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Economic research on entertainment is scant despite its large share of time use. We 

test economic theories of belief-based utility in the context of video-game engagement. 

Using data on 2.8 million matches from League of Legends, we find evidence supporting 

reference-dependent preferences, loss aversion, preferences for surprise and suspense, 

preferences for clumped surprise, and flow theory from psychology. We then leverage our 

estimated model and an evolutionary algorithm to find the information-revealing process 

that maximizes player engagement. We find that the optimal version of the game has 

increased game play equivalent to 43% of the winner-loser gap.
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1 Introduction

People spend a lot of time on leisure. The American Time Use Survey reveals that adults in the

United States spend roughly one-fifth of their waking hours consuming entertainment (Aguiar et al.,

2012). This is about 25% more time than they spend working. Nearly 9% of all leisure time is spent

on “playing games and computer use for leisure.” Imputing the average wage of an American, this

represents a shadow value of $540 billion per year. The U.S. video game industry earned revenues

of $180 billion in 2020, which is more than the revenues of the global movie and North American

sports industries combined.1 Yet the economic and scientific literature on video games is scarce.

In this study, we analyze preferences for entertainment in the context of video games.

We focus on how players’ experiences throughout the game a↵ect continued play. We posit that

an important component of the player experience is how their beliefs about victory evolve over

the course of the match. Advances in economic theory model preferences over beliefs. We thus

start this paper by presenting the leading theoretical approaches to belief-based utility and their

predictions for continued play.

First, players may have a preference for anticipating victory, and therefore prefer to expect

to win (Loewenstein, 1987; Caplin and Leahy, 2001). Second, players may have prospect-theory

preferences and compare the match outcome to a reference point (Kahneman and Tversky, 1979).

Third, players may value suspense – the expectation that an important event will occur – or surprise

– experiencing the unexpected (Ely, Frankel and Kamenica, 2015). And fourth, players may have

reference-dependent utility with a reference point determined by their expectations (Kahneman

and Tversky, 1979; Kőszegi and Rabin, 2006). Our theoretical analysis then informs our empirical

model for testing the key predictions of each of these theories.

We also examine the importance of flow theory, one of the most prominent theories in psychology

for understanding motivation and enjoyment in leisure activities. Flow is described as a pleasurable

highly-engaged state in which a person loses sense of oneself (Csikszentmihalyi and Larson, 2014;

Nakamura and Csikszentmihalyi, 2009). This state of flow occurs when the challenge level of an

activity is matched to the skill level of the actor.

We explore the e↵ect of how beliefs evolve over the course of a game on subsequent game-

play using data from League of Legends, one of the most popular PC titles played globally with

151 million monthly users.2 In League of Legends, two 5-player teams fight for approximately 30

minutes to destroy the opposing team’s base. We proxy players’ beliefs about winning by estimating

the objective probability of winning at time t given the game state. Using a data set of 2.8 million

matches composed of approximately 84 million minutes, we construct a minute-by-minute prediction

of which team will be victorious. The estimated belief-paths represent the rational expectations of

a well-calibrated player. We then observe how the belief-paths a↵ect 28 million players’ subsequent

decisions to play another match in due course.

1See https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combine
d-thanks-to-the-pandemic-11608654990.

2This number is from https://activeplayer.io/league-of-legends/ sourced on Aug 4, 2023.

1

https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://activeplayer.io/league-of-legends/


Our data set allows us to test for the presence of di↵erent kinds of preferences for beliefs. First,

we operationalize anticipatory utility as a preference for a high average probability of victory.

The more likely victory is, the more anticipatory utility is generated. Second, we operationalize

prospect theory by setting the reference point to the average beliefs of victory throughout the game.

Third, we estimate the e↵ects of suspense and surprise throughout the game. Our predictive model

allows us to create a minute-by-minute measure of surprise and suspense, and we can test whether

matches that are more surprising or more suspenseful lead to greater engagement, as measured by

the probability of playing another match. Fourth, we test whether people have a preference for

clumped rather than smooth information revelation as predicted by expectations-based reference-

dependent utility. Fifth, to test for flow theory, we proxy the challenge level of the match as the

probability of victory at minute zero which varies depending on the player compositions. After all,

flow theory predicts that players are most engaged when they are challenged to the right degree.

Overall, we find evidence that attributes of the belief-path have a significant e↵ect on continued

game-play.3 We first establish that winning a match leads to a higher probability of playing another

match in the next 60 minutes. We use this win-loss gap as a benchmark for comparing e↵ect sizes

of the di↵erent belief-paths.

We then document our main findings. First, we find that the average probability of winning has

a strong and significant negative e↵ect on continued game-play, conditional on victory or defeat. A

standard deviation increase in the average probability leads to a decrease in continued play equal

to 1.5⇥ the win-loss gap for losers and 1⇥ the win-loss gap for winners. This significantly larger

e↵ect for losers is consistent with loss aversion. Second, we find that average surprise is associated

with less continued play, but average suspense is associated with more continued play, especially

for losers. Because surprise and suspense are correlated, these e↵ects tend to counteract each other

somewhat. Third, we find evidence for the flow-theory prediction, that there is an interior optimal

challenge level at minute zero. We find that this interior optimum exists conditional on winning,

but it does not exist conditional on losing. Winners play the most when the initial chance of victory

is slightly higher than even, at 0.57. Finally, we find that clumped surprise leads to more game-play

for losers, but less for winners.

These results naturally lead to a broader question: how should one design the revelation of

information in an entertainment product? One can think of a match as if the winner is pre-destined

but unrevealed, and the match is a gradual revelation of the winner’s identity. As a result, League

of Legends, the game, can be abstracted as a data-generating process that produces belief-paths,4

and we can estimate the optimal distribution of these belief-paths.

We use the predictions of our theoretically motivated regression model as the objective function.

Using an evolutionary algorithm, we then search for locally optimal versions of League of Legends

in game-space. The evolutionary structural analysis implies that the information revelation could

be changed to produce meaningfully more game-play. The e↵ect is large enough to make players

3Throughout the paper, we will refer to the vector of victory probabilities over time and the vector of suspense
over time collectively as the belief-path.

4Ely, Frankel and Kamenica (2015) refer to this as the belief martingale.
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feel like 43% more of a winner in expectation. The optimized game exhibits notable di↵erences

from information revelation in League of Legends. It has greater information revelation in the first

five minutes but decreased information revelation for later minutes. We also use gradient-boosted

estimation to construct an objective function for evolutionary optimization. This optimization

of the information structure produced larger gains on the order of 103% more of a winner in

expectation. We conclude that this high-dimensional atheoretic estimation method discovered

other dimensions of the game capable of improving subsequent game-play.

We view this paper as making two key contributions. First, we extend the literature on how

beliefs a↵ect the value of entertainment products. Second, we contribute by developing a method

for counterfactual game-optimization analysis. We show how structural modeling with evolutionary

optimization can improve the data-generating process to produce more engaging beliefs. As far as

we are aware, this is a novel structural approach in economics and has implications for game-design,

entertainment design more generally, as well as theories of beliefs-based utility.

After reviewing related literature, we present our conceptual framework in Section 2. Section 3

explains our data, and Section 4 presents our match-level regression analysis. In Section 5 we show

our counterfactual game-design analysis. The discussion is in Section 6 and Section 7 concludes.

1.1 Related Literature

The academic literature on video game-play begins with Malone (1981), who hypothesized that

challenge, fantasy, and curiosity create engagement. He surveyed children on their experiences

playing several simple computer games. This style of analysis, surveying players on their motiva-

tions and experiences and connecting it to outcomes like self-reported engagement and motivation,

has been extended by Ryan, Rigby and Przybylski (2006), Przybylski, Rigby and Ryan (2010),

Ho↵man and Nadelson (2010), and Tang, Kucek and Toepfer (2022). Ryan, Rigby and Przybylski

(2006), for instance, show that a self-reported sense of autonomy and competence are correlated

with continued game play.5 Huang, Jasin and Manchanda (2019) estimate a hidden-Markov model

on the frequency and volume of game-play, using a large panel data set of video-game players in

a first-person shooter game. Their primary variable is the hidden psychological state of “engage-

ment”, which, when high, is meant to induce greater frequency and volume. They find that the

length of time of neither moving up nor down in rank within the meta-tournament of the game

leads to lower psychological engagement. They then use their structurally estimated model to con-

duct counterfactual analysis on the player-matching algorithm and find that a “learn and exploit”

algorithm leads to greater predicted game-play than a nearest-rank matching algorithm.

Since Ely, Frankel and Kamenica (2015), several published papers in the domain of sports

have estimated suspense and surprise empirically. First, Olson and Stone (2014) solve for the

5Relatedly, Nguyen (2020) presents a philosophical theory of games as an art of agency. Core to their theory, is
the notion that players temporarily adopt goals that they otherwise do not care about (e.g., getting a ball through
a hoop) so that they can experience a sense of playful striving. In their theory, the pleasure of playing games comes
from this striving, and comes from the capacity to experience alternative clearly defined “agencies” across di↵erent
games with di↵erent goals and di↵erent rules.
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tournament format that maximizes suspense for college football playo↵s. Five subsequent papers

estimate the e↵ects of in-game suspense and surprise in professional sports games on spectator

viewership. Bizzozero, Flepp and Franck (2016), using 80 men’s single tennis matches, find that

suspense and surprise increases viewership. The e↵ects of surprise are roughly 2 to 5 times larger

than suspense, and the e↵ects of both are larger in the latter half of the game. Buraimo et al.

(2020) find that, in 540 British football matches, suspense and surprise increase viewership. In

contrast to Bizzozero, Flepp and Franck (2016), they find that the e↵ects of suspense are much

larger than surprise and they do not see meaningful di↵erences between the first and second halves.

They also define the concept of “shock,” a measure of deviation from one’s prior. The “shock”

at time t, calculated as the Euclidean distance between the beliefs at the beginning of the match

and beliefs at time t, has an e↵ect, though small. Kaplan (2020) examines the e↵ect of player

skill, suspense, and surprise in 477 NBA basketball games. He also finds positive significant e↵ects

from suspense and surprise on viewership. Simonov, Ursu and Zheng (2020) estimate the e↵ects of

suspense and surprise in e-sports. Using a sample of 104 professional games in a Counterstrike GO

tournament and observing viewership on Twitch.TV channels, they find positive e↵ects of suspense

but little e↵ect of surprise on viewership. Finally, Liu, Shum and Uetake (2020) turn to professional

Japanese baseball. The unique advantage of their data is that they have eye-gaze metrics on their

viewers, so they know whether the viewers are attentive or not. Using 877 games they estimate

a statistical model and apply it to 41 games with eye-gaze data. They find that viewers attend

more from suspense than from surprise. However, commercials are more highly attended during

surprising moments than during suspenseful moments.

There are several important di↵erences between our paper and the recent empirical literature on

suspense and surprise in professional sports and e-sports. Rather than using third-party viewership

as an outcome, we use players’ continued engagement as our outcome. This has three implications.

First, unlike the viewership studies, we know who is rooting for whom – players are rooting for

themselves. This allows us to examine directional (up vs. down) e↵ects of beliefs on the outcome.

Specifically, we look at the e↵ect of trailing or leading on subsequent game-play. Second, the

outcome is not a contemporaneous response to what is happening at the current moment. Instead,

the outcome at the end of the game is based on the entire belief-path that transpired. Players make

an ex-post evaluation and then decide to engage or walk away. In this sense, continued game-play

is an appropriate metric for comparing matches to each other, as players are evaluating matches as

a whole. Ex-post evaluative outcomes are arguably a better metric for game design as ultimately

players and viewers decide to engage with subsequent matches based on their experiences with past

matches. In contrast, viewership is an appropriate metric for within-match comparisons, as viewers

tune-in or -out based on exciting moments in the current match.6 Third, some players win and

6While contemporaneous outcomes are useful metrics for game design, there are serious causes for concern. For
example, suppose a player breaks a rule and the referee permits the behavior. This is a shocking event that may
retain much viewership. An econometrician may then recommend that players break more rules and that referees
ignore more violations. But a game without rules is probably boring to watch, and so the econometrician’s advice
may lower total viewership. In contrast, if the econometrician used an ex-post outcome such as subsequent viewership
of another match, this outcome would likely capture growing dissatisfaction with the game.
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some players lose. The ex post evaluation of the probability paths may be colored by the final

outcome. We can therefore di↵erentiate the e↵ect of beliefs on losers and winners in our analyses.

Another di↵erence from the literature, with the exception of Simonov, Ursu and Zheng (2020),

is that we use video games instead of traditional sports. Video games are understudied in economics

relative to their market size. However, due to their digital nature, the opportunities for high-quality

data are better. Our 2.8 million matches represent roughly one thousand times more matches than

all of the previous studies on suspense and surprise combined, and about an order of magnitude

more matches than the sum of all Major League Baseball, National Football League, and National

Basketball Association matches through their respective histories.

The literature on reference-dependent preferences in games is thinner but present. Coates,

Humphreys and Zhou (2014) use a model of reference-dependent preferences to motivate the un-

certainty of outcome hypothesis, which states that greater outcome uncertainty leads to greater

attendance at sports matches. They find evidence for reference dependence using Major League

Baseball data. Pope and Schweitzer (2011) show that professional golfers are loss averse. Bartling,

Brandes and Schunk (2015) show that professional soccer players breach the rules of the game,

measured by the referee’s assignment of cards, significantly more often if their teams are behind

the expected match outcome.

There are a couple of related papers that connect the psychological concept of flow to games.

Acland (2020) uses panel data in an online word game to classify players by their relative skill

and the relative challenge that they seek. He classifies players as flow-players if they have high-

relative skill and seek high-relative challenge. He finds that flow-players are the most likely to use

the in-game commitment device to limit play. Abuhamdeh and Csikszentmihalyi (2012) studied

flow in online chess games. Because flow theory states that flow occurs when high skill is met

with high challenge, they hypothesized an inverted-U shape pattern of enjoyment as a function of

one’s relative skill over one’s opponent. They found this inverted-U pattern: player enjoyment was

maximized when facing an opponent approximately 250 Elo points higher.7

2 Conceptual Framework

In this section, we present a theoretical motivation for our empirical analysis, largely following the

existing literature. We define a player’s utility over features of the path that their beliefs about the

probability of winning follow throughout a match and derive implications for players’ preferences

over matches. In our model, players don’t choose their beliefs. Rather players’ beliefs are updated

rationally throughout a match as the game generates more data indicating which team is likely to

win.

Our key measure of a player’s engagement is whether the player chooses to continue playing

another match after the current one finishes. Importantly, we assume positive adjacent comple-

mentarity (Becker and Murphy, 1988), which means that when players complete a higher-utility

7Elo is a rating metric used in chess.
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match it increases demand for another match (i.e., it increases engagement). We briefly discuss five

models: anticipatory utility, prospect theory, suspense and surprise, expectations-based reference

dependence, and flow theory. After presenting a model for utility over matches, we explore the

game-design implications.

2.1 Utility over Matches

2.1.1 Anticipatory Utility

We first consider a model of anticipatory utility following Caplin and Leahy (2001) which allows

for a general class of anticipatory emotions. This model incorporates anticipatory emotions such

as fear and anxiety and models how lotteries influence these emotions.

When we think of any feelings of anticipatory utility or anxiety, we posit that both winners and

losers prefer the higher probability of winning throughout the game. Formally, we define w 2 {0, 1}
be the outcome of a single match, where 1 corresponds to a win and 0 corresponds to a loss. Let

p = {pt}Tt=0, where pt := E[w|ht] denotes the probability of winning given the history ht of game

states up to t. Then p is a probability path that represents rational beliefs about the probability

of victory at each minute. Note that pT = w, since the outcome is realized in the last minute of

the match.

We define the following function that characterizes the anticipatory utility received by a player

from a match that followed the probability path p.

UAU (p) :=
TX

t=0

v (pt) , (1)

where dv(pt)
dpt

> 0.

Proposition 1 (Anticipatory Utility or Anxiety). Under UAU , players would prefer to think they

are winning, i.e.,

dUAU

dp̄
> 0.

Proof. The sum of increasing functions is increasing in the average of the argument, i.e.,

dUAU

dp̄
=

d
PT

t=0 v (pt)

d
PT

t=0
1
T pt

=
d
PT

t=0 v (pt)

d
PT

t=0
1
T pt

dpt
dpt

=
d
PT

t=0 v (pt)

dpt| {z }
>0

 
d
PT

t=0
1
T pt

dpt

!�1

| {z }
>0

> 0.
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2.1.2 Prospect Theory

Using the same setup, we now assume that the player derives utility at the end of the match based

on how the realized outcome (w) compares to a reference point formed throughout the match.

Specifically, she compares the utility z > 0 from winning and 0 from losing to a reference point

p̄ := 1
T

P
t pt, the average probability of winning she perceived throughout the match. In other

words, the player compares the realized outcome of the match to the average of what they thought

was going to be the outcome throughout the match.The prospect theory (PT) utility from the

realization of the match p is:

UPT (p) := v (zw � p̄z) = v ((w � p̄)z) , (2)

where v(x) equals ⌘x (with ⌘ > 0) for x � 0 and ⌘�x (with � > 1) for x < 0.

Proposition 2 (Comparative statics with respect to the reference point). Under UPT and � > 1,

players would prefer to think they were losing, especially when they are losing; i.e.,

dUPT

dp̄

����
w=0

<
dUPT

dp̄

����
w=1

< 0

Proof. The result follows from the fact that 1� p̄ � 0 � �p̄. Formally:

dUPT

dp̄
= �zv0 ((w � p̄)z) =

(
�⌘�z if w = 0

�⌘z if w = 1,
(3)

where �⌘�z < �⌘z because ⌘, z > 0 and � > 1.

2.1.3 Suspense and Surprise

Players derive utility from suspense and surprise (SS) throughout the game, defined as:

surpriset := |pt � pt�1|

suspenset :=
p
E[(pt+1 � pt)2])

We assume that players collect minute-by-minute utility from suspense and surprise as follows:

uSSt = �surp
1 surpriset + �susp

1 suspenset.

Then, the relevant utility of the match is the average of uSSt over the game:

USS(p) := �surp
1 surpriset + �susp

1 suspenset.

Definition 1 (Preference for surprise). Players have a preference for surprise when �surp
1 > 0.

Definition 2 (Preference for suspense). Players have a preference for suspense when �susp
1 > 0.
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2.1.4 Expectations-Based Reference Dependence

We now assume that players derive utility from their beliefs about winning pt throughout the game

relative to an expectations-based reference point as in Kőszegi and Rabin (2006, 2007, 2009). More

specifically, the agent derives gain-loss utility in each period t from being positively or negatively

surprised relative to his or her reference point. The reference point updates throughout the game.

Overall utility equals:

UKR(p) =
TX

t=0

�t
Z Z

n(u(c)� u(r))dFpt+1(c)dFpt(r)

where n(x) equals ⌘x for x > 0 and ⌘� for x  0.

Proposition 3 (Preference for clumped versus smooth). If �t ⇡ �t+1 ⇡ 1 and t is small, then

U(p̃) > U(p) if the belief-path p̃ is more clumped than p, i.e., for at least one t, t + 1, and t + 2

when pt+2 = p̃t+2, pt = p̃t, pt+1 6= pt, and p̃t+1 = p̃t, then U(p̃) > U(p).

The proof is in Appendix A. In turn, note that �t in the proof represents the volatility of pt, i.e.,

�t =
1
N

P
(pt � pt�1)2, which is proportional to the squared surprise, i.e., surprise2t of the game.

The expectations-based reference-dependent agent thus prefers games with higher surprise2t .

2.1.5 Flow Theory

The final theory considering beliefs at specific moments is the theory of flow (Csikszentmihalyi and

Larson, 2014). When a person is engaged in an activity that challenges but does not overwhelm

their skill, with proximate goals and immediate feedback, the person may enter a flow state. A flow

state is characterized by intense concentration on the present moment, a loss of self-awareness, a

distortion of the sense of time, and intrinsic reward. Video games are highly sophisticated fine-tuned

media that reliably deliver flow states to players (Cowley et al., 2008).

The primary relevance of flow to our analysis of beliefs is that flow states are induced only when

the challenge matches a person’s skill level. The probability of winning at the start of the game

(p0) reflects only the challenge level as there has not yet been a record of performance. Variation

in the initial conditions of a match creates variation in the ex ante chances of winning centered at

50%, but with non-negligible variance that is plausibly random.89

Definition 2.1 (Flow). Enjoyment has a unique interior maximum as a function of p0.
8There are two sources of variation prior to the start of the match. The first is player skill level, which is not

observable to the players. The matching algorithm randomly assembles teams so that the skill is balanced on average,
but there will be variation as all team members will not be at the same skill level. Second, after teams have been
assembled but before the clock starts, players choose a champion, each with di↵erent abilities, and a role (this is
observable to the players). The designers balance each game to make champions equally powerful but the balance is
never perfect, and champions may have strategic advantages or disadvantages depending on the champion selection
of the other players.

9Our interpretation of the e↵ect of p0 in the context of flow is that this represents the ex ante challenge of the
match. Our use of the pt in the context of the other theories is as a proxy for player beliefs.
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2.2 Empirical Analogy

Taking all five utility functions into account, the utility of belief-path p is:

U(p) := UAU (p) + UPT (p) + USS(p) + UKR(p) + UF (p).

We can then test the key predictions of all utility functions in the following specification:

ContinuedP lay = (�AU
1 + �PT

1 )p̄+ �surp
1 surpriset + (�surp

2 + �KR
2 )surprise2t

+ �susp
1 suspenset + �F

1 p0 + �F
2 p

2
0 (4)

We estimate this specification separately for winners and losers to allow the coe�cients to di↵er

conditional on the outcome.

We are unable to identify �AU
1 and �PT

1 individually, but we are able to identify the sum of

the two. Because anticipatory utility predicts a positive coe�cient estimate of p̄ and prospect

theory predicts a negative one, the sign on the coe�cient indicates the comparative relevance of

the two theories. A positive coe�cient implies that anticipatory utility dominates, and a negative

coe�cient implies that prospect theory dominates. If �AU
1 = 0, then the regression specification

identifies ⌘, the relative importance of gain-loss utility. Moreover, by comparing the coe�cients on

p̄ for winners and losers the specification also identifies �, the degree of loss aversion.

A preference for surprise and suspense is tested by estimating the coe�cients on the match-

averages of these variables, as well as their squared counterparts. The squared term tests whether

there is a preference for clumped surprise. That said, we are unable to separately identify �surp
2 and

�KR
2 , though again we can identify the sum of the two. The latter is assumed to be weakly positive.

Thus if the sum of the two are negative, we can infer �surp
2 < 0 and �surp

2 < ��KR
2 , i.e., if the coe�-

cient on the average of squared surprise is negative, we can infer that whatever expectations-based

reference-dependent preferences exist for clumpy information, they are dominated by a preference

for smooth surprise.

Preferences for flow are captured by the coe�cients on p0 and p20. Flow theory predicts that

�F
1 > 0 and �F

2 < 0, which would generate single-peaked preferences for “challenge.”

The belief-path is high-dimensional, so there are certainly other specifications one can run based

on many possible features of the belief-path. These are the ones we chose, motivated by theory.10

10We suspect that there is an emotional di↵erence between positive surprises, that is shifts in beliefs towards the
desired outcome (win), and negative surprises, shifts in belief to the undesired outcome (loss). Moment to moment,
these shifts may be experienced very di↵erently. However, as we aggregate over an entire match, the total positive
surprise minus the total negative surprise must always equal �p0, on a loss, or 1� p0, on a win. Thus at the match
level, conditional on win status, average positive surprise and average negative surprise are linear combinations of p0
and average surprise. Thus we cannot add them to our specifications.
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2.3 Theory of Game Design

There are two levels of empirical analysis we consider in this paper. The first is the match-level

analysis in which a player experiences a belief-path and then makes a continuation choice. The

second level is what we call the game-level analysis, which is relevant for the game designers. Belief-

paths are not born in isolation. They come from a distribution of belief-paths generated by the

game. In other words, we can think of a game, G, as a probability measure over the set of possible

belief-paths. We refer to a single draw of a belief path from the game as a match. The aim of

this section is to provide some intuition and theorems for the game design problem. We draw on

Lemma 1 from Ely, Frankel and Kamenica (2015) which allows us to focus on G without having to

consider the information policy that induces G.

The analogues to all previous propositions and definitions of anticipatory utility, suspense and

surprise, reference-dependence, and flow extend right away. For prospect theory, the game design

problem provides a prediction for early versus late resolution of uncertainty.

2.3.1 Prospect Theory

We first consider the game design problem assuming only the prospect theory utility from the

realized outcome. The prospect theory utility that a player expects from game G is:

ŨPT (G) :=

Z
UP (p)dG(p) =

Z
v ((w � p̄; ⌘, �)w) dG(p).

Under this utility function, the player forms expectation p̄ throughout the match and receives

prospect theory utility based on the outcome relative to their expectation. Proposition 2 tells us

that, given the shape of v, players would always prefer to have thought they were losing throughout

the match—i.e. to have a lower p̄.

From a game design perspective, an important question is what this implies about whether a

game should reveal information about who is likely to win earlier or later in the match. To explore

this, we consider a perturbation of a game that reveals some information slightly earlier and ask

whether players would prefer the perturbed game.

For any game G, define Gt to be the same game as G, except the information from t and t+ 1

are both revealed at t. In other words, the game Gt is almost the same game as G, except it reveals

the information slightly earlier, from t+ 1 one minute earlier at t.11 Formally, for any belief-path

p generated by G, the game Gt generates belief-path p0 so that p0⌧ = p⌧ for all ⌧ 6= t and p0t = pt+1.

Comparing preferences for Gt relative to G provides insights into whether players prefer games

with early or late information revelation. Players who prefer Gt to G prefer earlier revelation,

whereas players that prefer G to Gt prefer later revelation. Proposition 4 shows that losers prefer

games that reveal information earlier, and winners prefer games that reveal information later.

11Note that this makes minute t+ 1 a “dead minute” with no new information in matches generated by Gt.
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Proposition 4 (Preference for early versus late resolution). For any game G and perturbation

Gt, losers prefer Gt—i.e. that information be revealed earlier—and winners prefer G—i.e. that

information be revealed later.

The proof is in Appendix A. Intuitively, the proof follows from the fact that earlier revelations

will tend to move p̄ towards the realized outcome. This will be preferred by the eventual loser,

since w � p̄ will tend to be less negative if the game generates matches with smaller p̄. For the

eventual winner, on the other hand, moving towards the realized outcome means that w � p̄ will

be less positive.

2.3.2 Suspense and Surprise

Ely, Frankel and Kamenica (2015) provide a thorough treatment of the game design problem in

Section IV and V of their paper. Their Lemma 2 shows that the suspense-maximizing information

policy—i.e., the game that maximizes suspense—fully reveals the outcome by the end of the match.

Moreover, it shows that fixing game length and p0, any game that fully reveals the outcome has a

fixed budget of suspense. One consequence of this is that if preferences for suspense are linear in

total suspense, then all games with the same distribution of p0 and match length provide the same

expected utility from suspense. However, if players have concave preferences in minute-by-minute

suspense, a suspense-optimal game will smooth the suspense over the match. In fact, the authors

show how to construct a suspense-optimal information policy (i.e. game) that holds suspense fixed

throughout the match. Ely, Frankel and Kamenica (2015) likewise derive the properties of surprise-

optimal information policies for a more limited set of cases. These policies are less straightforward

than suspense-optimal policies and the results mostly demonstrate that little is guaranteed for

surprise-optimal policies. For example, they may reveal the winner before the final period or not

at all, uncertainty may increase or decrease over time, and realized surprise is stochastic and varies

over time. We refer the reader to Ely, Frankel and Kamenica (2015) for the full treatment of

suspense- and surprise-optimal policies.

3 Data and Empirical Strategy

3.1 League of Legends

League of Legends, developed by Riot Games, Inc., has been one of the most popular PC games

since its release in 2009. In July of 2023, the game had 151 million users who played at least once

per month.12 The player base is approximately 82% male, with 77% of players between 16 and 34

years old.13

In League of Legends, players select a “champion” from a menu of over one hundred options, such

as knights, wizards, ninjas, pirates, monsters, and robots before a match begins. Each champion

12Estimates come from https://activeplayer.io/league-of-legends/.
13Estimates from https://www.statista.com/statistics/1018232/league-of-legends-fans-by-gender/ and https:

//www.statista.com/statistics/1018224/league-of-legends-fans-by-age-usa/.
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has a unique suite of abilities and lends itself to a particular play-style. Players manipulate their

champion in real-time and form teams of five with the ultimate objective of destroying the opposing

team’s base. The teams’ bases are located at opposite corners of a diamond-shaped map, and there

are three “lanes” that connect the bases to each other. The lanes are guarded by static defenses

called “towers” that attack enemy champions advancing into the defending team’s territory.

Players compete for resources to strengthen their champions’ o↵ensive and defensive capabilities

to both overcome the towers and opposing champions. The two most relevant resources are gold

and experience points (XP). During a match, players spend gold to purchase items to enhance

their champions’ abilities and customize their strategies to the current match. When a player earns

enough XP they “level up” which enhances his or her champion’s overall abilities and grants the

player a skill point to enhance one aspect of their champion’s abilities strategically. Champions

that are killed get a time-out before they reappear at their home base. Matches typically last

around 30 minutes.14 As the match progresses, champions become more powerful and time-outs

for dying become longer making errors more costly. As a result, matches rarely exceed 45 minutes.

When players enter the queue for a match, the matchmaker algorithm randomly assigns play-

ers to teams with the objective to make each team’s total skill level approximately equal. Each

player has a hidden rating, generated from a proprietary algorithm using the player’s history of

performance. Players do not know their ratings but they are present in our data set.

3.2 Data

We obtained a proprietary data set from Riot Games that contains information on 2,882,101 games

from the North American server from March 1, 2018 to August 1, 2018. The data are observational

and there were no experimental interventions conducted by the researchers. In addition to game-

specific data such as date and time, we also observe information for each player such as their

chosen champion and rating. We can observe detailed minute-by-minute game-state variables at

the player-level. For example, we observe each player’s minute-by-minute accumulation of gold

and XP and their position on the map. As a result, the data contain 28,009,918 observations

at the player-game level, approximately 97 million observations at the minute-game level, and

approximately 960 million observations at the player-minute-game level. The data constitute a

repeated cross-section, as players may appear multiple times in the data. However, we are unable

to construct a panel dataset, as we do not have player account identifiers. Player records do not

contain any personally-identifying information.

3.3 Estimating the Probability of Winning

A necessary ingredient for our analysis is each team’s probability of winning at various points

throughout the game. In this subsection, we describe the process by which we estimate these

win probabilities at every minute during each game. The estimated minute-by-minute probability

14In our sample we include only matches between 20 to 45 minutes in length, which leaves us with an average game
length of 30.65 minutes.
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of winning is then used to construct our variables of interest, such as the average probability

of winning, average suspense, and average surprise. The specific variables used to estimate the

probability of winning are summarized in Table B1 in Appendix B. At each minute, we have a total

of 133 variables describing the game state. Players have access to numerous game-state variables

including the best predictors of victory and so our statistical model should approximate the rational

expectations of an experienced player.

We denote by smt the state of match m at minute t. There are a large number of variables

in smt, including the gold, experience, kills, and deaths accumulated by each player by time t, as

well as each player’s position at t and his or her chosen champion and role. At minute t during

the match, beliefs about the probability of winning are formed based on the history of game states

through t, which we denote by hmt := (sm0, sm1, . . . , smt). Formally, the probability of team j

winning given the history observed at time t is:

pmjt := E [ymj |hmt] , (5)

where ymj is an indicator for team j winning match m.

The probability of winning at t depends on the entire history (hmt) rather than just the current

state (smt) of the game. The full history captures the strategies and skills of each team, lead-

ing to a better model of pmjt. Additionally, this flexibility allows the probability of winning to

account for how the game evolves. For example, it may be that “momentum” in a team’s perfor-

mance is informative about its probability of winning (Green and Zwiebel, 2018). We use machine

learning—specifically Microsoft’s LightGBM implementation of gradient-boosted decision trees—to

empirically approximate pmjt. See Appendix B for details.

3.4 Variable Construction

The estimated probability of winning, p̂t, forms the basis of our analysis. We construct additional

key variables using p̂t, as outlined in Section 2. Surprise is simply the absolute change in the

probability of winning over a minute. Suspense is the expected absolute change in the probability

of winning. It is not a function of p̂t and p̂t+1 but a function of p̂t and E[p̂t+1|hmt]. Suspense,

therefore, needs to be estimated. We estimate
p
E[(p̂t+1 � p̂t)2] in a second stage using a machine-

learning approach analogous to that used to estimate p̂t above. Details of the estimation are in

Appendix B.2.

3.5 Empirical Strategy

Our primary goal is to estimate the e↵ect of various attributes of the probability path on engage-

ment. We measure engagement at player level by the decision to continue play for another match.

Specifically, we use a binary variable indicating whether or not the individual played another match
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within 60 minutes of completing the current one. We estimate regressions of the form:

ymji = �0 + �1qmj + x0
mji�+ ✏mji (6)

where ymji is the measure of continued play for player i on team j after match m. Here, qmj

represents the characteristics of the probability path ~pmj that theory posits may a↵ect engagement.

Formally, qmj = q(~pmj), where the function q(·) computes a vector of theory-relevant characteristics

from probability path ~pmj . Our coe�cient of interest are the vector �1, the marginal e↵ects of the

measures on continued game-play. There are features of the game that may have a direct e↵ect

on game-play; x0
mji represents a vector of control variables. Unfortunately, as mentioned above,

we cannot track players over time. However, we observe several measures of previous game-play,

so we can control for the number of recent games played. The controls in our continuation of play

estimations include linear controls for games played in the previous 2 hours, games played in the

previous 2 hours with the same champion, log minutes from the previous game, log minutes from

the previous game using the same champion, quadratic controls for player skill rating, and fixed

e↵ects for date, day of the week, hour of the day, team, role, champion, and game length. Because

attributes of the probability path qmj may have di↵erent e↵ects for losers and winners, we estimate

our regression models separately for the two groups.

3.6 Summary Statistics

Figure 1 shows the belief-paths in a small sample of matches (wins only). The bar graphs below the

belief-paths show the minute-to-minute values of surprise and suspense. We visualize the variation

and distribution of the belief-paths in Figure 2 (wins only). The figure shows the belief-paths of

1,000 randomly selected matches from the winner’s perspective. We note that there is a lot that

can happen in these matches. Victory may be rapid and direct or there could be a long circuitous

path.

Figure 3 shows a scatter plot of surprise and suspense, as a comparison to the games featured

in Ely, Frankel and Kamenica (2015): tennis, soccer, blackjack, the Clinton-Obama primary, a

surprise-optimum process, and a suspense-optimal process. Panel (a) shows surprise and suspense

at the minute level and panel (b) shows average surprise and average suspense at the match level.

The correlations between the two are 0.27 and 0.87, respectively.

Table 1 shows summary statistics of our variables of interest. We show the statistics from the

perspective of winners. The full sample is double, 2.8 million matches. We can see that, conditional

on winning, the average probability of winning is 0.70 over the course of the game, whereas the

initial probability of winning is, by construction, close to 0.5. The average match is 30.65 minutes

long. The average frequency of playing another match within the next 60 minutes (continued play)

is 59.64% for winners and 58.76% for losers.

In Table 2, we perform our first estimation exercise. We regress continued play on win, weekend,

and prime-time (defined as the time between 1:00pm and 1:00am CST) to establish benchmark

14



Figure 1: Sample games showing p̂-path, surprise and suspense, only winners.
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Figure 2: The path of p̂, surprise, and suspense for 1,000 di↵erent matches, only winners.

Figure 3: The association between surprise and suspense.

(a) Random selection of 1,000 minutes.
(b) Random selection of 1,000 matches, with sur-
prise and suspense averaged at the match level.

Notes: The correlation between surprise and suspense, minute by minute, is 0.27, as visualized in panel (a). The
correlation between surprise and average suspense, averaged at the match level, is 0.87, as visualized in panel (b).
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Table 1: Summary Statistics

Winners Losers

Mean SD Mean SD
p̂ Average 0.70 0.14 0.30 0.14
p̂0 0.51 0.06 0.49 0.06
Surprise Average 0.06 0.02 0.06 0.02
Surprise2 Average 0.01 0.01 0.01 0.01
Suspense Average 0.08 0.02 0.08 0.02
Game Minutes 30.65 6.03 30.65 6.03
Continued Play (60 min.) 59.64 49.06 58.76 49.23
N 1.4e+07 1.4e+07

e↵ects on continued game-play with the aforementioned control variables. In all of our estimations

continued play is multiplied by 100 and thus coe�cients represent percentage points. Column (1)

shows that winning increases the probability of playing another game by 0.88 percentage points.

Weekends have an even stronger e↵ect, increasing the probability by 2.12 percentage points. Playing

during primetime also plays an important role, increasing the probability by 1.68 percentage points.

Though these e↵ects appear modest, they belie that much variation is at the individual level. Some

people play very little and others may play in long streaks. Unfortunately, we do not have the ability

to control for this individual-level variation. Indeed the R-squared of the regression is only 0.012.

In Column (2), we include pairwise interactions of the three variables to test for the sensitivity of

the win-loss gap when player’s time is expected to be less constrained. The win-loss gap increases

on the weekend and during primetime hours, indicating that players’ game-play is more elastic to

the outcome of the match when they have more free time.

Table 2, Column 1 establishes the size of the win-loss gap for comparative purposes. Indeed, the

e↵ects of weekend and time of day are stark: the win-loss gap is not distinguishable from zero on

weekdays outside of primetime, and it is approximately double the average e↵ect (1.68 percentage

points) on weekends during primetime. This suggests that constraints are probably the dominant

factor in continued game-play, but the high significance of the win-loss gap shows that the game’s

outcome a↵ects future game-play. We expect that the win-loss gap is an upper bound for the e↵ect

sizes we would expect from attributes of the belief path. Winning is the objective of the game

and the most salient attribute of a completed match. Other features of the match, like lagging or

surprise, are expected to be secondary.
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Table 2: Benchmark E↵ects on Game-play — Weekend, Hour, and Win-Loss Gap

(1) (2)
Win 0.88 -0.03

(0.02) (0.05)

Weekend 2.12 0.93
(0.03) (0.05)

Primetime 1.68 0.89
(0.03) (0.04)

Win ⇥ Weekend 0.84
(0.05)

Win ⇥ Primetime 0.88
(0.05)

Weekend ⇥ Primetime 1.05
(0.06)

Mean of DV 59.20 59.20
SD of DV 49.15 49.15
R2 0.01 0.01
Clusters 2,870,490 2,870,490
N 27,898,907 27,898,907

Notes: All specifications are linear probability models using OLS with robust standard errors
clustered at the match-team level. Primetime is defined as play between the hours of 7:00 pm to
7:00 am CST, where the empirical density of games is the highest. All specifications include linear
controls for games played in the previous 2 hours, games played in the previous 2 hours with the
same champion, log minutes from the previous game, log minutes from the previous game using the
same champion, quadratic controls for player skill rating, and fixed e↵ects for date, day of week,
hour of day, team, role, champion, and game length.
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4 Match-level Analysis

4.1 Main Results

Table 3 shows the results from an ordinary least squares regression of continued play on our features

of the belief-path, following equation (4), using our aforementioned vector of control variables.15

Columns (1)-(3) use the sample of team matches that lost, and Columns (4)-(6) use the sample of

team matches that won.

Table 3: Continued play as a function of time and p̂, by winner.

Losers Winners

(1) (2) (3) (4) (5) (6)
p̂ Average† -9.30 -9.60 -9.61 -6.30 -6.55 -6.62

(0.21) (0.22) (0.22) (0.21) (0.22) (0.18)

Surprise Average† -6.69 -15.79 -15.80 -14.89 -7.16
(1.57) (2.45) (2.45) (1.59) (2.47)

Surprise2 Average† 26.98 26.90 -22.91 -34.91
(5.66) (5.66) (5.69) (3.54)

Suspense Average† 18.31 22.41 22.53 8.12 4.64
(1.69) (1.88) (1.88) (1.71) (1.90)

p̂0 10.74 10.90 4.63 29.03 28.98 29.08
(3.00) (3.00) (0.28) (3.17) (3.17) (3.17)

p̂20 -6.31 -6.42 -25.30 -25.20 -25.43
(3.05) (3.05) (3.09) (3.09) (3.09)

Peak p̂0 0.85 0.85 0.57 0.57 0.57
Mean of DV 58.76 58.76 58.76 59.64 59.64 59.64
SD of DV 49 49 49 49 49 49
R2 .013 .013 .013 .012 .012 .012
Clusters 2,805,461 2,805,461 2,805,461 2,805,336 2,805,336 2,805,336
N 13,949,001 13,949,001 13,949,001 13,949,906 13,949,906 13,949,906

Notes: All specifications are OLS with robust standard errors clustered at the match-team level. Continued play
is multiplied by 100 so that coe�cients can be interpreted in percentage points. All specifications include linear
controls for games played in the previous 2 hours, games played in the previous 2 hours with the same champion, log
minutes from the previous game, log minutes from the previous game using the same champion, quadratic controls
for player skill rating, and fixed e↵ects for date, day of week, hour of day, team, role, champion, and game length.
† denotes that the variable definitions are averaged over all minutes, excluding minute zero.

In Columns (1) and (4) we regress continued play on average p̂, average surprise, average

suspense, and a quadratic specification in p̂0. Columns (1) and (4) estimate the average e↵ect of

beliefs, surprise, suspense, and flow. The association between games played and p̂ is negative and

highly significant for both winners and losers. This negative e↵ect of average beliefs is consistent

15Note that our standard errors treat p̂ as data. Since p̂ are not directly observed but are estimated using machine
learning, p̂ may su↵er from at least some measurement error.
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with prospect theory in Proposition 2 and inconsistent with anticipatory utility in Proposition

1. To the extent that there may be anticipatory utility, the e↵ect of prospect theory appears to

dominate. Lagging behind leads to lower reference points, increasing the enjoyment of a win and

mitigating the pain of a defeat. There is a larger e↵ect for losers – nearly twice the magnitude –

as predicted in Proposition 2, induced by loss aversion. The di↵erence between the coe�cients on

p̂ Average in Columns (1)-(3), versus (4)-(6) are significant at the p < 10�6 level. These results

are consistent with existing research suggesting the coe�cient of loss aversion is approximately two

(for example Tversky and Kahneman, 1992).

In Columns (1) and (4), we include surprise and suspense linearly to facilitate interpretation.

Surprise reduces continued play for losers and winners, the opposite of a “preference for surprise”

in Definition 1. Suspense, however, increases continued play for losers and winners consistent with

a “preference for suspense” in Definition 2. The negative coe�cient on surprise is twice as large

for winners, whereas the positive coe�cient on suspense is about twice as large for losers. Though

average surprise and average suspense are correlated, they can vary within a match. From a game-

design perspective, increasing suspense does not necessarily increase expected surprise. Keeping

average surprise fixed and making expected surprise more clumpy will increase the suspense in a

match. The results here suggest a preference for exactly that kind of information revelation.

For flow theory, in Definition 2.1 we posit that game-play will have a unique interior maximum

as a function of p̂0, which we operationalize as the challenge level of a match. We attempt to

parametrically estimate this inverted-U pattern using a quadratic specification of p̂0. Since we are

using p̂0 directly in these specifications, p̂0 should not be implicitly included in the definitions of

our other explanatory variables. For that reason the other variables are averaged over all minutes

excluding minute zero. For losers, the coe�cient on the linear term is statistically significant at

10�2 > p > 10�3, which is relatively noisy given the large sample size. The quadratic term is only

marginally significant at p = 0.04. When we estimate the peak p̂0, it’s at 0.85, which is essentially

out of the support of p̂0 (it is about 5 standard deviations away from the mean). We can conclude

that our hypothesis of a continued play being single-peaked in initial challenge is rejected for losers,

as within the distribution of p̂0 games-played is strictly increasing in p̂0. For winners, both the

linear term and the quadratic terms are significant and the unique maximizing value p̂0 is 0.57,

consistent with single-peaked preferences. This fits the description of flow theory. People want to

be challenged, but not too much.

Figure 4 displays the coe�cients from Table 3, Columns (1) and (4), but re-scaled and expressed

as proportions of the win e↵ect from Table 2. The figure shows that the most prominent e↵ect is

that of average p̂. A standard deviation decrease in average p̂ for a losing team increases play as if

the team won 1.5⇥ over. A standard deviation decrease in average p̂ for a winning team increases

play by 1⇥ the win-loss gap. The e↵ects of surprise and suspense are comparatively weaker but still

meaningful. A standard deviation decrease in average surprise leads to a 0.18 and 0.39 fractions

of the win-loss gap for losers and winners respectively. A standard deviation increase in average

suspense leads to a 0.48 and 0.21 fractions of the win-loss gap for losers and winners respectively.
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Figure 4: Standardized e↵ects of p̂ Average, Surprise Average, and Suspense Average expressed as
a proportion of the win-loss gap
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Notes: Specifications come from Table 3, Columns (1) and (4). Explanatory variables are standardized. The outcome
is continued play divided by the “win e↵ect” as measured in Table 2. Therefore coe�cients are the proportion of the
win e↵ect from a standard deviation increase in the explanatory variable. Lines show the 99% confidence interval.

As a form of visual non-parametric robustness, we plot continued play on the independent

variables from the specification in Columns (1) and (4). In Figure 5, we regress continued play on

all control variables from the specification and then plot the residuals as a function of time and

p̂. In the heat map, a darker color represents a lower chance of continued play. The color gets

darker with the probability of winning for both losers and winners, indicating that low expectation

is associated with playing more matches. The e↵ect of p̂ appears to be qualitatively similar across

time.

Figure 6 visualizes analogous relationships between continued play and surprise and continued

play and suspense. We regress continued play on all the variables in the specification in Columns

(1) and (4) excluding average surprise or average suspense, and we then binscatter the residuals on

surprise and suspense respectively. The figure shows that continued play appears to be decreasing in

average surprise and increasing in average suspense. The linear approximation appears well-suited

for both average surprise and average suspense.

Figure 7 displays a binned scatterplot of continued play as a function of p̂0, controlling for

all other variables in Table 3, Columns (1) and (4).16 The relationship for winners appears to

be increasing and flatten out, and then to possibly decrease. This is consistent with the single-

peaked preferences we estimated in the quadratic model. In contrast, losers exhibit an increasing

relationship in p̂0.

Columns (2) and (5) introduce Surprise2 Average to test whether players have a preference

for clumpy or smooth surprise. If the coe�cients on Surprise2 Average are positive, it implies a

preference for clumpy surprise. If, on the other hand, the coe�cients are negative it implies a

16The averaged variables here exclude minute zero in order to not use controls partially derived from p̂0.
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Figure 5: Continued play as a function of time and p̂, by winner.
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(b) Winners

Notes: The continued play residuals are generated from the specification in Columns (1) and (4) of
Table 3, excluding average p̂. Cells that have less than 5,000 observations are left empty.

preference for smoothed surprise. For losers we find the coe�cient on Surprise2 Average is positive

and significant. This implies that conditional on losing, players have a preference for clumpy

surprise. For winners, in contrast, we find the coe�cient on Surprise2 Average is negative and

significant, suggesting that they prefer surprise smoothed. Columns (2) and (5) include features of

the belief path for which the coe�cients are non-significant. In Section 5 we wish to use an estimated

objective function for our structural analysis. In Columns (3) and (6) we iteratively eliminate the

features of the belief-path for which the coe�cients are not significant at the p < 0.01 level.

This eliminates p̂20 for losers, and Surprise Average and Suspense Average for winners (Surprise2 is

included). All remaining coe�cients are now highly significant (p < 10�4) and qualitatively similar.

Column (3) now makes clear that loser’s continued play is strictly increasing in p̂0. We use the

coe�cients in Columns (3) and (6) for our structural analysis.

The preference conditional on losing is consistent with expectations-based reference dependence

(Kőszegi and Rabin, 2009) from Proposition 3, which predicts a preference for clumpy surprise.

However, the preferences for winners seems to be the opposite. Winners both dislike surprise and

prefer it smoothed out. What might explain this? We speculate that diminishing sensitivity might

play a role. Most surprises will be good news, conditional on winning, and diminishing sensitivity

suggests that many small gains are valued more than fewer equivalent large gains Thaler (1999).
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Figure 6: Continued play as a function of average surprise and as a function of average suspense,
by winner.
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(a) Surprise Losers

��

����

��

����

&R
QW
LQ
XH
G�
3O
D\

��� ��� ��� ��� �� ���
6XUSULVH�$YHUDJH

(b) Surprise Winners
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(c) Suspense Losers
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(d) Suspense Winners
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Figure 7: Continued play as a function of p̂0, by winner
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Notes: This binned scatterplot controls for the following variables averaged over all but the initial
minute: p̂t, surprise, and suspense. It also controls for match-length fixed e↵ects.

5 Structural Game Optimization

Our previous analysis provided insights into what makes a compelling match for players. How-

ever, the production of these belief-paths are subject to constraints. First, most obviously, as a

competitive game, for every winner, there is a loser, and for every belief path, there is an inverted

belief path experienced by the opposing team. Second, rational beliefs must obey the Martingale

property; that is, the expected belief in the next period must equal the belief in the current period,

Et[pt+1] = pt. This has important implications for the distribution of feasible belief paths. For

example, dramatic comebacks from the brink of defeat are necessarily uncommon, because having

a belief on the verge of defeat – say a 90% chance of defeat – must lead to defeat 90% of the

time. These constraints make optimizing the data-generating process that we call the “game” a

very di↵erent task from comparing or ranking matches.

In this section, we move from match analysis to analyzing the game itself. The game can be

modeled as a data-generating process that produces belief paths. Our estimates in Table 3 provide

a straightforward way to evaluate expected engagement produced by a single match. We extend

this to the game level by evaluating a game G based on the average engagement of the matches it

produces:

U(G) :=

Z
u(p)dG(p), (7)

where u(p) is the engagement of the match implied by Columns (3) and (6) of Table 3. We then

seek to optimize the data-generating process for engagement in the local vicinity of the League of

Legends data-generating process. We summarize this process below and provide additional details

in Appendix C.

Our first step is to provide a representation of the League of Legends game which we define as
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GLoL. Empirically, GLoL is easy to construct. To characterize the data-generating process, we must

express the probability that pt transitions to a belief pt+1. We discretize the probability space into

20 interior bins (i.e., (0, 0.05], (0.05, 0.1], . . . , (.95, 1)) and 2 “absorbing state” bins (i.e. {0} and

{1}). This allows us to have a finite number of transition probabilities. For a given belief bin bn,t

where n 2 {0, . . . , 21} at time t, there are 22 transition probabilities that represent the probability

that pt+1 2 bn,t+1. Each bin at time t has a 22-element vector of these transition probabilities.

The transition probabilities are then simply conditional frequencies. For example, to compute the

transition probability at minute 8 from bin (0.65, 0.7] to bin (0.4, 0.45] we simply take all matches

that have p̂8 2 (0.65, 0.7] and measure the fraction of those that have p̂9 2 (0.4, 0.45].

Figure 8 displays the game League of Legends, GLoL. Time is plotted on the horizontal axis,

and the probability of winning is plotted on the vertical axis. The color indicates the degree of

information revelation, as measured by expected surprise, for that cell, with more blue having more

expected information revelation. To show the density of matches, we then overlay the plot with

100 random matches with jitter (random displacement so that multiple observations at the same

point can be visualized). As one can see, greater information revelation occurs when p̂ is near 0.5,

and information revelation, conditional on a bin, increases over time.

Now that we have estimated an objective function and have operationalized the game G, the

next step is to choose the optimal game G⇤ from a subset of possible games G:

G⇤ := argmax
G2G

U(G). (8)

We restrict the set G in two important ways. First, we require that all G 2 G satisfy the martingale

property: Et[pt+1] = pt. This ensures that each game G does not violate the rules of probability

and can be represented by an information process.17 Second, we constrain G 2 G to resemble

the current League of Legends game except in its pacing. Formally, we require that G 2 G be a

modification of GLoL that is achievable by a sequence of mean-preserving spreads or contractions

of the transition probabilities. These spreads and contractions are applied to all the transition

probabilities in a given minute, or all the transition probabilities in a given belief bin (i.e. columns

and rows of Figure 8). Third, we require that G 2 G produces matches with the same average length

as GLoL to ensure that any gains in engagement are due to substantive changes in the information

process rather than simply changing the length of the match. Further details of this optimization

are provided in Appendix C.2.

5.1 Results

G⇤ shows considerable improvements over GLoL. G⇤ improves the game experience substantially

for losers but at a cost for winners: the probability of continued play changes by 1.70pp for losers,

-0.95pp for winners, and overall by 0.38pp. The win-loss gap estimated in Table 2 is 0.88pp to

benchmark these e↵ects. This implies the improvement is roughly 1.93⇥ win-loss gap for losers

17See Lemma 1 of Ely, Frankel and Kamenica (2015).

25



Figure 8: Expected surprise in the original game League of Legends, GLoL, as a function of time
and p̂.

Notes: The color in each cell represents the expected surprise as computed from the transition vector. The dots represent 100
matches chosen at random and all the minutes of those matches. The dots are jittered with random displacement to visualize
multiple observations at the same point.

with a disimprovement of 1.08⇥ win-loss gap for winners.18 The overall e↵ect is an improvement

equivalent to roughly 0.43⇥ the win-loss gap.

In Figure 9 we disaggregate the improvement of G⇤ over GLoL, by feature of the belief-path.

Each bar measures the amount of improvement measured in increased percentage point chance of

continued play that can be attributed to that variable. Panel (a) shows the disaggregation for

losers and (b) shows the disaggregation for winners. The figure makes clear that the majority of

the improvement for losers can be attributed to letting them discover who they are sooner, thereby

mitigating loss aversion. Losers also benefit slightly from increased surprise, more clumped surprise,

and suspense. Winners, on the other hand, su↵er primarily by discovering who they are sooner,

thereby removing the gain of victory. The cost to them, however is vastly outweighed by the gain

to losers. Winners also su↵er from more clumped surprise. All of this harm is ever so slightly

alleviated by benefits stemming from a more ideal ex ante challenge level.

These results are important for several reason. First, our optimized game achieved a substantial

increase in predicted engagement. This implies that the information structure of the game is both

important and that there may be room for improvement, even for a nearly 2 billion-dollar revenue

product such as League of Legends.

We now unpack the optimized game in Figure 10. Panel (a) shows a heatmap of the expected

surprise over time and over p̂. The more blue a cell, the greater the information revelation in that

18While this may appear to imply that G⇤ losers play more matches than winners, it does not. The win-loss gap
estimated in Table 2 does not condition on the belief path; it is the unconditioned average gap in continued play
between winners and losers.
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Figure 9: Disaggregating the improvement from G⇤

(a) Losers

(b) Winners

Notes: Improvement is measured in terms of predicted increased continued play measured in percentage points.
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belief bin as measured by expected surprise. The game looks noticeably di↵erent from GLoL in

Figure 8. Panel (b) shows the change in expected surprise relative to GLoL. Red represents regions

that experienced mutations with increased information revelation, and blue represents regions that

experienced mutations with decreased information revelation. It is apparent that mean-preserving

spreads are used in the first 11 minutes and mean-preserving contractions are used thereon. The

summary statistics for GLoL and G⇤ are provided in Table 4. G⇤ exhibits greater average certainty

about victory and less average surprise.

Table 4: Summary statistics for GLoL and G⇤ conditioned on winning.

GLoL G⇤

Mean SD Mean SD

p̂ Avg. 0.70 0.13 0.83 0.13
Surp. Avg. 0.06 0.02 0.04 0.02
Surp.2 Avg. 0.01 0.00 0.01 0.01
Susp. Avg. 0.08 0.02 0.08 0.02
p̂0 0.51 0.07 0.50 0.04
p̂20 0.26 0.07 0.25 0.04
Game Minutes 30.68 6.03 29.64 6.86

Whereas the heat-maps of expected surprise in Figures 8 and 10 show expected surprise condi-

tional on reaching that cell, Figure 11 shows the unconditional average surprise over time, computed

through simulating 30,000 matches. As a metaphor, the heatmaps in Figures 8 and 10 show the

informational terrain should a belief path make its way there, and Figure 11 shows the average

informational terrain traversed. GLoL is the dotted red line, and G⇤ is in blue. There are several

di↵erences as previously noted, but the di↵erences are perhaps more transparent in this view. G⇤

has considerably more surprise than GLoL, for the first 5 minutes of the game, and then has less

information revelation for the rest of the match.

Our structural estimation implies that substantial gains in player engagement could be achieved

through optimized information revelation that considers players’ preferences to believe they are

behind, and their preferences for surprise, suspense, and flow. But perhaps there are other features

of the belief path that players also value, features considered by other theories or theories not

yet discovered. Given the large number of observations, we can exploit the high-dimensionality

of our data (wide and long) using high-dimensional non-parametric estimation methods and use a

non-parametric objective functions instead of the OLS-estimated one. Specifically, we use gradient-

boosted trees, as we did in our construction of p̂ and suspense, to estimate continued play as a

function of features of the belief path.

The gradient-boosted optimized game delivers improvements over GLoL that exceed G⇤. We find

that the boosted game increases continued play by 0.79pp for losers, 1.03pp for winners, and 0.91pp

overall, on average. This represents improvements on the level of 0.90⇥, 1.17⇥, and 1.03⇥ the win-
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Figure 10: Expected surprise as a function of time and p̂ for G⇤.

(a) Expected surprise in G⇤.

(b) � expected surprise between G⇤ and GLoL.

Panel (a) The color in each cell represents suspense as computed from the transition vector. The dots represent 100 matches
chosen at random and all the minutes of those matches. The dots are jittered with random displacement so that multiple
observations at the same point can be visualized. Panel (b) The color in each cell represents the change in suspense as
computed from the transition vector.
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Figure 11: Expected surprise over time for GLoL and G⇤.

loss gap, and amounts to about twice the improvement of G⇤. These improvements accrue to both

the losers and the winners rather than just the losers at expense of the winners. Qualitatively, the

boosted game similarly exhibits increased surprise over GLoL in the first two minutes of the match.

This is followed by mostly reduced surprise that’s clumped into specific minutes with a final spike

of surprise at minute 32.19

These results suggest that there may be other features of the belief path that play an important

role in players’ experiences of the game. There appears to be room for novel theories to develop

hypotheses regarding new features of the belief path. However, we do advise caution. We found,

for example, that our results were sensitive to including additional features, and these additional

features could inflate out-of-sample MSE. Without the guidance of theory or a reliable method of

feature selection it is di�cult to know what feature set to include.

6 Discussion

6.1 The Use of Structural Analysis in Game Design

Our evolutionary optimization of the information structure of League of Legends yields substantial

improvements to the existing game. According to our step-wise objective function, G⇤ is estimated

to increase continued play by 0.38pp, or 43% of the win-loss gap, with all the gains going to the

losers at the expense of winners. Allowing for a more flexible atheoretical objective function based

on the full belief-path achieves even greater improvement: 0.91pp or 103% of the win-loss gap with

gains going to both the losers and the winners.

19We constrain the average match length to be within 1 minute of 31 minutes.
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Taking a step back, one of the paper’s contributions is our structural analysis approach. Specif-

ically, we use an evolutionary algorithm to optimize a high-dimensional information structure. As

far as we know, our approach is novel in its application to information design and game design.

Traditional structural approaches rely on convex optimization techniques. To do so would require

greatly simplifying the player’s objective function or the information structure of the game. This

would eliminate much of the real-world richness of the game or people’s preferences. Instead, we

allow the information structure of the game to be complex with thousands of parameters. And

we allow player’s preferences to be a function of expectation, surprise, suspense, clumpiness, and

challenge level.

The main result of our structural analysis is that if League of Legends increased the information

revelation, that is the average surprise of the early game, particularly the first 5 minutes, they

could achieve meaningful increases in player engagement. Given that our data is from mid-2018,

we wondered whether the designers had adjusted in this direction. We found several modifications

in their patch notes that suggest they did just this.20 When we presented our results to Tom

Cadwell, the Chief Design O�cer and Executive Vice President of R&D at Riot, he said, “Around

the era this data was taken (2018), the LoL team did feel the early game had a lower level of action,

and we felt this was making the early game experience less engaging than it could be. To correct

this and in turn create higher action/more early fights, we used a variety of tools including changes

to objectives, phase timings, and rewards.”

Though we believe that significant improvements to game design can be achieved through our

structural approach, we view it as a complement to experimentation. The exact game design

predictions of our evolutionary optimization can vary depending on what features of the belief-

path one wants to include in the objective function. The lower the confidence that the included

feature set is the ground-truth feature set, the less confidence one should have in the predictions.

Lack of confidence could come from focusing on a narrow set of theories, or from including many

features without having reliable feature-selection algorithms. We believe G⇤ may be vulnerable to

the first criticism, and our gradient-boosted optimization may be vulnerable to the second criticism.

However, our structural approach can be a powerful tool in game design when complemented with

experimentation and a feedback cycle that improves the structural model and the game. For

example, model m recommends changing x, enhancing some objective outcomes for y. Designers

can then implement x and evaluate y and use this to update m. This leads to a new model m0 that

makes recommendation x0, and so on. To be clear, Riot has not changed the game based on this

research. This is a suggestion for what firms that design information products could do.

20The most prominent change we found on early game acceleration since 2018 is that champions spawn with a
speed boost that helps them move into position. Minions also spawn 5 seconds earlier from 1:10 min in 2018, to 1:05
at the time of this writing in 2023.
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6.2 Implications

Optimizing the information revelation in the game leads to a 0.38pp additional likelihood to play

another match. This represents 0.62% increase in player engagement or a lower estimate of 5.9

million hours of more game-play globally per month.21 By way of comparison, a human lifespan

of 77 years amounts to 674,520 hours. So this represents an increase of game time equal to 9

human lifespans per month. If we instead use the gradient-boosted model we conclude that the

improvement amounts to a 1.53% increase in player engagement, and 14.7 million hours more played

per month (about 21 lifespans). League of Legends’ revenue model is based on in-game purchases as

the game is free to play. Revenue comes from micro-payments to expand the players’ options, such

as more champion options, or to have skins and other cosmetic enhancements to their champions.

If revenue increases linearly in player engagement,22 this increase implies a 0.64% ⇥ $ 1.8 billion =

$11 million increase in annual revenue ($28 million based on the gradient-boosted model).23 These

are benefits to the supply side of the market. If players choose to play more matches than implied

by classical consumer theory, demand has shifted out and consumer surplus has increased as well.

A better product for the same costs is an unambiguous increase in welfare.

These calculations ignore any other intertemporal substitution e↵ects and there are at least

two other e↵ects that suggest that this understates the benefit. Our analysis shows that the

optimized game yields more engaging matches that lead to an increase in continued play via adjacent

complementarity, ex post. But it is also plausible that if players are receiving a more desirable

distribution of belief-paths, they will have higher expected utility from playing, ex ante. As players

discover that League of Legends is noticeably improved, they should reallocate planned time, as

opposed to discretionary time, away from other near substitutes (other games, watching TV, and

other leisurely activities) towards League of Legends. Second, improving the experience for losers

may be more valuable than improving the experience for winners. The analysis showed that early

information revelation improves the experience for losers at the expense for winners, but the net

e↵ect is positive. There may be additional benefits unaccounted for by our analysis. When do

players leave a game for long stretches of time or permanently? We speculate that these long-term

exits occur after a frustrating string of losses. If so, improving the experience, specifically for losers

could increase player retention.

Furthermore, there are likely unaccounted social network benefits. League of Legends is funda-

mentally a team-based game with player devotion based, in-part, on playing with friends on the

21There are no published statistics on League of Legends’ total monthly player-hours. The website https://active
player.io/league-of-legends/ estimates as of August 4, 2023, that there are 1.331 million active hourly players. If
we multiply 1.331 million ⇥ 24 hours ⇥ 30 days we get a rough estimate of 950 million monthly hours of the game
played per month. We multiply this time 0.62% to get 5.9 million additional hours.

22On Riot Games’ statement of values, accessed on August 4, 2023, they state that they prioritize “player experience
first”. Our interpretation of their model is that providing gamers with good experiences leads to more revenue, with
engagement as an observable proxy.

23Approximate revenue comes from https://mobilemarketingreads.com/league-of-legends-revenue-and-user-stats/
on April 5, 2023, which reports an estimate of $1.8 billion in 2022. Another article https://www.reuters.com/arti
cle/esports-lol-revenue-idUSFLM2vzDZL accessed on August 3, 2023 reports a similar estimate of $1.75 billion in
2020. Riot is a subsidiary of a publicly traded company and exact revenue statistics are not publicly available.
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platform. This is a classic network externality and thus any marginal increase in engagement is

likely to yield additional engagement through players’ social networks.

The approach presented in this paper could be easily adapted to other games. Any game that

takes place over time, and has a winner and a loser, could be assessed in this way. It would be

interesting to explore whether there are general preferences for beliefs across games. There may be

some universals, but we think it is unlikely that preferences over all features of the belief-paths will

be consistent across games. People play di↵erent games for di↵erent reasons. Some games serve

as an uninvolved momentary distraction, others are strategic and deeply involved. In the same

way that people seek di↵erent narrative elements in di↵erent story genres – for example, surprise

endings in mysteries and well-choreographed violence in action movies – players may seek di↵erent

belief-paths for di↵erent game genres. Future work can explore the commonalities and di↵erences

by genre.

6.3 Limitations

There are several limitations to our analysis. The first is with regards to the interpretation of the

outcome, continued play within the next 60 minutes. From the firm’s perspective, engagement is a

proxy that designers use as a performance metric, but revenue is not determined by engagement.

Though it is likely that greater engagement leads to more purchases, we have no direct evidence on

this point. From the player’s perspective, greater engagement may be linked with higher consumer

surplus but the relationship is not certain. In favor of this relationship is the evidence that wins,

which we presume are preferred over losses, result in higher engagement. Future research could

improve on this point by including additional outcome variables such as purchases and consumer

satisfaction surveys.

In this paper, we assume players have preferences over the experienced belief-paths, but they

could possibly have preferences that are a↵ected by the distribution of belief-paths. This is an

important distinction, because our game optimization exercise would be invalid in this latter case.

This case can be conceptualized in a few ways. First, preferences may have habit formation in the

sense of Becker and Murphy (1988). The key concept in the classic paper is of temporal adjacent

complementarity. One’s consumption of a good at time t could a↵ect preferences for consumption

at some later date ⌧ > t. Whereas in our current formulation utility for match m is a function of the

belief-path (beliefs and suspense), u(pm, sm), a Becker-Murphy approach would also include the

history of past experienced matches, u(pm, sm|hm�1), where hm�1 = [(p0, s0), . . . , (pm�1, sm�1)]

is the history. In our context, an experienced belief-path of a particular kind might a↵ect the

preferences in the subsequent match. For example, a player who has a preference for variety and

who just experienced a quick dash to victory might subsequently have greater demand for a drawn-

out match with slow information revelation. A second conceptualization is that players preferences

for an experienced match may be a function of the distribution of those matches, u(pm, sm|F (p, s)),

where F (p, s) is the distribution. For example, if players value paths more the rarer they are, a

quick dash to victory is more highly valued under a late information-resolution game than in an
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early information-resolution game.

These kinds of preferences would invalidate our game optimization exercise because we kept the

objective functions over matches fixed as we changed the distribution of belief-paths. We suspect

that preferences of this nature may exist but we think that they may be weak relative to the

preferences over the outcome (win versus loss) and the direct preferences over the belief-path.

7 Conclusion

In this paper, we estimate the e↵ect of features of the belief-paths in the game League of Legends

on continued game-play. We find that both losers and winners play more if they were lagging

behind, and the e↵ect is bigger for losers. This is consistent with prospect theory and loss aversion.

We find that surprise has a negative e↵ect on continued play but suspense has a positive e↵ect.

The preference for surprise is non-linear in that losers prefer their surprise clumped and winners

prefer surprise smoothed. Furthermore, we find that consistent with flow theory, winners play

more when the last match is at an intermediate challenge level. This is the first paper (to our

knowledge) to test for preferences over average beliefs and the clumpiness of information revelation

in an entertainment product.

We then use an evolutionary algorithm to optimize an information product according to a

theoretically motivated objective function. The method yields a predicted improvement to the

likelihood of continued play, on the order of 0.43⇥win-loss gap or around 0.64% increased likelihood

to play another game within 60 minutes. This corresponds to an increase in monthly engagement

of 5.9 million hours. Our high-dimensional estimation suggests that even larger improvements are

possible. We believe this method and similar approaches will be helpful in many future applications

that involve structural analysis with high-dimensional information structures.

There are several avenues for future research. Why do people have a preference for suspense but

seem to dislike surprise? Whereas suspense may allow for hopeful feelings and increased attention

from both sides, surprise is good news for some, bad news for others, and may be on net negative

due to loss aversion. Perhaps there are ways to rationalize the distaste in surprise from models of

reference-dependent utility. The gradient-boosted optimized game achieved improvements above

the game optimized by our theoretically driven objective function. This suggests that there may be

features of beliefs that are highly motivating to players that remain beyond our theoretically mo-

tivated analysis. What future theories might rationalize these preferences? This project presumes

that the player’s objective is victory. However, other outcomes, such as individual-level perfor-

mance, may be important to players. Do players have similar preferences over beliefs for their

individual-level performance, and how do they value them relative to the belief path of victory?

These are some questions that remain to be explored.
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Online Appendix

Beliefs that Entertain

A Supplementary Proofs

Proof of Proposition 3. Suppose �t ⇡ �t+1 ⇡ 1, the expected gain-loss utility when Fp̃t+1 = Fp̃t is

zero and the expected gain-loss utility when Fp̃t+2 6= Fp̃t is

⌘(�� 1)Et[

Z 1

p̃t+2

n(u(p̃t+2)� u(r))dFp̃t+2(r)]

whereas the expected gain-loss utility when Fpt+1 6= Fpt and Fp̃t+2 6= Fp̃t is

⌘(�� 1)Et[

Z 1

pt+2

n(u(pt+2)� u(r))dFpt+2(r) + ⌘(�� 1)Et[

Z 1

c
n(u(pt+1)� u(r))dFpt+1(r)]]

now the (ex ante) volatility in pt+1, p̃t+1, pt+2, p̃t+2 is denoted by �t+1 and �t+2 and suppose that

�t+1,�t+2 ! 0 if t! 0 then:

⌘(�� 1)Et[

Z 1

p̃t+2

n(u(p̃t+2)� u(r))dFp̃t+2(r)]

versus

⌘(�� 1)Et[

Z 1

pt+2

n(u(pt+2)� u(r))dFpt+2(r) + ⌘(�� 1)Et[

Z 1

c
n(u(pt+1)� u(r))dFpt+1(r)]]

now, each of these components are negative and proportional to �t

Z Z
(u(�y)�u(�y0))dF (y0)dF (y) = �1

2
⌘(��1)

Z Z
(u(�max(y, y0))�u(�min(y, y0)))dF (y0)dF (y)

because �t+2,t =
q

�2
t+1 + �2

t+2 < �t+1+�t+2, the agent prefers the uncertainty to resolve clumped

not piecewise.

Proof of Proposition 4. For ease of notation, gt map p = (p1, p2, . . . , pt�1, pt, pt+1, . . . , pT�1, pT ) to

p0 = (p1, p2, . . . , pt�1, pt+1, pt+1, . . . , pT�1, pT ). Consider the di↵erence in players’ expected utilities

between games G and Gt:

ŨPT (Gt)� ŨPT (G) =

Z
UPT (gt(p))� UPT (p)dG(p)

=

Z
v

 
wz � z

1

T

X

⌧

gt(p⌧ )

!
� v

 
wz � z

1

T

X

⌧

p⌧

!
dG(p)

=

Z
v

✓
wz � z

P
⌧ 6=t p⌧ + pt+1

T

◆
� v

 
wz � z

1

T

X

⌧

p⌧

!
dG(p).

1



Now consider the relative utilities of these games conditioning on being a winner:

ŨPT (Gt|w = 1)� ŨPT (G|w = 1) =

Z
UPT (gt(p))� UPT (p)dG(p|pT = 1)

=

Z
⌘

✓
z � z

P
⌧ 6=t p⌧ + pt+1

T

◆
� ⌘

 
z � z

1

T

X

⌧

p⌧

!
dG(p|w = 1)

=
⌘z

T

Z
pt � pt+1dG(p|w = 1)  0.

Thus, winners prefer G to Gt. The inequality above follows from the fact that E[pt+1 � pt | w =

1] � 0 or else winners are expected to mis-learn on average at minute t. (For proof, see Proposition

5 and Corollary 0.1.) The argument that losers prefer Gt to G is similar.

Proposition 5 (At any point in a match, beliefs are expected to move towards the realized

outcome.). Denote the match history at time t by ht and the probability of winning the match

given history ht by pt := E [w | ht]. A slightly stronger claim than necessary for Proposition 4 is

that beliefs are always expected to update in the correct direction between t and t+1. If the eventual

outcome will be a win, then this translates to:

E [pt+1 | ht, w = 1] � E [pt | ht, w = 1] . (9)

Proof. For ease of notation, define W to be state of winning the match (i.e. w = 1), and let

everything that follows be conditioned on ht so that we are only interested in how the event e

happening at time t is expected to change beliefs.24 Using this notation, the proposition is:25

E [P (W | e) | W ] � P (W ) , (11)

Observe that:

E [P (W | e) | W ] :=

Z
P (W | e) dP (e | W ) ; P (W ) :=

Z
P (W | e) dP (e) (12)

Then, the result follows from Bayes rule:

P (e | W ) :=
P (W | e)P (e)

P (W )
� P (e) () P (W | e) � P (W ) . (13)

Relative to integrating with respect to measure P (e), integrating with respect to P (e | W ) increases

weight on events that increase the posterior probability of winning and decreases weight on events

24In other words: ht+1 := (ht, e). This could equivalently be written as:

E [P (W | ht+1) | W,ht] :=

Z
P (W | ht+1) dP (ht+1 | W,ht) � P (W | ht) :=

Z
P (W | ht+1) dP (ht+1 | ht) . (10)

25Note that the right hand side of the inequality follows from the fact that E [P (W )|W ] = P (W ). This is because
the expectation integrates with respect to e, which does not a↵ect P (W ). (Recall that P (W ) is being used as
shorthand for P (W |ht), so more formally, P (W |ht) is not a function of e.)
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that decrease the probability of winning.

Corollary 0.1. For any game G and minute t, beliefs are expected to move towards the realized

outcome.

Proof. Proposition 5 shows that the desired inequality holds given any history ht at time t. The

result follows from integrating over the distribution of histories at t generated by game G.

B Estimation of the Belief-Paths

B.1 Estimation of p̂

We approximate pmjt — the probability of team j26 winning match m at minute t — using gradient

boosted decision trees (GBDT) via LightGBM (Ke et al., 2017). GBDT (Friedman, 2001) builds

on standard boosting approaches, where an ensemble of “weak” learners—in this case, decision

trees—are aggregated into a single “strong” model. In the GBDT algorithm, weak learners are

iteratively trained to predict the residual errors of the strong model, then incorporated into the

strong model. Formally, at iteration i, the weak learner fi predicts the residuals of strong model

Fi, and the strong model is updated as Fi+1 = Fi � fi. At the end of training, we have a resulting

strong model F ⇤. LightGBM modifies the standard GBDT algorithm with e�ciency and scalability

improvements, while maintaining high performance relative to the state-of-the-art. Full details are

described in detail by Ke et al. (2017).

The predictive model learns the relationship between the state s of match m at minute t and the

probability of a team j winning that match. The objective function used in training is to minimize

the mean squared error, given by:

MSE := N�1
X

m

X

t=0

(wmj � p̂mjt)
2 . (14)

where p̂mjt = Fi(smjt) and wmj 2 {0, 1} denotes whether or not team j won match m and N is the

number of observations in the training set.

The input features to the predictive model are described, at a high level, by Table B1. In total,

there are 146 independent variables provided as input to the model. We use Ray Tune (Liaw et

al., 2018) to select the hyperparameters of the LightGBM model using k-fold cross-validation.

Figure A1 shows the distribution of p̂ at 5 minute intervals. The mass of the distribution is

centered around 0.5 for both losers and winners at the beginning of the game, and progressively

shifts to the extremes of 0 and 1, for losers and winners respectively. There are a few observations

worth noting. First, the shifting of the probability mass visualizes the steady resolution of uncer-

tainty over time. Second, though the mass is centered at 0.5, there is still heterogeneity at minute

26Note that, in practice, we approximate p̂mjt for one of two teams, using 1� p̂mjt as the estimate for the second
team.
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Table B1: Variables Used to Predict the Probability of Winning

Variables Level of Description
Time Game level
Queue Game level
Dragon Kills Team level
Tower Kills Team level
Inhibitors Team level
Base Position Team level
Lane Position Team level
Champions Player level
Kills Player level
Deaths Player level
Gold Team and Player level
Experience Points Team and Player level
Damage to Champions Team and Player level
Health Team and Player level
Power Team and Player level

0, suggesting that after match assignment and the champion selection process, matches can start

with the scales tilting in a team’s favor.

B.2 Estimation of Suspense

Our estimation of suspense follows a nearly identical procedure to that of p̂. We use LightGBM

with the same set of independent variables described in Table B1, with the addition of p̂. Again,

we use k-fold cross validation to select the hyperparameters of the model. The primary di↵erence

is in the objective function, where the model learns to predict the suspense by minimizing the MSE

objective of

MSE := N�1
X

m

T�1X

t

�
suspenset � Fi(s

0
mjt)

�2
(15)

where s0mjt denotes the state of the match with the addition of p̂.

4



Figure A1: Distribution of p̂ at 5 minute intervals.
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C Supplemental Information on the Game Optimization

C.1 Operationalizing the Game

We begin by defining the game. We abstract away all aspects of the game aside from belief-

path generation. To characterize the data-generating process, we need to express the probability

that pt transitions to a belief pt+1. We discretize the probability space into 20 interior bins (i.e.,

(0, 0.05], (0.05, 0.1], . . . , (.95, 1)) and 2 “absorbing state” bins (i.e. {0} and {1}). This allows us to
have a finite number of transition probabilities. For a given belief bin bn,t where n 2 {0, . . . , 21}
at time t, there are 22 transition probabilities that represent the probability that pt+1 2 bn,t+1.

Each bin at time t has a 22-element vector of these transition probabilities. Let Mt be a transition

matrix composed of each of the 20 transition vectors (one for each interior bin) for time t. The

game is thus defined as

G :=
⌦
F (p0), {Mt}t=45

t=0

↵

5



where F (p0) represents the CDF of initial beliefs before a match begins.27 To reduce the computa-

tional burden, we assume all matches end within 45 minutes (this represents 97% of the sample).

G characterizes the distribution of belief-paths. It is worth noting how the laws of probability

constrain G. First, F (p0) must be symmetrically distributed around 0.5. Second, for each transi-

tion vector for bin n at time t there must be an inverted transition vector for bin 21 � n. Third,

transition probabilities must be such that Et[pt+1] = pt.

Our game optimization procedure relies on several primary components: mean-preserving spreads

and mean-preserving contractions, and an evolutionary algorithm. In this section, we provide full

details on both.

C.2 Evolutionary Algorithm

Now that we have estimated an objective function and have operationalized the game G, the next

step is to choose a G from a subset of possible games to maximize the objective function. Because

G is high-dimensional with thousands of parameters, we take an evolutionary approach, searching

for local optima in the vicinity of G0. Because game length directly decreases the probability of

playing another match through mechanical means, we constrain our search to local optima that are

approximately of the same average game length. We use the same algorithm to optimize with the

OLS objective function.

The evolutionary algorithm is detailed in Algorithm 2. At a high level, at each iteration i,

we apply bin- or minute-level spreads on the transition matrix Gi, the procedure of which is

described in Algorithm 1. If the expected match length is greater than our fixed threshold, we only

consider spread perturbations that decrease match length. If below the threshold, we only consider

contractions to increase length. After creating mutants of Gi at each minute and bin, we score

them using our scoring function—e.g., a LightGBM model trained to predict continued play from

the belief path or our OLS regression coe�cients—then select the mutant with the maximum score.

If no mutant yields an improvement over the current Gi, we increase the number of perturbations

applied at each bin and minute and repeat the process, either until we’ve reached a specified number

of perturbation iterations or an improvement is reached over Gi.

C.2.1 Mutations

A transition vector is a probability distribution, and creating variation in those vectors is required

for the evolutionary process. We create variation in these transition vectors by applying mean-

preserving contractions or mean-preserving spreads. Every cell in Figure 8 is represented by a

transition vector, and can be altered in this way. This yields a total of 45 minutes ⇥ 20 bins

27From the econometrician or designer’s perspective there are two reasons that p0 need not always be 0.5. First,
ratings are visible to the designer (and to us), and one can use this to see whether one team has an advantage over
the other. Moreover, the variance of this advantage is a design choice. Second, there are pre-match decisions that
a↵ect the probability of winning, most notably players choose their champions. Though the designers aim for game
balance, some champions may be slightly stronger than others, and certain team compositions may be particularly
e↵ective at countering other team compositions.
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Algorithm 1 Game Mutations

procedure MutationByTime(G, t,method, n = 1)
for i 2 {1, ..., n} do

for b 2 {1, ..., 20} do
if method == contraction then

G MeanPreservingContraction(G, t, b, p = 0.05)
else if method == spread then

G MeanPreservingSpread(G, t, b, p = 0.1)
end if

end for
end for
return G

end procedure

procedure MutationByBin(G, b,method)
for i 2 {1, ..., n} do

for t 2 {0, ..., 44} do
if method == contraction then

G MeanPreservingContraction(G, t, b, p = 0.05)
else if method == spread then

G MeanPreservingSpread(G, t, b, p = 0.1)
end if

end for
end for
return G

end procedure

7



Algorithm 2 Evolutionary Algorithm

Require: G
Require: f := PathEvaluationFn
Require: maxPerturbationIterations  50
Require: iterationIncrement  3
Require: N  30, 000
Require: lengthThreshold  1
n 1
i 0
Gi  G
L ExpectedMatchLength(G)
curScore N�1PN f(g ⇠ G)
improving  True
while improving do

if ExpectedMatchLength(Gi) >= L+ lengthThreshold then
methods  {spread}

else if ExpectedMatchLength(Gi) <= L� lengthThreshold then
methods  {contraction}

else
methods  {spread, contraction}

end if
mutants  {}
for method 2 methods do

for t 2 {0, ..., 44} do
mutants  mutants [MutationByTime(Gi, t,method, n)

end for
for b 2 {1, ..., 20} do

mutants  mutants [MutationByBin(Gi, b,method, n)
end for

end for

scores  
n
N�1PN f (g ⇠ mutantsj)

o|mutants|

j=1
j⇤  argmaxj scoresj
bestScore  scoresj⇤
if bestScore > curScore then

i i+ 1
curScore  bestScore
Gi  mutantsj⇤
n 1

else if n  maxPerturbationIterations then
n n+iterationIncrement

else
improving  False

end if
end while

8



⇥ 2 (contract or spread) = 1,800 potential mutations. To keep the number of potential mutants

manageable, we mutate not by minute-bin, the cells of Figure 8, but by the entire minute or the

entire bin, the columns and rows of Figure 8 respectively. We create minute-mutations by selecting

a single minute t and apply a mean-preserving spread to all transition vectors for that minute; or

in other words, all the cells in that column. We create bin-mutations by selecting a bin n and its

inverse bin 21� n and apply a mean-preserving spread to all transition vectors for those two bins.

Likewise, we do the same for mean-preserving contractions. This produces 90 minute-mutations

and 18 bin-mutations.28 Each mutation is a slightly altered version of Gi.

We define mean-preserving spreads and contractions in Algorithm 3. Spreads e↵ectively take

mass from the center of the distribution and iteratively spread mass out to the endpoints. Beginning

at the central bins 10 and 11, we take d% of each bin, giving percentage d
2% to each of the

neighboring bins. From the center two bins, this process is repeated until we reach bins 2 and 19,

this means the mass of all bins will change except for terminal bins 0 and 21.

Contractions are defined in an alternative way to spreads. Rather than the same iterative

procedure,29 we take the approach of decreasing the mass in all non-terminal bins other than the

mean bin of the distribution. Formally, we want to decrease the total mass of these non-mean,

non-terminal bins by proportion d while ensuring that we maintain the mean. To do so, we want

to take proportion x1 of the mass from bins below the mean bin and proportion x2 of the mass

above the mean bin and transfer that mass to the mean bin. We calculate x1 and x2 by solving a

system of two linear equations. Using the notation in Algorithm 3, the first equation is given by

(1� x1)ml + (1� x2)mu = (1� d)(ml +mu) (16)

and the second, mean-preserving equation is

E[p|Gt,b,0 = 1]Gt,b,0 + (1� x1)wl +
�
Gt,b,b̄ + x1ml + a2mu

�
E[p|Gt,b,b̄=1] (17)

+ (1� a2)wu + E[d|Gt,b,21 = 1]Gt,b,21 = Ḡt,b

C.2.2 Selection Dynamics

To evaluate each mutant, we simulate 30,000 belief-paths and score them based on our regression

model for continued play separately for winners and losers. Specifically, we use our stepwise regres-

sion coe�cients from Columns (3) and (6) of Table 3. The mutant that scores the highest becomes

the parent for the next generation. This best-performing mutant becomes Gi+1. We then repeat

the process: Gi+1 produces 108 mutant o↵spring, the best-performer is selected to be the parent

of the next generation, and so on. The evolution continues until there is no improvement across a

28We do not include mutants that mutate the bins 1 and 20 (the two non-absorbing state corner bins: (0,0.05] and
(0.95,1)). Our mean-preserving spread and contraction algorithms shift mass symmetrically to neighboring bins, and
as these are on the corners they do not have su�cient neighbors for the algorithm.

29Preliminary optimizations showed that using a similar iterative procedure as in the spreads yielded excessively
“spiky” distributions.
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Algorithm 3 Mean Preserving Perturbations

procedure MeanPreservingSpread(G, t, b, p = 0.1)
l 10
h 11
while l > 1 and h < 20 do

ml  p ·Gt,b,l

mh  p ·Gt,b,h

Gt,b,l  Gt,b,l �ml

Gt,b,l�1  Gt,b,l�1 � ml
2

Gt,b,l+1  Gt,b,l+1 � ml
2

Gt,b,h  Gt,b,h �mh

Gt,b,h�1  Gt,b,h�1 � mh
2

Gt,b,h+1  Gt,b,h+1 � mh
2

l l � 1
h h+ 1

end while
return G

end procedure

procedure MeanPreservingContraction(G, t, b, p = 0.05)

b̄ d
P

b0 Gt,b,b0E[p|b0]
0.05 e . Determine expected bin given the distribution Gt,b

ml  
Pb̄�1

b0=1Gt,b,b0 . Mass of lower bins
mu  

P20
b0=b̄+1Gt,b,b0 . Mass of upper bins

wl  
Pb̄�1

b0=1Gt,b,b0E[p|b0] . Weighted sum of lower bins
wu  

P20
b0=b̄+1Gt,b,b0E[p|b0] . Weighted sum of upper bins

Ḡt,b  
P

b0 Gt,b,b0E [p|b0]

A 


ml mu

E[p|b̄]ml � wl E[p|b̄]mu � wu

�

~b 


p(ml +mu)
Ḡt,b � E[p|bin = 0]Gt,b,0 � wl � wu � E[p|bin = 21]Gt,b,21 �Gt,b,b̄E[p|bin = b̄]

�

~x Solve system of linear equations A~x = ~b
if |x1| > 1 then

x1  1.0

x2  
P

b0 Gt,b,b0E[p|b0]�E[p|bin=0]Gt,b,0�E[p|bin=21]Gt,b,21�wu�Gt,b,b̄E[p|bin=b̄]�mlE[p|bin=b̄]

muE[p|bin=b̄]�wu

else if |x2| > 1 then
x2  1.0

x1  
P

b0 Gt,b,b0E[p|b0]�E[p|bin=0]Gt,b,0�E[p|bin=21]Gt,b,21�wl�Gt,b,b̄E[p|bin=b̄]�muE[p|bin=b̄]

mlE[p|bin=b̄]�wl

end if
. Update Gt,b

Gt,b,b̄  Gt,b,b̄ + x1ml + x2mu

Gt,b,1:b̄�1  (1� x1)Gt,b,1:b̄�1

Gt,b,b̄+1:20  (1� x2)Gt,b,1:b̄+1:20

return G
end procedure
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generation.

We wish to keep our analysis in the vicinity of GLoL. Exploration of the game spaces far from

League of Legends are more likely to produce unrealistic solutions, as there are many aspects of

game design that are not included in our model. An unconstrained optimization could lead to

average match lengths that are extremely short or extremely long, fundamentally changing the

character of the game. To limit changes to average match length we constrain which mutants can

be selected. We allow the evolved game Gi to produce an average match length within 1 minute

of the average produced by GLoL, 30.65 minutes. Once Gi has produced an average match length

shorter than 29.65 minutes, only mean-preserving contraction mutants are considered for the next

generation.30 Likewise, if average match length exceeds 31.65 minutes, only mean-preserving spread

mutants are considered for the next generation.

C.3 Evaluation and Starting Points

We need a way to evaluate whether these evolved games improve upon GLoL. We simulate 30,000

matches and take the average predicted continued-play, using our our stepwise regression coe�cients

from Columns (3) and (6) of Table 3, just as we did for evaluating the mutants at each evolutionary

iteration.

The evolutionary search is myopic and local in nature, and therefore it is quite possible that the

output is a local optimum. Di↵erent starting points in the vicinity of GLoL may lead to di↵erent

outcomes. We therefore choose 27 starting points as G0, and run the optimization algorithm from

each point. The highest predicted continued-play game is our optimized game G⇤. To create the

27 starting points we break up time into blocks of t 2 [1, 10], t 2 (10, 20], and t > 20. For each

block we either apply 25 spreads to every minute, ten contractions to every minute, or do nothing.

The 33 factorial design give us the 27 starting points. Our G⇤ started from the G0 that was

spread-spread-nothing.

We found that we can reach qualitatively similar results more e�ciently by increasing the

number of spreads applied to mutants. In our 27 starting points, we use 7 as the starting number

of spreads: n = 7 in the notation of Algorithm 2.

C.4 Game Optimization with the Objective Function Estimated by Gradient-

Booted Trees

We use gradient-boosted regression trees with MSE-minimization to estimate an objective function

for our evolutionary optimization. However, the process is not as straightforward as with the OLS

counterpart. Linear regression has the property that the e↵ects of the variables are additively

separable, but this is not generally the case with regression trees. In order to isolate the e↵ects

of the belief-path from the e↵ects of the control variables, we first run LightGBM using only the

controls. These controls include rating, matches played in the previous 2 hours, matches played in

30Mean-preserving contraction mutations increase average match length and mean-preserving spread mutations
decrease average match length.
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the previous 2 hours with the same champion, log minutes from the previous match, log minutes

from the previous match with the same champion, and fixed e↵ects for day, hour, and date. We

then take the residuals from this regression and then run a second LightGBM regression on the

belief-path. We used the same features as in our step-wise OLS specification.

One of the most important determinants of continued play is match length. Players are much

more likely to play another match if the last match was short. This says little about player

engagement or enjoyment of the game as the relationship could be mechanical. A player who has a

fixed amount of play-time can fit in more matches if those matches are shorter. Thus, unconstrained

optimization for maximizing continued play will drive the game to be very short. We want to control

for the match-length e↵ect. We have two approaches for solving this problem. The first is the bu↵er

method that we described above.

The second approach ensures limited changes to average match length by modifying the objec-

tive function. We modify our objective function to have a marginal penalty for shorter matches and

the same marginal bonus for longer matches. This, in principle, will keep the evolutionary process

on track, selecting mutations for their increased engagement without altering average match length.

We find the marginal incentive by treating the penalty as a parameter and performing a grid search

over optimizations that result in the lowest change in game length over the first 100 iterations. We

also layer in the bu↵er approach as before as an additional control to ensure the average match

length stays within the 1-minute bound.31 We then evaluate the optimized game based on our

estimated objective function.

D Additional Results

Tables D2 and D3 show alternative specifications of OLS regressions of continued play on features

of the belief path. Interestingly, suspense average has a negative coe�cient for losers and surprise

average has a positive coe�cient for winners contrary to our main results in Table 3. This is because

surprise average and suspense average are correlated. This shows the importance of including both

terms simultaneously.

31When the length-incentive is included in the objective function, match length never reaches the bounds of the
bu↵er, as one should expect. The bu↵er is not entirely redundant, however, as it plays an important role when we
conduct exercises in which the initial match length begins outside of the bu↵er.
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Table D2: E↵ect of the Belief-Path on Continued Play (Losers)

(1) (2) (3) (4) (5)
p̂ Average† -7.50

(0.13)

Surprise Average† -31.53
(0.77)

Surprise2 Average -97.46
(2.63)

Suspense Average† -30.07
(0.82)

p̂0 9.28
(3.00)

p̂20 -8.84
(3.05)

Peak p̂0 0.53
Mean of DV 58.76 58.76 58.76 58.76 58.76
SD of DV 49.23 49.23 49.23 49.23 49.23
R2 .013 .013 .013 .013 .013
Clusters 2,805,461 2,805,461 2,805,461 2,805,461 2,805,461
N 13,949,001 13,949,001 13,949,001 13,949,001 13,949,001

Notes: All specifications are OLS with robust standard errors clustered at the match-team level.
Continued play is multiplied by 100 so that coe�cients can be interpreted in percentage points. All
specifications include linear controls for games played in the previous 2 hours, games played in the
previous 2 hours with the same champion, minutes from the previous game, minutes from the previous
game using the same champion, quadratic controls for player skill rating, and fixed e↵ects for date, day
of week, hour of day, team, role, champion, and game length.

† denotes that the variable definition varies by column: in (1), (2), (4) and (5) explanatory variables
are averaged over all minutes, and in (3) and (6) explanatory variables are averaged over all minutes
excluding minute zero.
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Table D3: E↵ect of the Belief-Path on Continued Play (Winners)

(1) (2) (3) (4) (5)
p̂ Average† -5.03

(0.13)

Surprise Average† 18.32
(0.78)

Surprise2 Average 52.74
(2.65)

Suspense Average† 23.14
(0.83)

p̂0 25.72
(3.17)

p̂20 -24.68
(3.09)

Peak p̂0 0.52
Mean of DV 59.64 59.64 59.64 59.64 59.64
SD of DV 49 49 49 49 49
R2 .012 .012 .012 .012 .012
Clusters 2,805,336 2,805,336 2,805,336 2,805,336 2,805,336
N 13,949,906 13,949,906 13,949,906 13,949,906 13,949,906

Notes: All specifications are OLS with robust standard errors clustered at the match-team level.
Continued play is multiplied by 100 so that coe�cients can be interpreted in percentage points. All
specifications include linear controls for games played in the previous 2 hours, games played in the
previous 2 hours with the same champion, minutes from the previous game, minutes from the previous
game using the same champion, quadratic controls for player skill rating, and fixed e↵ects for date, day
of week, hour of day, team, role, champion, and game length.

† denotes that the variable definition varies by column: in (1), (2), (4) and (5) explanatory variables are
averaged over all minutes, and in (3) and (6) explanatory variables are averaged over all minutes excluding
minute zero.
⇤ p < 1e� 2, ⇤⇤ p < 1e� 4, ⇤⇤⇤ p < 1e� 6
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