When workers’ types are publicly observable, the only e↵ect of increasing the number N of

applications workers can submit is to alleviate the search friction. Hence, the welfare of all

workers in equilibrium, and thus overall ex-ante welfare, unambiguously increases with N .

15What ultimately matters is the presence of some capacity constraint, not that the capacity is one.
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In contrast, when the type of a worker is only privately observed by him, increasing N not

only mitigates the search friction but also a↵ects, as discussed earlier, the set of allocations

that are incentive-compatible. In particular, the possibility of using the di↵erent liquidity

of markets with distinct queue lengths to screen workers is weakened when they can hedge

the risk of not being hired by applying to multiple markets. The welfare consequences of

allowing multiple applications are thus more complex. In this section, we examine the e↵ect

of changes in the meeting technology, captured by changes in N , on the welfare of market

participants.

The fact that screening workers becomes more di�cult as N increases can manifest itself

in two ways. First, in the separating equilibrium, a larger N increases the congestion in high-

type markets. The direct e↵ect of a larger number of applications may initially outweigh this

force, but the increased congestion ultimately dominates as N becomes large enough. As we

saw, high types are driven out of the market and thus unambiguously lose when N ! 1.

Second, the di�culty of screening workers via queue lengths may destroy the possibility of

separation altogether, making partial pooling a necessary feature of the equilibrium. As

discussed in the previous section, this may lead to e�ciency as N becomes large.

Comparative Statics for Small N . Moving the focus away from the limit, it is inter-

esting to consider the welfare e↵ects for workers of smaller increments of their application

capacity. To this end, we will focus on the other extreme, where the number of applications

workers can send increases from N = 1 to N = 2. When N = 1 the equilibrium is always

separating with two active markets, whereas for the case N = 2, we saw that two outcomes

are possible. If cH < vL � k and l = 1 , there is an equilibrium in which workers send

one of their applications to a pooling market; otherwise, the equilibrium remains perfectly

separating as in the case of N = 1.

Considering first the latter case, it is clear that the L-type workers benefit from an

increase in the capacity N . Since their equilibrium allocation is not a↵ected by incentive

constraints and is thus the same as in the observable type case, their expected payo↵ must

increase. As a result of this increase, the indi↵erence curve for their second application, I2,L,

is steeper than the one for their first application.

With regard to the welfare of high types, there are two countervailing e↵ects. An increase

inN , on the one hand, reduces the chance of any single application being successful since, due

to the steeper slope of I2,L, the incentive constraints imposed on the trading probability ofH-

type workers are tighter. On the other hand, by sending two applications, high types can at

least partly o↵set the risk that any given application fails. The first e↵ect disappears—hence

high types gain when N increases—if the incentive constraints of the low-type workers are

slack so that the terms of trade in the H-type markets are not a↵ected by these constraints.
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This happens, for instance, if the gains from trade with H-type workers, vH � cH � k, are

su�ciently small.

In contrast, a su�cient condition for H-type workers to unambiguously lose when moving

from N = 1 to N = 2 is a su�ciently small entry cost k. When entry costs are negligible,

low types already extract almost all the gains from trade with their first application. Their

opportunity cost to send their second application to one of the high-type markets is then

very small, which means they are deterred from doing so only if the trading probability in

such markets is close to zero. Hence, high-type workers are essentially driven out of the

market already when workers send two applications. It then follows that the ex-ante welfare

of workers is lower for N = 2 than for N = 1 since low types gain very little from the

additional application, while the payo↵ loss for high-type workers is non-negligible.

A similar picture arises when an increase from N = 1 to N = 2 implies a switch from

the separating equilibrium to an equilibrium with partial pooling (that is, when cH < vL�k

and l = 1). Since L-type workers are better o↵ when they can pool with H-type workers,

their gain from an increase in the application capacity is even larger in this case. The

welfare e↵ect for H-type workers remains ambiguous and now depends on the share of L-

type workers in the economy. To illustrate this, let us focus again on the limit case where

firms’ entry cost vanishes. As already noticed, for k small, L-type workers extract almost all

the gains from trade with their first application: having assumed limk!0 u
⇤
L,1+ cL = vL > cH

and cH < vL � k, we indeed have l = 1. Letting UH(N) denote the equilibrium utility of

H-type workers when the total number of applications workers can send is N , we can show

the following:

Proposition 6. For any k su�ciently small, there exists some �k 2 (0, 1) such that UH(1) 
UH(2) if and only if cH < vL � k and � < �k.

We already explained why, for k su�ciently small, UH(1)  UH(2) is violated when the

lemons condition holds, so we focus on the case cH < vL � k. In the limit as k ! 0, the

separating equilibrium for N = 1 has low types trading with probability one at price vL.

Similarly, the wage in the H-type market approaches vH as k ! 0, but, due to incentive

compatibility, the workers’ trading probability in that market is strictly smaller than one.16

In the case of N = 2, the equilibrium features partial pooling. The terms of trade in

the L-type market where low types send their first application remain unchanged, while

the queue length in the H-type market where high types send their second application is

higher than in the single-application case. Whether high types gain or lose from an increase

16The limit case k ! 0 is another way of modeling vanishing search frictions. As argued in the Introduction
and seen here, for N = 1, the qualitative features of the search equilibrium are una↵ected when k vanishes.
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in the application capacity depends then on whether the benefit of sending the additional

application to the pooling market outweighs the cost of facing a higher queue length in

the H-type market. For the gain to dominate, the wage in the pooling market has to be

su�ciently high. This requires the average quality of workers in the pooling market to be

su�ciently good and, hence, the fraction of low-productivity workers in the population to

be su�ciently low.

Policy Implications. A natural question is to what extent policy can improve equilibrium

outcomes in our environment. We discuss two kinds of interventions, which di↵er in the

instruments available to the policymaker. This discussion allows us to gain some insights

into the forces at play and the trade-o↵s faced by the policymaker in the design of these

interventions.

First, consider the case in which the policymaker can only control the degree of search

frictions in the market (i.e., set the level of N), e.g. by creating a trading platform that

facilitates meetings. As mentioned, a higher value of N is always welfare-improving under

perfect information (Kircher, 2009). It readily follows from the discussion above that this

is no longer true with adverse selection: depending on parameter values, N = 2 may lead

to either higher or lower ex-ante welfare than N = 1. A similar picture emerges when we

compare N = 1 with N ! 1. Intuitively, although search frictions inhibit trade, they can

serve a socially useful role in environments with adverse selection by facilitating screening.

The policymaker has to balance these forces and will, therefore, not always prefer larger

values of N . This result is consistent with the presence of application caps in various real-

life markets. For example, the number of universities that high-school students in the UK

can apply to was six until 2008. After an evaluation by the Department for Education and

Skills (2006), this number was then reduced to five in order to improve the process. Similarly,

workers can apply to at most 4 of the 15 di↵erent schemes in the United Kingdom’s Civil

Service Fast Stream per annual recruitment cycle.

Alternatively, imagine a policymaker that takes N as given but has the power to deter-

mine which submarkets are active, e.g., by imposing price controls, and to a↵ect the tightness

of these markets, e.g., by imposing taxes or subsidies on entry. By doing so, the policymaker

operates e↵ectively as a social planner who assigns workers and firms to di↵erent submarkets

subject to the search friction, incentive constraints, and individual rationality constraints.

For instance, the policymaker could implement perfect pooling by assigning all firms and

workers to a single submarket. In many environments with adverse selection, pooling—or,

more generally, some cross-subsidization between types—is socially beneficial as it allows

to relax incentives. Davoodalhosseini (2019) establishes this formally for the environment

with N = 1 considered by Guerrieri et al. (2010). When N is larger than 1, the planner’s
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problem is more complex and new trade-o↵s emerge. While there continues to be a benefit

to pooling the applications of di↵erent types of workers, there is also a benefit to separating

the di↵erent applications of each worker, as shown by Kircher (2009).

To illustrate this, we consider the case in which the outside options of the two types of

workers are close to each other and workers send two applications. For this case, the following

proposition establishes that a planner can always increase ex-ante welfare with respect to

the equilibrium allocation by creating two separate submarkets designed in such a way that

both types of workers choose to send one application to each market.17 Furthermore, this

allocation strictly dominates full pooling, i.e., the creation of a single submarket in which all

workers send all their applications.

Proposition 7. For cH su�ciently close to cL, a planner who designs two markets can

generate a higher level of surplus than both the market equilibrium and a planner who designs

a single market (thus implementing full pooling of types and applications).

We show in the proof that no taxes or transfers are needed in order to achieve a higher

surplus, i.e., price controls su�ce.

6 Conclusion

We study a market in which firms post wages to attract applications from workers who have

private information about their productivity. We demonstrate how increasing contacts in

such a market not only decreases search frictions but also reduces firms’ screening ability.

The subtle interaction between these forces generates a rich set of outcomes. In particular,

we find that—in contrast to a situation where each worker can send a single application—

the existence of a fully separating equilibrium is only guaranteed if adverse selection is

su�ciently severe. When this condition is not satisfied, and workers can send su�ciently

many applications, the equilibrium features the presence of pooling markets and multiple

equilibria exist.

We analyze the properties of these equilibria as the number of applications grows large

and, hence, search frictions vanish. While the allocation in the separating search equilibrium

converges to the one with Walrasian markets à la Akerlof (1970), the same is not true for all

equilibria with pooling markets: some of them exhibit frictional trade and thus ine�ciency

in the limit due to excessive entry. Finally, we show that, with adverse selection, the welfare

17Note that this would be the equilibrium outcome if cL were actually equal to cH . Since workers would
have identical preferences in that case, firms would have no way of separating them. The equilibrium
allocation would then be the same as in the observable type case, described in Section 3.2, with the average
productivity �vL + (1� �)vH replacing the type-specific one vi.
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consequences of facilitating contacts among market participants are ambiguous. A variety

of policy implications, some of them rather surprising, can be drawn from our analysis.

In our model, we exogenously fixed the number of applications L- andH-type workers can

send and assumed this number is the same for both types. The benefits of sending additional

applications are, however, generally di↵erent for the two types of workers. Hence, if workers

could choose how many applications to send, facing a fixed cost per application, H-and L-

type workers may make di↵erent choices. In Online Appendix D, we extend the analysis to

this case and show that the total number of applications sent by L-type workers is, in fact,

higher than that for H-type workers. As a consequence, high types send fewer applications

to separate markets and, in many situations, do not trade in such markets, even away from

the limit. Hence, accounting for workers’ application incentives on the extensive margin

reinforces the e↵ect of adverse selection in our environment. Apart from this di↵erence, we

show that the main properties of equilibrium allocations remain valid when the number of

applications sent by each type is endogenously determined.

An interesting avenue for future research would be to extend our model to a dynamic

setting. We expect that our results remain unchanged if matches are long-lived, as long as

the unemployment pool is stationary and firms do not learn the types of their hires. Learn-

ing would add a new interesting dimension and could, for example, endogenously generate

heterogeneity in outside options. We therefore expect that the trade-o↵s characterized in our

paper will remain important. In a labor market context, an interesting question would also

be to what extent the insights of our model could be generated through on-the-job search

rather than simultaneous search, as these mechanisms are known to often have similar ef-

fects (see Burdett and Mortensen, 1998 versus Burdett and Judd, 1983 in random search, or

Delacroix and Shi, 2006 and Menzio and Shi, 2010 versus Kircher, 2009 in directed search).18

Appendix A Proofs

In what follows, we will denote by

Ii(un�1,i, un,i) = {(µ, p) :  (µ)(p� ci � un�1,i) = un,i � un�1,i}

type i = L,H’s indi↵erence curve associated with utility levels un�1,i, un,i and by

⇧� = {(µ, p) : ⌘(µ)(�vL + (1� �)vH � p) = k}

the firms’ isoprofit curve when the fraction of L-types is �.

18We thank Guido Menzio for this insight.
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A.1 Proof of Proposition 1

We first show that in any separating equilibrium, the terms of trade in an L-type market

attracting the n-th application of low-type workers is described as a tangency point of the

isoprofit curve ⇧L and the indi↵erence curve IL(un�1,L, un, L). By Condition 1 of Definition

1, we have (µn,L, pn,L) 2 IL(un�1,L, un,L). Assuming now that (µn,L, pn,L) was not a tangency

point of IL(un�1,L, un, L) with ⇧L, there would exist some (µ̃, p̃) 2 IL(un�1,L, un, L) such that

⌘(µ(p̃))(�(p̃)vL + (1� �)(p̃)vH � p) � ⌘(µ̃)(vL � p̃) > k,

where the first inequality follows from �(p̃) 2 [0, 1] and, by the market-utility condition,

µ(p̃) = max {µ0 � 0 : (µ0
, p) 2 Ii(un�1,i, un,i) for some i = L,H, n = 1, ..., N} .

Hence, firms would have a profitable deviation, so all active L-type markets (µn,L, pn,L), n =

1, .., N must be tangency points of the respective indi↵erence curves with the isoprofit curve

⇧L. Starting from the L-types’ first application, where the outside option is endogenous,

an iterative argument then implies µn,L = µ
⇤
n,L

, pn,L = p
⇤
n,L

and un,L = u
⇤
n,L

for all n =

1, 2, . . . , N . The L-types’ allocation in a separating equilibrium thus coincides with the one

obtained for the observable type case.

Next, we consider the H-type markets in a candidate separating equilibrium. Given the

lemons condition cH � vL � k, there is a unique intersection between the upper envelope

of the low type’s indi↵erence curves IL(u⇤
n�1,L, u

⇤
n,L

), n = 1, ..., N and ⇧H . This intersection

is with IL(u⇤
N�1,L, u

⇤
N,L

). Hence, the only incentive constraint potentially binding is the

one associated with the L-type’s N -th application. Let (µ
H
, p

H
) be the (unique) value of

(µn,H , pn,H) > (µ⇤
N,L

, p
⇤
N,L

) satisfying (µn,H , pn,H) 2 IL(u⇤
N�1,L, uN,L) and (µn,H , pn,H) 2 ⇧H .

Suppose first µ⇤
n,H

� µ
H
for all n � 1. In this case incentive constraints are not binding.

We set for all n, µn,H = µ
⇤
n,H

and un,H = u
⇤
n,H

. Notice that the associated wages satisfy

p
⇤
1,L < p

⇤
2,L < ... < p

⇤
N,L

< p
⇤
1,H < p

⇤
2,H < ... < p

⇤
N,H

. For each p, we set

µ(p) = max{µ :  (µ)(p� ci � un�1,i)  u
⇤
n,i

� u
⇤
n�1,i for some i 2 {L,H}, n  N}

and �(p) = 0 for all p such that the previous max is attained at i = H and �(p) = 0

otherwise. It can be easily verified that this specification of the functions µ and � satisfies

the market utility condition.

If µ⇤
1,H < µ

H
, we follow a recursive procedure to find the e↵ective queue lengths and

market utilities in the H-type markets. We start by setting µ1,H = µ
H

and u1,H =
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 (µH)(p
H

� cH). Given u1,H , we calculate the unconstrained solution of µ2,H . Setting

n = 2, the solution is determined by

(1� e
�µn,H � µn,He

�µn,H )(vH � cH � un�1,H) = k (A.1)

If the value of µ2,H solving this condition is weakly greater than µ
H
, it is the e↵ective queue

length in market (2, H). The associated market utility is

un,H = e
�µn,H (vH � cH) + (1� e

�µn,H )un�1,H (A.2)

The queue lengths and market utilities of the remaining markets (N > 2) are then determined

by the same set of conditions.

If instead µ2,H solving (A.1) for n = 2 is strictly smaller than µ
H
, we set µ2,H = µ

H
.

The market utility u2,H is then determined by (A.2). We repeat the procedure for all n > 2.

Having fixed market utilities in this way, the functions µ, � can be specified as follows. For

all p < p
H

we set �(p) = 1 and for all p � p
H

we set �(p) = 0. For wages p < p
H
,

the queue length µ(p) is then determined as the upper envelope of the indi↵erence curves

IL(u⇤
n�1,L, u

⇤
n,L

), n = 1, ..., N ; for wages p � p
H
, it is determined as the upper envelope of the

indi↵erence curves IH(un�1,H , un,H), n = 1, ..., N with {un,H}Nn=1 specified by the recursive

procedure.

No profitable deviations. The incentives of L-types are satisfied by construction. The equi-

librium thus exists if and only if 1) H-types cannot profit from sending a subset of their

applications to one of the L-type markets, and 2) firms cannot profit from posting an alter-

native wage.

Regarding incentive compatibility of H-type workers, notice that wages in the L-type

markets are bounded above by vL � k. The assumption cH � vL � k then implies that the

wages in the L-type markets are strictly below the H-type’s outside option, hence sending

applications to such markets cannot be profitable for H-types, independent of how many

application workers can send.

As to requirement 2, recall that we set �(p) = 1 for all o↵-path wages p < p
H
and �(p) = 0

for all p � p
H
so as to satisfy the market utility condition (6). Since the L-type indi↵erence

curves, IL(u⇤
n�1,L, u

⇤
n,L

), n = 1, ..., N , are tangent to ⇧L, and the H-type indi↵erence curves

are either tangent (if L-type incentives are slack) or cut ⇧H from below (if L-type incentives

bind), this implies

⌘(µ(p))(�(p)vL + (1� �(p))vH � p)  k,
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as can be easily verified. Hence, in the candidate separating equilibrium, no market partici-

pant has incentives to deviate.

A.2 Proof of Proposition 2

A straightforward extension of Proposition 6 in Kircher (2009) shows that limN!1 u
⇤
N,L

=

vL � cL � k. We now want to prove that the probability with which the H-type is hired

in equilibrium tends to zero. Since wages are bounded above by the firms’ valuation (net

of entry cost), this directly implies limN!1 uN,H = 0. Letting (µ1,H(N), p1,H(N)) describe

the terms of trade in market (1, H) when the number of available applications is N , we can

define the probability of being hired when sending Ñ applications to market (1, H):

↵(Ñ , N) := 1�
�
1�

�
1� e

�µ1,H(N)
�
/µ1,H(N)

�Ñ
.

Since µ1,H  µn,H for all n, ↵(N,N) is an upper bound for the equilibrium probability with

which the H-type is hired when sending N applications.

Now suppose each worker has available 2n+ j applications where n 2 N and j 2 {0, 1}.
If the L-type sends no applications to any of the H-type markets, his payo↵ is u

⇤
2n+i,L

<

vL � cL � k. If instead he sends n + j applications to the L-markets with the lowest n + j

wages and n applications to market (1, H), his payo↵ is

↵(n, 2n+ j)(p1,H(2n+ j)� cL) + (1� ↵(n, 2n+ j))u⇤
n+j,L

. (A.3)

In equilibrium, (A.3) must be smaller than vL � cL � k. Since limn!1 u
⇤
n+j,L

= vL � cL � k

and p1,H(2n+ j)� cL > cH � cL > vL � cL � k, this requires limn!1 ↵(n, 2n+ j) = 0.

Finally, we want to show that ↵(n, 2n+j) ! 0 implies ↵(2n+j, 2n+j) ! 0. To this end,

notice that the function ↵(·, 2n + j) : R ! [0, 1] is strictly increasing and strictly concave

with ↵(0, 2n+ j) = 0. Hence,

↵(n, 2n+ j) >
n

2n+ j
↵(2n+ j, 2n+ j).

Given limN!1 n/(2n + j) = 1/2, this inequality and the property limn!1 ↵(n, 2n + j) = 0

imply limn!1 ↵(2n + j, 2n + j)/2 = 0. Hence, limN!1 ↵(N,N) = 0. As we stated above,

↵(N,N) is an upper bound for the equilibrium probability with which H-type workers are

hired. In the limit this type is hired with probability zero and limN!+1 uN,H = 0.
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A.3 Proof of Proposition 3

Separating equilibrium. The candidate separating equilibrium follows the same con-

struction as in Appendix A.1: L-type markets are as in the observable-type case, H-type

markets are constructed recursively so as to satisfy the L-types’ incentive constraint with

respect to their N -th application. Given that vH is su�ciently large (see below for the

construction of an explicit bound), there is again a unique intersection between the upper

envelope of the low type’s indi↵erence curves IL(u⇤
n�1,L, u

⇤
n,L

), n = 1, ..., N and ⇧H , namely

with IL(u⇤
N�1,L, u

⇤
N,L

). The separating equilibrium constructed in Appendix A.1 is thus the

only candidate for such equilibrium.

No profitable deviations. By the same argument as in Appendix A.1, L-types and firms have

no profitable deviation. In contrast to the case of severe adverse selection, the H-types’

incentive constraints, however, may now be violated. Letting  n,i ⌘  (µn,i) denote the

probability of receiving an o↵er in market i, n, incentive compatibility generally requires

that for any (n, i) 6= (n0
, i

0) with un,i + ci  un0,i0 + ci0 , we have  n,i �  n0,i0 , which follows

from standard arguments. Incentive compatibility for the L-type requires that µ1,H is weakly

greater than µ
1,H

, which is strictly greater than µ
⇤
n,L

for all n  N . This is then compatible

with the incentive constraints of H-types if and only if u⇤
N�1,L + cL  cH , or, equivalently,

if and only if N  l. Hence, given cH < vL � k and vH su�ciently large, a separating

equilibrium exists if and only if N  l.

Partial Pooling Equilibrium. We begin the proof by constructing a candidate equilib-

rium where L-types send the last m applications to the pooling market, while H-types send

the first m
0 applications to that market and, for now, we allow m to di↵er from m

0
. The

first N �m applications of the L-type are sent to separate markets, which are the same as

in equilibrium with observable types (or the separating equilibrium). Hence, the e↵ective

queue lengths and market utilities in these markets are µn,L = µ
⇤
n,L

and un,L = u
⇤
n,L

, for all

n  N �m.

We will first determine the e↵ective queue lengths and wages in the pooling market and

the H-type markets, taking as given the number of applications the two types send to the

pooling market, m andm
0, and the composition in that market, given by the e↵ective fraction

�̄ of L-type workers. Let µ̄ and p̄ be, respectively, the e↵ective queue length and the wage

in the pooling market. We set their values to be such that the L-type is indi↵erent between

sending the N�m-th application to market (N�m,L) and sending it to the pooling market.
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The terms of trade in the pooling market (µ̄, p̄) must then satisfy

(µ̄, p̄) 2
�
⇧�̄ \ IL(u

⇤
N�m�1,L, u

⇤
N�m,L

)
�
. (A.4)

It is easy to verify that this condition has a unique solution on the domain (µ̄, p̄) >

(µ⇤
N�m,L

, p
⇤
N�m,L

). Let us denote such value with µ̄(�̄), p̄(�̄) and set µ̄ = µ̄(�̄), p̄ = p̄(�̄).

To find the utility gains L- and H-types attain by trading in the pooling market, it is

useful to define the probability of receiving an o↵er in a market with e↵ective queue length

µ when sending n � 1 applications to that market:

�(n, µ) := 1� (1�  (µ))n (A.5)

The market utility of H-type workers associated with their first m
0 applications is then

un,H(�̄) = �(n; µ̄(�̄))(p̄(�̄) � cH), n = 1, ...,m0, while the market utility of L-type workers

associated with their last m applications is uN�m+n,L(�̄) = �(n; µ̄(�̄))(p̄(�̄) � cL) + (1 �
�(n, µ̄(�̄)))u⇤

N�m,L
, n = 1, ...,m.

To determine the separating markets to which H-types send their (m+ 1)-th and subse-

quent applications, let (µH(�̄), pH(�̄)) be the unique solution of

(µH , pH) 2 (⇧H \ IL(uN�1,L(�̄), uN,L(�̄))

satisfying (µH , pH) > (µ̄, p̄). Note that pH(�̄) is the lowest wage to which only H-types are

willing to apply. We then need to compare the utility they attain by sending applications

to pH(�̄) and to higher wages, at which incentive constraints no longer bind. When H-types

send n � 1 applications to market pH(�̄), they attain a utility level

um0+n,H = �(n;µ
H
(�̄))(p

H
(�̄)� cH) + (1� �(n, µ

H
(�̄)))um0,H . (A.6)

If the solution for µ of

(1� e
�µ � µe

�µ)(vH � cH � um0+n�1,H) = k (A.7)

is greater than µH(�̄), this means that the unconstrained solution for the (m0 + n)-th appli-

cation (starting from reservation utility um0+n�1,H) is feasible and hence preferred to market

p
H
(�̄). Let n̄ be the lowest value of n for which this happens, that is, at which the L-type

incentive constraint no longer binds. In equilibrium H-types will then send n̄� 1 � 0 appli-

cations to wage p
H
(�̄). For all n � n̄, we set µm0+n,H(�̄) equal to the unconstrained solution,

solving (A.7) for a level of the market utility um0+n,H determined by (10), starting from the
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value um0+n̄�1,H pinned down by (A.6). Set then µm0+n,H(�̄) equal to µH
(�̄) for n = 1, .., n̄�1

and to the unconstrained solution, solving (A.7), for n = n̄, ..N �m
0
.

Using these values we can derive the value of the probability with which anH-type worker

is not hired in one of the H-type markets as a function of the e↵ective composition �̄ in the

pooling market:

⌧H(�̄;m
0) =

N�m
0Y

n=1

(1�  (µm0+n,H(�̄))). (A.8)

For any given m,m
0 � 1, the e↵ective composition �̄ in the pooling market is determined

by:

�̄ =
�m

�m+ ⌧H(�̄;m0)(1� �)m0 (A.9)

To see that (A.9) has a solution, for any m,m
0
, notice that both the left-hand side and the

right-hand-side are continuous in �̄ on (0, 1).19 Since ⌧H(�̄) belongs to (0, 1), the value of

the right-hand side belongs to the interval ( �m

�m+(1��)m0 , 1). As �̄ ! 0 the left-hand side is

then strictly smaller than the right-hand side, which is always greater than �m

�m+(1��)m0 . In

contrast, as �̄ ! 1, the left-hand side is strictly greater than the right-hand side, since for

any given N,m,m
0, lim�̄!1 ⌧H(�̄;m0) > 0. Hence, a solution of (A.9) always exists, consti-

tuting a candidate equilibrium for any m,m
0 � 1.

No profitable deviations. We want to show that for N > l, the candidate equilibrium with

the specification m = m
0 = N � l exists. Incentive constraints of workers are satisfied by

construction. Hence, what we need to show is that firms cannot gain by posting an o↵-path

wage. The following lemma pins down the o↵-path beliefs regarding the composition of

workers in the candidate equilibrium. The proof is in the Online Appendix.

Lemma 8. Consider the candidate equilibrium constructed in Appendix A.3 with m = m
0 =

N � l. For all p 2 [0, p̄) and p 2 (p̄, pH), we have �(p) = 1.

According to Lemma 8, firms believe to attract the L-type when posting a wage below p̄.

Single crossing and L-type’s indi↵erence between sending the l-th application to p
⇤
l,L

and p̄

imply that for any p < p̄, the pair (p, µ(p)) belongs to the upper envelope of the indi↵erence

curves of the L-type’s first l applications. This property and �(p) = 1 imply that there is

no p < p̄ such that ⌘(µ(p))(vL � p) > k.

For wages p belonging to (p̄, pH), the queue length µ(p) is such that

(µ(p), p) 2 IL(uN�1,L, uN,L). (A.10)

19It is immediate to verify that the map µH(�̄), defined above, is continuous in �̄, while for n � n̄ the map
µm0+n,H(�̄) is in fact independent of �̄.
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A su�cient condition for a deviation to such wages not to be profitable is that prices above

p̄ are higher than the net productivity of L-type workers, i.e., p̄ � vL � k. This condition

is satisfied whenever the productivity of H-type workers is su�ciently high, so that the

composition in the mixed market is su�ciently favorable (again, for the construction of an

explicit bound for vH , see below). In this case, the isoprofit curve ⇧L and the indi↵erence

curve IL(uN�1,L, uN,L) have no intersection, so all pairs (p, µ(p)) 2 IL(uN�1,L, uN,L) yield a

negative profit for firms.

Finally, standard arguments imply that firms do not want to deviate to wages p > pH

(where �(p) = 0), as such a deviation would constitute a move away from the unconstrained

solution of the problem of attracting H -types, with reservation utility uN�l,H .

Bound for vH . We now construct an explicit threshold for vH above which the statement

of Proposition 3 holds. To this end, we will construct two thresholds, the first assuring that

firms cannot attract high types to wages below p
⇤
l,L

without violating any L-type incentive

constraints, the second one assuring that firms cannot profit from attracting low types at

wages above p̄ in the candidate equilibrium with partial pooling.

For the first threshold, let us introduce the L-type’s lower contour set in the observable

type allocation, i.e. all the pairs (µ, p) that the L-type worker does not prefer to (µ⇤
n,L

, p
⇤
n,L

)

for all n 2 N:

UL ⌘
�
(µ, p) � (µ⇤

1,L, p
⇤
1,L) : 8n 2 N,  (µ)

�
p� cL � u

⇤
n�1,L

�
 u

⇤
n,L

� u
⇤
n�1,L

 
.

If the di↵erence between vH and vL is su�ciently close to or equal to zero, the set UL has a

non-empty intersection with the H-type isoprofit curve, ⇧H . As vH grows, the intersection

of the two sets shrinks. Let v0
H
be then the largest value of vH such that UL \⇧H 6= ;. Not

that, for vH > v
0
H
, the only incentive-compatible pairs (µ, p) yielding zero profits with the

H-type are the points in ⇧H lying above the intersection with IN,L.

For the second threshold, notice that the probability with which H-types do not receive

an o↵er in the H-type markets in the candidate equilibrium with partial pooling is bounded

below by ⌧H(�, 1), as specified in (A.8), the probability associated to a specification where

both types send one application to the pooling market and the composition in that market is

given by the population average. For any N > l, the actual number of applications going to

the pooling market is greater than one, while the composition is worse than the population

average (�̄ > �). Both changes tighten the incentive constraint and thus imply a higher

probability of H-types not receiving an o↵er in one of the H-type markets. For all N > l,

we thus have ⌧(�̄, N � l) > ⌧(�, 1), with �̄ determined as the fixed point of (A.9). Since

⌧(�, 1) is a lower bound for the probability that H-types do not receive an o↵er in the H-type
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markets, the composition parameter associated to ⌧(�, 1),

�̃ =
�

� + (1� �)⌧(�, 1)
,

constitutes an upper bound for the equilibrium parameter �̄. Consider then the pair (µ, p)

satisfying the following equations:

u
⇤
l,L

� u
⇤
l�1,L =  (µ)

�
p� cL � u

⇤
l�1,L

�
, (A.11)

⌘ (µ) (�̃vL + (1� �̃)vH � p) = k. (A.12)

The (two) solutions of these equations represent the intersections between the L-type indif-

ference curve associated to the l-th application in the observable type case and the firms’

isoprofit curve associated to markets with e↵ective composition �̃. Considering the solution

with the higher value of p, it is immediate to verify that this value is increasing in vH . Let

value v1
H
be the value of vH such that this solution equals p = vL�k. For all vH > v

1
H
, there

can then be no intersection between an indi↵erence curve passing through the point (p, µ),

determined by (A.11-A.12), and the isoprofit curve ⇧L. Since for any N > l, the equilibrium

parameter �̄ is lower than �̃ (there are fewer low types), the same property holds for all

indi↵erence curves passing through the equilibrium pooling market.

We then set v̄H = max{v0
H
, v

1
H
}.

A.4 Proof of Proposition 6

The argument for the case cH � vL � k is in the main text. We thus consider cH < vL � k

and k ! 0.

Case N = 1. The L-type’s utility in the limit as k ! 0 is

u1,L = vL � cL,

as can be seen from (9)-(10). The associated indi↵erence curve is

IL(cL, vL � k) =

⇢
(p, µ) : vL � cL =

1� e
�µ

µ
(p� cL)

�
.

The H-type market in the limit allocation is determined by the intersection of this indi↵er-

ence curve with the vertical isoprofit curve p = vH . The H-types’ limit trading probability

is thus given by

 1,H =
vL � cL

vH � cL
,
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and their limit market utility is

uH(1) =
(vL � cL)(vH � cH)

vH � cL
.

Case N = 2. Since limk!0 uL,1 + cL = vL > cH , we have l = 1. Hence, for N = 2, there

is a partial pooling equilibrium, as described in Proposition 3. Let �̄ be the equilibrium

proportion of low types in the mixed market. In the limit as k ! 0, the trading probability in

the mixed market, denoted by  ̄, is determined by the intersection of the L-type’s indi↵erence

curve and the vertical isoprofit-curve p = �̄vL + (1� �̄)vH :

 ̄ =
vL � cL

�̄vL + (1� �̄)vH � cL
.

The associated equilibrium payo↵ for the L-type as a function of �̄ is then

u2,L =  ̄(�̄vL + (1� �̄)vH � cL) + (1�  ̄)(vL � cL)

=

✓
1 +

(1� �̄)(vH � vL)

(1� �̄)(vH � vL) + (vL � cL)

◆
(vL � cL).

The limit trading probability in the H-market,  2,H , makes the L-type indi↵erent between

sending his second application to the mixed market and the H-market. It is thus determined

by

✓
1 +

(1� �̄)(vH � vL)

(1� �̄)(vH � vL) + (vL � cL)

◆
(vL � cL) =  2,H(vH � cL) + (1�  2,H)(vL � cL)

,  2,H =
(1� �̄)(vL � cL)

(1� �̄)(vH � vL) + vL � cL
.

The H-type’s market utility in the limit as k ! 0 is then

u2,H =  2,H(vH � cH) + (1�  2,H) ̄(�̄vL + (1� �̄)vH � cH). (A.13)

Note that the trading probability in the H-market,  2,H , is strictly decreasing in the equi-

librium composition �̄. That is, the higher the proportion of low types in the mixed market,

the smaller is the probability for high types to trade in the H-market. The H-type’s market

utility is in turn increasing in  2,H and decreasing in �̄. Hence, u2,H is strictly decreasing in

�̄.

Fixed point. The endogenous composition of the mixed market in the limit as k ! 0 is
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determined by the equations

�̄ =
�

� + (1� �)(1�  2,H)
,

 2,H =
(1� �̄)(vL � cL)

(1� �̄)(vH � vL) + vL � cL
.

The first equation can be written as

�̄� + �̄(1� �)(1�  2,H) = � , �̄

1� �̄
(1�  2,H) =

�

1� �
.

Consider now an increase in �. This strictly increases the RHS of the last equation, hence

the LHS must increase as well. Recalling that  2,H is strictly decreasing in �̄ (so 1 �  2,H

is strictly increasing), this requires that �̄ increases. Hence, the composition of the mixed

market �̄ strictly increases in the population parameter � with the following limits.

• As � ! 1, �̄ ! 1,  ̄ ! 1 and  2,H ! 0.

• As � ! 0, �̄ ! 0 and  ̄, 2,H ! vL�cL

vH�cL
=  1,H .

We denote by uH(2) the limit market utility (A.13) with �̄ and  2,H as the fixed point

of the equations above.

Welfare comparison. Having established the limit allocation for k ! 0, we want to argue

that for any k su�ciently small, there is a threshold for �̄k such that uH(1) < uH(2) if � < �̄k

and uH(1) > uH(2) if � > �̄k. We know that the market utility uH(1) is independent of �

and already showed that, in the limit case k ! 0, uH(2) is strictly decreasing in �̄, which in

turn is strictly increasing in �. Hence, the limit market utility u2,H is strictly decreasing in

�. We thus have a threshold �̄ 2 [0, 1] such that the limit values of H-types’ market utilities

satisfy uH(1) < uH(2) if � < �̄ and uH(1) > uH(2) if � > �̄. What remains to be shown is

that this threshold lies on the interior of the unit interval. This follows from

lim
�!0

(uH(2)� uH(1)) = (1� (1�  1,H)
2)(vH � cH)�  1,H(vH � cH)

=  1,H(1�  1,H)(vH � cH) > 0,

and

lim
�!1

(uH(2)� uH(1)) = (vL � cH)�
(vL � cL)(vH � cH)

vH � cL

= �(vH � vL)(cH � cL)

vH � cL
< 0.
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Fermanian, J.-D., Guéant, O., and Pu, J. (2016). The behavior of dealers and clients on
the european corporate bond market: the case of multi-dealer-to-client platforms. Market

microstructure and liquidity, 2(03n04):1750004.
Gale, D. (1996). Equilibria and pareto optima of markets with adverse selection. Economic

Theory, 7(2):207–235.
Gale, D. and Shapley, L. (1962). College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15.
Galenianos, M. and Kircher, P. (2009). Directed search with multiple job applications.

42



Journal of Economic Theory, 114:445–471.
Guerrieri, V., Shimer, R., and Wright, R. (2010). Adverse selection in competitive search
equilibrium. Econometrica, 78(6):1823–1862.

Inderst, R. and Müller, H. M. (2002). Competitive search markets for durable goods. Eco-

nomic Theory, 19:599–622.
Kaya, A. and Kim, K. (2018). Trading dynamics with private buyer signals in the market
for lemons. The Review of Economic Studies, 85(4):2318–2352.

Kim, K. and Pease, M. (2017). Costly search with adverse selection: solicitation curse versus
acceleration blessing. The RAND Journal of Economics, 48(2):526–553.

Kircher, P. (2009). E�ciency of simultaneous search. Journal of Political Economy, 117:861–
913.

Kurlat, P. (2016). Asset markets with heterogeneous information. Econometrica, 84(1):33–
85.

Lauermann, S. and Wolinsky, A. (2016). Search with adverse selection. Econometrica,
84(1):243–315.

Lester, B., Shourideh, A., Venkateswaran, V., and Zetlin-Jones, A. (2019). Screening and
adverse selectionin frictional markets. Journal of Political Economy, 127(1):338–377.

Lester, B., Visschers, L., and Woltho↵, R. (2015). Meeting technologies and optimal trading
mechanisms in competitive search markets. Journal of Economic Theory, 155:1–15.

Martinelli, P. and Menzio, G. (2020). Declining search frictions, unemployment, and growth.
Journal of Political Economy, 128(12):4387–4437.

Mas-Colell, A., Whinston, M. D., Green, J. R., et al. (1995). Microeconomic theory, volume 1.
Oxford university press New York.

McCall, J. (1970). Economics of information and job search. Quarterly Journal of Economics,
84(1):113–126.

Menzio, G. and Shi, S. (2010). Block recursive equilibria for stochastic models of search on
the job. Journal of Economic Theory, 145(4):1453–1494.

Riggs, L., Onur, E., Rei↵en, D., and Zhu, H. (2020). Swap trading after dodd-frank: Evidence
from index cds. Journal of Financial Economics, 137(3):857–886.

Shimer, R. (2005). The assignment of workers to jobs in an economy with coordination
frictions. Journal of Political Economy, 113(5):996–1025.

Varian, H. (1980). A model of sales. American Economic Review, 70(4):651–659.
Woltho↵, R. P. (2018). Applications and interviews: Firms’ recruiting decisions in a frictional
labor market. Review of Economic Studies, 85(2):1314–1351.

Wright, R., Kircher, P., Julien, B., and Guerrieri, V. (2021). Directed search: A guided tour.
Journal of Economic Literature, 59(1):90–148.

43


	Introduction
	Environment
	Preliminaries
	Indifference and Isoprofit Curves
	Observable Types

	Equilibria with Adverse Selection
	Severe Adverse Selection
	Mild Adverse Selection
	Partial Convergence to Akerlof

	Welfare Implications and Policy
	Conclusion
	Appendix Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 6


