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native rate, and that this is entirely accounted for by their disproportionately holding degrees 
in science and engineering. These data imply that a one percentage point rise in the share of 
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college graduates. We isolate the causal effect by instrumenting the change in the share of 
skilled immigrants in a state with the state's predicted increase in the share of skilled 
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regions. 
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Economists have studied the impact of immigration on a variety of host country out-

comes. For example, Card (2007) considers U.S. immigration’s impact on population

growth, skill composition, internal migration, wages, rents, taxes and the ethnic and

income composition of neighborhoods and schools. In contrast, the impact of immigra-

tion on innovation has received less attention. In addition to the direct contributions of

immigrants to research, immigration could boost innovation indirectly through positive

spill–overs on fellow researchers, the achievement of critical mass in specialized research

areas, and the provision of complementary skills such as management and entrepreneur-

ship. Some tantalizing facts hint at the possible importance of these effects for the United

States. Compared to a foreign–born population of 12% in 2000, 26% of U.S.–based Nobel

Prize recipients from 1990–2000 were immigrants (Peri 2007), as were 25% of founders of

public venture–backed U.S. companies in 1990–2005 (Anderson and Platzer 2006), and

founders of 25% of new high–tech companies with more than one million dollars in sales

in 2006 (Wadhwa et al. 2007). Immigrants are over–represented among members of the

National Academy of Sciences and the National Academy of Engineering, among authors

of highly–cited science and engineering journal articles, and among founders of bio–tech

companies undergoing IPOs (Stephan and Levin 2001). Kerr (2007) documents the surge

in the share of U.S. patents awarded to U.S.–based inventors with Chinese and Indian

names to 12% of the total by 2004, and Wadhwa et al. (2007) find that non–U.S. citizens

account for 24% of international patent applications from the United States.

The goal of our paper is to assess the impact of skilled immigration on innovation

as measured by U.S. patents per capita. The purpose of studying patents is to gain in-

sight into technological progress, a driver of productivity growth and ultimately economic

growth. If immigrants increase patents per capita, they may increase output per capita

and make natives better off. This is an important consideration for the debate concerning

how many and what type of immigrants should be admitted to the United States, and

particularly for the discussion of the appropriate number of employer–sponsored H–1B

visas for skilled (especially science and engineering) workers. The context of the dis-

cussion is the shift from European to low and middle–income source countries since the
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Immigration Act of 1965, and the concomitant faster increase in unskilled immigration

than skilled immigration.

One way skilled immigrants could increase patenting per capita is through a greater

concentration than natives in science and engineering occupations. Immigrants are likely

to be over–represented in such occupations, since scientific and engineering knowledge

transfers easily across countries: it does not rely on institutional or cultural knowledge, is

not associated with occupations with strict licensing requirements like medicine, and does

not require the sophisticated language skills of a field like law.1 Skilled immigrants could

also increase patenting per capita if a combination of immigration policies and immigrant

self–selection leads them to be more educated or of higher unobserved inventive ability.

Even immigrants who do not patent themselves may increase patenting by providing

complementary skills to inventors, such as entrepreneurship. Immigrant inventors may in

turn make natives more inventive. Conversely, immigrant inventors’ contributions could

be offset by negative spill–overs, for example, if their presence discourages natives from

working in science and engineering.2

After establishing theoretical propositions concerning the decision of scientists and

engineers to emigrate, we begin our empirical analysis by examining how much immigrants

patent using the 2003 National Survey of College Graduates (NSCG), which contains

information on both patenting activity and birth place. The individual–level data allow

us to gauge the impact of immigrants on patents per capita under the assumption that

immigrants do not influence the behavior of natives or other immigrants, and allow us to

examine whether immigrants patent more than natives because they have higher inventive

ability or merely different education or occupations.

In order to account for immigrants’ possible influence on natives or other immigrants,

we turn to a panel of U.S. states from 1940–2000, based on data from the U.S. Patent

and Trademark Office, the decennial censuses and other sources. We provide estimates

1See Chiswick and Taengnoi (2007) and Peri and Sparber (2008) for evidence.
2In the most relevant paper, Borjas (2006) finds that immigrants do not crowd out natives as a whole

from graduate school.
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of skilled immigrants’ impact on patents per capita that encompass both immigrants’

own patenting and any positive or negative spill–overs immigrants might have. To obtain

the causal effect of immigrants despite their endogenous choice of destination state, we

difference the data across census years, and instrument the change in the share of skilled

immigrants in a state with the state’s predicted increase in the share of skilled immigrants.

We base the latter on the 1940 distribution across states of immigrants from various source

regions and the subsequent national increase in skilled immigrants from these regions.

We contribute to two understudied areas, the impact of immigration on innovation

and the individual determinants of innovation, as well as to the study of the regional

determinants of innovation. Our work is also relevant for the macroeconomic growth

literature, where the link between innovation and the number of researchers is the key to

growth.3

We go beyond the most closely related paper linking immigration and innovation, Peri

(2007), by adding individual–level analysis, extending the state panel, using instrumen-

tal variables to correct for endogeneity, and defining skilled immigration more broadly

and consistently across time. These considerations also distinguish our paper from the

time–series analysis of Chellaraj, Maskus and Mattoo (2008). Both of these papers find

skilled immigration increases U.S. patenting. Our analysis is more general than that of

Stuen, Mobarak and Maskus (2007) and Kerr and Lincoln (2008). The former authors find

that immigrant students increase U.S. university patenting and science and engineering

publishing. The latter authors find that when the national population of H–1B visa–

holders increases, patenting by inventors with Indian and Chinese names rises in states

that have many H–1B applications. A related paper by Niebuhr (2006) concludes that

German regions with more diverse worker nationalities (as measured by the Herfindahl

index) patent more. The result is not robust to region fixed effects, however, no doubt

in part because she has only two years of data close in time (1997 and 1999). Paserman

(2008) finds no effect of skilled immigration on Israeli manufacturing productivity. We

are not aware of previous papers with regression analysis of the individual determinants of

3Aghion and Howitt (1992), Grossman and Helpman (1991a,b), Jones (1995), Romer (1990).
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patenting, though Morgan, Kruytbosch and Kannankutty (2003) note in passing the im-

migrant advantage in patenting in the 1995 NSCG, and economic historians have studied

the characteristics of nineteenth century inventors (e.g. Khan and Sokoloff 1993).

There is a large literature on the regional determinants of patenting, but the analysis

relies primarily on cross–section variation or qualitative analysis. The literature considers

the effects of private and public R&D spending, the presence of a university, the presence of

small firms, the competitiveness of product markets, the presence of an airport, geographic

centrality, population density and size and the presence of skilled workers, especially

scientists and engineers.4 The most closely related paper is by Zucker and Darby (2006):

they pool data on Bureau of Economic Analysis regions for 1981–2004, and find that

non–university patenting is affected by neither the presence of star scientists, a high wage

(proxying for education) nor a high stock of relevant journal publications (representing

the stock of knowledge).5

Our theoretical analysis shows that workers with science and engineering education are

more likely to emigrate than other (“professional”) skilled workers if the expected wage

premium commanded by professional over unskilled jobs in the destination is smaller than

the cost of adapting professional skills to the destination institutions. We demonstrate

this in Appendix A. Our empirical analysis of the NSCG data shows that immigrants

account for 24% of patents, twice their share in the population, and that the skilled im-

migrant patenting advantage over skilled natives is entirely accounted for by immigrants’

disproportionately holding degrees in science and engineering fields. The data imply that

a one percentage point increase in college–graduate immigrants’ share of the population

increases patents per capita by 6%.

4See, for example, Acs (2002), Bottazzi and Peri (2003), Hicks et al. (2001), and the papers in Acs et

al. (2002); Jaffe, Trajtenberg and Henderson (1993) and successor papers study geographic patterns of

patent citations.
5Other relevant papers include Agrawal, Kapur and McHale (2002), who find that emigration from

India reduces access to knowledge in India, Zucker et al. (2006), who examine the determinants of

a region’s publications in nanotechnology, and Marx, Strumsky and Fleming (2007) and Stuart and

Sorenson (2003), who examine the effect of a state’s enforcing non–compete laws on inventor inter–firm

mobility and biotech IPOs respectively.
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This could overestimate the contribution of immigrants, if immigrants crowd out na-

tives from science and engineering, or could underestimate the contribution, if immigrants

have positive spill–overs. The state panel analysis, which estimates the contribution in-

cluding any spill–overs, shows evidence of positive spill–overs of immigrants, since the

estimates of their impact on patents per capita are higher than in the NSCG: a one per-

centage point rise in the share of immigrant college graduates in the population increases

patents per capita by 9–18%. The state–level results mean that the 1990–2000 increase

in the population share of this group from 2.2% to 3.5% increased patents per capita by

12–21% in a period when patents per capita rose 63%. We find that immigrants who are

scientists and engineers or who have post–college education boost patents per capita more

than immigrant college graduates.

1 Empirical methodology

We use individual–level data to measure and explain differences in patenting behavior

between immigrants and natives, and to gauge the contribution of immigrants to patenting

per capita under the assumption that immigrants do not affect the behavior of natives or

other immigrants. We then use state–level data to estimate the effect of immigrants on

patenting per capita, including any positive or negative spill–overs.

1.1 Individual–level data

A measure of the increase in patenting per capita owing to skilled immigrants can be

calculated as follows.6 Let the skilled immigrant share of patents be α0 (we obtain this

value from the NSCG) and the skilled immigrant share of the population be α1 (we

obtain this value from the census). Let MS be the number of skilled immigrants and

PMS their patents. If the skilled immigrant share of the population increases by one

percentage point, the percent increase in skilled immigrants is ∆MS

MS = 1
α1

0.01
0.99−α1

, the

percent increase in the population is ∆MS

POP
= 0.01

0.99−α1
and the percent increase in patents

6The full algebra is presented in Appendix B.
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is ∆PMS

P
= 1

P
PMS

MS ∆MS = α0
∆MS

MS . The percent increase in patents per capita is therefore

1 + ∆PMS

P

1 + ∆MS

POP

− 1 = (0.01)
α0 − α1

α1(1− α1)
. (1)

We shall establish below that skilled immigrants patent more than skilled natives,

and that this difference is driven by the difference in patenting at all. For policy–makers

contemplating reducing skilled immigration and inducing more natives to study science

and engineering, it may be interesting to understand the reasons for the immigrant ad-

vantage. To explore these reasons, we estimate a probit for the probability of having a

patent granted, or the probability of commercializing or licensing a patent, weighted by

the survey weights:

P (patentj) = β0 + β1IMj +Xjβ2 + εj, (2)

where j indexes individuals and IM is a dummy for the foreign–born. The coefficient

of interest is β1. We are interested in how much of the raw patenting gap between

immigrants and natives (the value of β1 with no X covariates) can be explained by adding

the covariates X: field of study of the highest degree, the highest degree, and demographic

variables. We perform the regressions for three samples: college graduates, post–college

degree holders, and scientists and engineers.

1.2 State–level data

We supplement the analysis using a panel of U.S. states with decennial data from 1940–

2000. By extending the period of observation back to 1940, we are able to distinguish

long run and short run effects by differencing the data in lengths varying from ten to 50

years.7 We estimate

∆log
Pi,t+1

POPi,t+1

= γ0 + γ1∆ISit + γ2∆NS
it + ∆Xitγ3 + Zi,1940γ4 + µt + ∆ηit, (3)

where i indexes states, P is the number of patents, POP is state population, IS is the share

of the population or workforce (18–65) composed of skilled immigrants, NS represents the

7Strictly speaking, we should refer to low–frequency and high–frequency effects.
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corresponding share for skilled natives, Zi,1940 are characteristics of the state in 1940, X

are contemporaneous state characteristics and µt are year dummies. The coefficient of

interest is γ1, though its size relative to γ2 is also of interest. We also present results from

specifications where the dependent variable is not in logs.8

We define a skilled person variously as one with a college degree or more, one with

post–college education, or one working in a science, engineering or computer science oc-

cupation. We include characteristics of the state in 1940 (including land area), to capture

the convergence in patents per capita occurring over the time period. The X covariates

comprise the log of defense procurement spending and the log of the average age of state

residents (18–65). We deliberately do not include R&D spending, as we believe this to

instead be a potential outcome variable. We lead the dependent variable by one year to

allow for a year of research time between the change in the inputs and the patent appli-

cation, as anecdotal evidence suggests the lag can vary between a few months and two

years.

There were several major changes to the patent system between 1980 and 1998 (see

Hall 2005). One change led to a large increase in patenting in electrical engineering

relative to other sectors. To capture potentially differential effects of this by state, we

include among the X’s the share of employment in electrical engineering–related sectors

in 1980, interacted with year dummies.9 Alternatively, we capture this by controlling for

region–specific dummies interacted with a dummy for differences involving years beyond

1980.

We use state populations to weight the regressions,10 since in some small states one

company drives the time series of patenting,11 and we cluster standard errors by state

to allow for serial correlation. Because we account for state fixed effects by estimating

8All patents are filed in Washington D.C.; they are attributed to states based on the home address of

the first inventor.
9We use 1980 values as electrical engineering employment was still tiny in most states in 1940–1970.

10Specifically, we weight by 1/(1/popi,t+1 + 1/popi,t−k+1), where k is the length of the difference.
11Idaho’s emergence as the state with most patents per capita has been driven by one semi–conductor

company, Micron Technology Inc., founded in 1978, which was granted 1643 patents in 2001 and was the

fourth–ranked company in this regard.
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equations differenced across time, we elect not to include the change in the patent stock

among the regressors as would be suggested by patent models. Furthermore, because we

analyze long–run changes, we have chosen not to use a partial adjustment model.12

Equation (3) suffers from an endogeneity problem. Skilled workers are likely to migrate

to states which are growing or innovating, causing γ̂1 and γ̂2 to be biased upward in least

squares estimation. On the other hand, γ̂1 in particular could be biased towards zero

owing to measurement error.13 We devise an instrument to address these problems for

skilled immigrants, inspired by a shift–share type analysis of the change in popularity of

a state stemming from changes in the origin regions of skilled immigrants at the national

level.14 To illustrate, if immigrants from Europe prefer the northeastern United States

because it is closer to home and because other Europeans are already there because of

geography, and Asian immigrants prefer the west coast for the same reasons, the large

national increase in the share of skilled immigrants that are Asian will lead to an increase

in skilled immigration to the west coast relative to the northeast. If the national increase

in skilled Asian immigrants is caused by the change in U.S. immigration policy in 1965,

the opening of China to the world in 1979, along with increases in tertiary education in

China and India, it is orthogonal to shocks to west coast patenting.

For a state i, the predicted change in the number of skilled immigrants, caused by

changing origin regions k, can be written as

∆M̂S
i =

∑
k

Mik

Mk

∆MS
k =

∑
k

λik∆M
S
k ,

where λik is state i’s share in 1940 of the national total of immigrants who originate

12We have estimated these models. The coefficient on the change in the stock of patents is close to

one, rendering all other coefficients insignificant, while the coefficient on the partial adjustment term is

insignificant.
13There is considerable measurement error for small states in the 1950 census, which was a smaller

sample than later years and which asked certain key questions of only one quarter of the sample. There

is also measurement error for the share of immigrant post–college and immigrant scientists and engineers

in small states in the 1940–70 censuses.
14This instrument is similar to the instrument developed by Card (2001). For ∆NS , the change in the

share of native skilled workers, we have experimented unsuccessfully with lagged college enrollments as

an instrument. The enrollment data only begin in the 1970s.
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from region k, and ∆MS
k is the national change in the number of skilled immigrants from

that region. We use 18 source regions or countries, listed in Appendix Table 1. Because

the variable to be instrumented, ∆ISit , is a percentage point change, we convert ∆M̂S
i to

percentage points by dividing by the population level at the start of the period to which

∆ refers, to define our final instrument as:

∆M̂S
i

POPi
.

We deliberately base the λik on immigrants of all educations (and ages) to emphasize

the role of geography and taste and minimize the role of economic factors that might

attract skilled workers specifically. We can control for the λik in the regressions, to ensure

that the instrument is not correlated with the error term due to their omission, and

the year dummies control for all national trends. If controlling for λik and the other

covariates does not account for state–specific patenting shocks which are very persistent

and influence national inflows of particular immigrant groups (e.g. California has serially

correlated positive patenting shocks which caused low–skill Chinese to settle there before

1940 and which incited skilled Chinese to move to the United States in more recent years),

the instrument could be correlated with the error term. We present evidence below that

suggests this is not the case.

Information on Alaska and Hawaii is not available until 1960. If the instrument is con-

structed using the 1960 shares for Alaska and Hawaii instead of the missing 1940 shares,

Hawaii is such an outlier (due to its high share of Asian immigrants in 1960) that the in-

strument does not statistically significantly predict immigration patterns even in weighted

regressions. We therefore drop Hawaii from the analysis entirely, and for simplicity drop

Alaska as well. This makes an imperceptible difference to weighted least squares regres-

sions, and only a small difference to the less preferred unweighted regressions.
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2 Data and Descriptive Statistics

2.1 Individual–level data

We use the individual–level data from the 2003 National Survey of College Graduates

(NSCG). These data are a stratified random sample of people reporting having a bachelor’s

degree or higher on the long form of the 2000 census. In 2003, all respondents who

had ever worked were asked whether they had applied for a U.S. patent since October

1998, whether they had been granted any U.S. patent since October 1998, and if so, how

many, and how many had been commercialized or licensed.15 The survey will not capture

patents by those with less than a college degree, but we assume that most patents are

captured. Appendix C provides more information on the NSCG. We include in our sample

respondents 65 or younger (the youngest respondent is 23, but few are younger than 26).

Immigrants are those born outside the United States.

We define three (not mutually exclusive) skill categories, motivated in part by con-

sistency with categories that can be distinguished in the censuses: college graduates (i.e.

the full sample); holders of a post–college degree; and those working as scientists and

engineers in the survey week. Only 51% of respondents who had been granted a patent

reported working in a science or engineering occupation. Another 18% reported a man-

agement occupation: a research team’s manager is sometimes listed as a co–inventor on

a patent, and all inventors listed are captured in the data; also, many inventors will have

been promoted to management since obtaining a patent. Science and engineering tech-

nicians represent 2.5% of patent holders, and respondents in health–related occupations

represent another 3.0%.

Table 1 shows details of how patenting varies by immigrant status for the three skill

groups. For college graduates (the whole sample, columns 1–2), 1.9% of immigrants were

granted patents compared to 0.9% of natives, a ratio of 2.1, and patents per capita were

15Questions on patents were also asked in the 1995 NSCG, but only of respondents who said they

worked in research and development in the survey week, which will cause the patents of job changers to

be missed.
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0.057 for immigrants and 0.028 for natives, a ratio of 2.0. Immigrants therefore patent

at about twice the native rate, with the difference being principally in the probability of

patenting at all. Immigrants held a slightly smaller advantage in patents commercialized

or licensed, patents likely to benefit society more than others: 1.2% immigrants had

commercialized a patent compared to 0.6% for natives, but commercialized patents per

capita were 0.029 for immigrants and 0.017 for natives. The immigrant–native gap is

larger for the sample with post–college education (columns 3–4), but much smaller for

the sample working in science and engineering occupations (columns 5–6). For example,

6.2% immigrants in the latter sample had been granted a patent, compared to 4.9%

natives, and immigrants hold 1.35 times the patents per capita of natives. Appendix

Table 2 contains the means of variables used in the regression analysis below.

2.2 State–level data

The patent data used in the state–level analysis come from the U.S. Patent and Trademark

Office (USPTO). Patents are attributed to states based on the home address of the first

inventor on the patent. We merge a series based on electronic data from 1963 onwards with

a series from paper records for 1883–1976 (see Appendix C for the merging procedure).

Patents are classified according to application (filing) date. Figure 1 shows the evolution

of total patents and patents per 100,000 residents from 1941-2001, our study period.

In Figure 2 we use patent data from 1929 to 2001 to display the long–run convergence

across states in patenting, as measured by changes in the (unweighted) standard deviation

of log patents. The convergence in patents, shown by the downward slope of the top line, is

not merely a function of convergence in population, as is demonstrated by the convergence

in patents per capita (bottom line).16 However, there is divergence in patents per capita

from 1990–2001, and there have historically been other periods of divergence. California

is a force for divergence, as may be seen by the growing gap between the inequality of

state patent counts with California (top line) and without California (middle line).

16Papers such as Co et al. (2006) have previously noted cross–state convergence in patents per capita.
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We have also used an extract from the Harvard Business School patent data file,

which contains information on patents granted from 1975 to 2007, arranged by year of

application and patent class.17 We have aggregated the patent classes to six categories

using the classification of Hall, Jaffe and Trajtenberg (2001) and our own classification

of patent classes created since 1999. The extract contains the number of citations made

to patents in each patent class, state and application year. These may be viewed as a

proxy for the quality of the patent. We analyze 1971–2001 data using this extract (see

Appendix C for how we approximate 1971 values).

To compute the shares of the population in various education and occupation classes,

to divide these into immigrant and native, and to calculate the average age of the state’s

population, we use the IPUMS microdata of the decennial censuses. Post–college educa-

tion is the highest education level that can be measured consistently throughout 1940–

2000. We define immigrants to be the foreign born. Information for Alaska and Hawaii

is not available in 1940 and 1950, and we elect to drop these states entirely for reasons

explained in the methodology section.

The variable means for the full 1940–2000 sample, weighted by population, are re-

ported in Table 2. Between 1940 and 2000, the share of the population 18–65 composed

of immigrants with college education or more increased twelvefold to 3.5%, while the

equivalent share for post–college increased twelvefold to 1.6%. The population shares

comprising natives with at least college and with post–college increased from 4.1% to

20.0% and from 1.1% to 7.7% respectively. The share of workers composed of immigrant

scientists and engineers multiplied elevenfold to 0.9%, while the native share rose from

0.6% to 3.5%. The Appendix Table 2 contains information about the variables used in

the construction of the instruments.

17We are very grateful to Bill Kerr for making this extract for us.
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3 Results

3.1 Individual determinants of patenting

The NSCG data may be used to estimate the direct effect of immigration on patenting,

ignoring possible crowd–out or spill–over effects, using equation (1). Immigrants hold

24.2% of patents in the (weighted) data (α0 = 0.242), and in the 2000 census (the basis of

the NSCG sampling frame), college–graduate immigrants were 3.5% of the U.S. population

(α1 = 0.035). A one percentage point rise in the share of college immigrants in the

population therefore implies an increase in patents per capita of 0.061, or 6.1%. The same

exercise may be performed for natives, with the result that a one percentage point rise in

the share of college natives increases patents per capita by 3.5%. As immigrants with post–

college education have 2.0 (=0.112/0.057) times as many patents per capita as immigrants

with only a college degree (see Table 1), the direct impact of an extra percentage point

of post–college immigrants in the population is likely to be 2.0 times higher, or an extra

2.0×6.1 = 12.2%. Similarly, the contribution of an additional percentage point immigrant

scientists and engineers is likely to be 3.1× 6.1 = 18.9%.

To assess the reasons for the immigrant patenting advantage, we first observe that

in Table 1 immigrants’ patenting advantage over natives is much smaller in the scientist

and engineer sample (columns 5 and 6) than in the overall sample (columns 1 and 2).

This suggests that immigrants’ advantage is due in large part to a greater science and

engineering orientation. Table 3 lends further support to this. Column 1 shows that, for

the whole sample, 6.6% of those with a highest degree in physical science and 6.1% of those

with a highest degree in engineering had patented, far ahead of other fields. Column 2

shows a qualitatively similar picture for commercialized or licensed patents. Immigrants’

education is therefore well–suited to patenting, since columns 3 and 4 show that the share

of immigrants with physical science and engineering degrees is more than twice as high

as for natives.

In Table 4, we pursue this explanation using the probit of equation (2) for the prob-

ability of patenting. Column 1 shows that immigrants are 1.0 percentage points more
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likely to have been granted a patent in the sample of college graduates (top panel), 2.3

percentage points more likely in the sample of post–college educated (second panel) and

1.3 percentage points more likely in the sample of scientists and engineers (third panel).

In the second column, we control for the field of study of the highest degree obtained

by the respondent by adding 30 dummies. For all three samples, the gap becomes small:

6–9% of the original size for college and post–college graduates, and 24% for scientists

and engineers. In the third column, we control for the highest degree obtained by the

respondent. For college graduates and scientists and engineers, the direction of the gap is

reversed: immigrant scientists and engineers are a statistically significant 0.95 percentage

points less likely to patent than natives. Controlling for age, age squared, sex and current

employment status in column 4 changes little. Skilled immigrants’ advantage is therefore

entirely due to the nature of their education, and not to any selection on unobservables

such as ability.18 In columns 5 and 6 we show that the same conclusions may be drawn

for the probability of commercializing or licensing a patent.

3.2 State determinants of patenting

In Table 5, we estimate the state determinants of log patenting per capita using differences

of varying lengths, with a college degree as the measure of skill and least squares estimation

of equation (3). The regression in column 1 is unweighted, while those in the other columns

are weighted. A ten–year difference is taken in columns 1 and 2, a thirty–year difference

in column 3 and a fifty year difference in column 4. The coefficients on the changes in the

immigrant college shares are positive and significant. A one percentage point increase in

the share of the population composed of immigrant college graduates is associated with

a 12–15% increase in patenting per capita. These effects are larger than the 6% impact

calculated based on the NSCG data, implying positive spill–over effects of immigrants.

The coefficients on the change in the share of native college graduates are smaller

than the coefficients for immigrants. The point estimate increases as the difference length

18It is possible that unobservable effects cancel out e.g. immigrants may have higher ability but lower

quality education.
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increases, and for 50–year differences the coefficient is a significant 5.8 in column 4. The

immigrant/native ratio is 2.6, somewhat larger than the 1.9 ratio in the NSCG. The

coefficient suggests that skilled natives too have positive spill–overs, as the effect of a one

percentage point increase in their population share based on the NSCG data was 3.5%.

The absence of significance at short differences probably reflects the emphasis of short

differences on high–frequency events (Baker, Benjamin and Stanger 1999), since the share

of native college graduates changes only gradually.

Older populations appear to be more innovative, as indicated by the positive coeffi-

cients on the average age of the state. This may reflect the importance of management or

other skills complementary to innovation. As suggested by time series work in Griliches

(1990), Department of Defense procurement spending lowers patenting, presumably in

part because military invention is primarily protected by secrecy rather than patents. Fi-

nally, the importance of the 1940 conditions (and land area) increases with the difference

length, and the coefficients indicate that patent growth was lower for initially richer and

more densely populated states.

We reproduce key Table 5 results in Table 6 Panel A columns 1–2, to facilitate their

comparison with the equivalent coefficients for post-college education (Panel B) and sci-

entists and engineers (Panel C). The coefficients for immigrant post–college are 20.7 and

29.8 in columns 1 and 2, 1.6–2.0 times as high as for immigrant college graduates, com-

pared to a ratio of 2.0 the NSCG data. The coefficients indicate positive spill–overs, as

the effect of a one percentage point increase in the immigrant post–college share in the

individual data was 12%. The coefficients for the share of native post–college educated

are not statistically significant, though the point estimates are higher for the longer dif-

ferences, yielding an immigrant/native ratio of 3.5 at 50–year differences compared to 3.1

in the NSCG. For scientists and engineers in panel C columns 1–2, a one percentage point

increase raises patents by 52 log points. This is high compared with the direct NSCG

effect of about 19% and compared with the effect of natives at 50–year differences (25

log points), given that in the NSCG the immigrant patenting advantage over natives was

only 35% amongst scientists and engineers. We return to this discrepancy below.
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In columns 3 and 4 we repeat the regressions of columns 1 and 2, using the unlogged

dependent variable and reporting coefficients multiplied by 100. For immigrants, the

50–year difference yields smaller coefficients than the ten–year difference. For immigrant

college graduates in Panel A, a one percentage point increase in their share is associated

with a 0.000037 (column 3) or 0.000027 (column 4) increase in patents per capita, which

represent respectively 16.1% and 11.7% increases compared to the mean, close to the

estimates in columns 1 and 2. The coefficients for post–college immigrants (Panel B) are

1.9–2.0 times the magnitude of the college immigrant coefficients, as we would expect,

but are statistically insignificant. The disparity between ten and 50–year differences is

large for the regressions using scientists and engineers (Panel C). The 50–year coefficient

is similar in magnitude to the results from the log specification: the coefficient of 1.35

(column 4) means that a one percentage point increase in the skilled immigrant share is

associated with a 58.7% increase compared to the mean. The skilled immigrant coefficients

in columns 3–4 are not very sensitive to the covariates included, while the results in

columns 1–2 are much smaller if the 1940 covariates (including land area) are not included.

We have repeated all the least squares regressions of Table 6 splitting the skilled

natives according to whether they lived in the state of their birth or not (these results

are not reported). For long differences, it is the coefficient on the change in the share of

skilled natives born in another state that is larger and statistically significantly positive.

For short and medium differences, which coefficient is more larger depends on the skill

group.

Before presenting instrumental variables results, we display in Figure 3 the correla-

tion between the change in the immigrant college share and its instrument (the predicted

change) for each decade, and plot the weighted regression line. If the instrument were

picking up shocks to patenting from around 1940, we would expect the instrument to grad-

ually weaken over time. Instead, the instrument is weak in the low immigration decades

of 1940–1950 and 1950–1960, strong thereafter. The unreported figures for immigrant

post–college and scientist and engineer shares indicate similar correlations, though they

are less significant for scientists and engineers.
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We now proceed to present the results of instrumental variables estimation and other

specification checks, focusing on the log specification and ten–year differences, and re-

porting only the coefficient on the change in the skilled immigrant share. For conciseness

we present the full results only for the case of college proxying for skill, in Table 7. Row 1

shows that in the base specification, instrumental variables increases the coefficient to

30, more than twice the least squares coefficient of 13. The instrument is strong in the

first stage, as indicated by the value in brackets of 27 for the F–statistic for the excluded

instrument’s significance in the first stage (the first stage itself, along with all other first

stages for the table, is shown in Appendix Table 3). The higher magnitude of the instru-

mental variables estimate may indicate that in least squares, measurement error’s bias

towards zero is more important than upward bias due to the endogenous location choice

of immigrants, a possibility mooted by Card and DiNardo (2000) in a similar context.

It seems less likely that skilled immigrants whose behavior is affected by the instrument

(skilled immigrants whose location decision is affected by historical geographic or taste

considerations) are more inventive than other immigrants.

In rows 2 and 3 we check the robustness of the results to different samples. Without

California (row 2), the least squares estimate falls from 13.2 to 9.2 and the instrumental

variables estimate from 30 to 26. Without differences involving the year 2000, the point

estimates fall more. In row 4 we return to the full sample and add seven dummies for

BEA regions, which pick up region–specific trends in per capita patenting. This decreases

the point estimates compared to row 1. The region coefficients are jointly significant,

as are the coefficients for all sets of covariates we add in this table. In row 5, we use

state instead of region dummies, which mainly serves to increase the standard errors. In

row 6, we revert to using BEA region dummies, and add controls for the share of workers

in electrical engineering in 1980 interacted with year dummies, which decreases the least

squares estimate from 11.5 in row 4 to 9.6, but leaves the instrumental variables estimate

little changed at 23.

Until this point, the regressions have not controlled for the state’s 1940 shares of the

eighteen immigrant groups that enter the calculation of the instruments (λik). We add
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these shares to the controls in row 7, which increases the coefficients slightly as well as the

standard errors, rendering the least squares estimate insignificant. As the point estimates

change little, we do not include the 1940 shares in the remaining rows.

Since the change in the native skilled share is endogenous, the instrumental variable

estimate of the effect of the change in the immigrant skilled share is only unbiased if the

two variables are independent. Since this is obviously not the case (the correlation in the

first stage is significantly negative), we experiment in row 8 with dropping the control

for the change in the share of college natives. Compared to row 6, the least squares

coefficient falls slightly, but the instrumental variables coefficient falls considerably, from

23.1 to 17.6.

In row 9 we propose a more parsimonious specification aimed at capturing post–1980

patenting changes, adding to the base specification only BEA region dummies interacted

with a dummy for post–1980 (i.e. for differences including 1990 or 2000). These results

are very close to those of row 8, although the addition of these covariates has weakened

the instrument considerably in the first stage, as evidenced by the fall in the F–statistic

in brackets. In row 10 we drop the change in the native college share from the covariates

of the row 9 specification, and the estimates fall to the lowest values in the table: 7.0 for

least squares and 12.3 for instrumental variables.

Our preferred specifications for least squares are rows 6 and 9 (which include the native

skilled share), while for instrumental variables they are the counterparts excluding the

native skilled share in rows 8 and 10. We present their results in Table 8 for all three

skill groups (repeating the college results). For immigrant college graduates (columns 1

and 2), a one percentage point increase in share increases patenting per capita by 8–10%

in least squares and 12–18% in instrumental variables, more than the 6% based on the

individual–level data (statistically significantly so in the case of the highest coefficient),

and therefore implying positive spill–overs. For post–college immigrants (columns 3 and

4), the upper specifications lead to insignificant coefficients similar in size to the college

coefficients: 11.3 and 18.9 for least squares and instrumental variables respectively. It

seems implausible that the effects would not be larger than for college immigrants (and this
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specification is unusual in this regard), so we put more weight on the lower specifications

which yields coefficients of 15.9 and 27.0, about double the college coefficients, as would

be expected from the individual–level analysis. The individual–level effect calculated for

the immigrant post–college share was 12%, so overall the coefficients imply considerable

positive spill–overs.

We do not present instrumental variables results for immigrant scientists and engineers,

as the instrument is too weak in the first stage, but the least squares coefficients in

column 5 are 38.2 and 30.7 (significant only at the 10% level), compared to a 19% effect

calculated with the individual–level data. The scientist and engineer coefficients are 3.7–

4.0 times their college counterparts in column 1, which still seems slightly high compared

to the ratio of 3.1 in the individual–level data. For immigrant scientist and engineers in

the specifications of this table, contrary to the cases of immigrant college and post–college,

the coefficient on the share generally falls as the difference length increases. This means

that at longer differences, the immigrant and native shares of scientists and engineers

have similar coefficients, as would be expected based on the individual–level results. For

example, in the 50–year counterpart to the upper specification of Table 8, the coefficient

on the immigrant scientist and engineer share is 27.0 (standard error 16.2) while the native

coefficient is 22.9 (standard error 5.8). These values imply ratios of immigrant to native

and of immigrant scientists/engineers to immigrant college very similar to in the NSCG.

The instrument is also more powerful at this long difference (an F–statistic of 11 in the

first stage), and the instrumental variables coefficient is 61.4 (standard error 28.7). These

are our preferred coefficients for scientists and engineers.

In Table 9 we investigate further using the Harvard Business School patent data for

1971–2001. In row 1 we repeat the least squares base specification for log patents per

capita for this smaller sample, and obtain slightly smaller point estimates for immigrant

college (10.7), post–college (15.2) and scientists and engineers (45.7) compared to those

in Table 6. In row 2 we change the dependent variable to be the log of patent citations

per capita, and in row 3 we add region dummies to this specification. The results are

not very different from the results for patent counts, suggesting immigrants are not gen-

19



erating patents of lower quality than native patents. Unreported instrumental variables

coefficients are larger (21 for college graduates in the base specification) but insignificant.

In rows 4–9 we present the results for the six categories of patent. The standard errors

are high when the data are split in this way, and we elect simply to present the least squares

base specification rather than various specifications with insignificant coefficients. From

the reported results as well as the unreported results, the only firm conclusions are that

there is no effect for mechanical patents, and a negative effect for “other” patents. The

beneficial effects of immigration are therefore spread across computer and communications

patents, electrical and electronic patents, drug and medical patents, and chemical patents.

4 Conclusions

In this paper we have combined individual and aggregate data to demonstrate the im-

portant boost to innovation provided by skilled immigration to the United States in

1940–2000. A calculation for 1990–2000, when patenting per capita rose 63%, puts the

magnitudes of the effects in context. The 1.3 percentage point increase in the share of

the population composed of immigrant college graduates and the 0.7 percentage point

increase in the share of post–college immigrants both increased patenting per capita by

about 12% based on least squares19 and 21% based on instrumental variables. The 0.45

percentage point increase in immigrant scientists and engineers increased patenting per

capita by about 13% based on least squares20 and 32% based on instrumental variables.

These impacts include the positive spill–overs of skilled immigrants, which are a substan-

tial share of the total impact: calculations based on individual–level data of the impacts

without spill–overs suggest impacts of about 8–9% for all three skill groups.21

We find that a college graduate immigrant contributes at least twice as much to

patenting as his or her native counterpart. The difference is fully explained by the greater

19College: Table 8 column 1 average coefficient 9.0, 9.0 × 1.3 = 11.7 log points= 12%; Post–college:

Table 8 column 3 coefficient 15.9, 15.9× 0.7 = 11.1 log points = 12%.
20Coefficient 27.0 from text, 27.0× 0.45 = 12.1 log points= 13%.
216.1%× 1.3 = 7.9%; 12.2%× 0.7 = 8.5%; 18.9%× 0.45 = 8.5%
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share of immigrants with science and engineering education, implying immigrants are

not innately more able than natives. Indeed, immigrants are less likely to have patented

recently than observably similar native scientists and engineers. Despite this, the fact that

immigrants increase patenting per capita shows that their presence in the United States

provides a previously uncharacterized benefit to natives, assuming the immigrants would

have been less innovative or less able to commercialize their innovation elsewhere or that

U.S. natives benefit more from innovation and commercialization in the United States

than abroad. We can make a crude calculation of the benefit using the results of Furman,

Porter and Stern (2002), who find that the elasticity of a country’s GDP with respect

to its patent stock is 0.113, controlling for capital and labor. This elasticity implies that

the influx of immigrant college graduates in the 1990s increased U.S. GDP per capita by

1.4–2.4%.

One should be cautious in drawing the conclusion that innovation could be sustained

by simultaneously subsidizing natives to study science and engineering and cutting im-

migration of scientists and engineers. The additional natives drawn into science and

engineering might have lower inventive ability than the excluded immigrants, and such

natives might have contributed more to the U.S. economy outside science and engineering.

While evidence in the paper of positive spill–overs from scientists and engineers appears to

support the dual policies of subsidizing native science and engineering study and increas-

ing immigration of scientists and engineers, it is possible that members of other skilled

professions provide equally large spill–overs that are simply more difficult to measure.

Finally, the paper leaves for future research the question of which immigration pathways

lead to the most successful immigrants: for example, admitting science and engineering

graduate students and facilitating their remaining in the United States after graduation

compared with admitting more scientists and engineers on temporary work visas.
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Appendix A: Theory

A.1 Model

The occupations of skilled immigrants to the United States depend in part upon the
choices of potential immigrants, even if other factors are also at work. U.S. employers
and universities, for example, influence the allocation of visas. Also, scientists and en-
gineers might be common among immigrants because market conditions in the sending
countries lead a larger share of foreigners than Americans to study science and engineer-
ing. Nevertheless, it is likely that self–selection is in part responsible for the fact that
skilled immigrants of all visa types are more likely than skilled natives to have studied
science and engineering (as shown by the National Survey of College Graduates).

We consider a world with two countries, the origin o and the potential destination
d, and three types of labor Lk: scientific labor Ls, professional labor Lp and unskilled
labor Lu. We assume that wages for each type of labor are higher in country d, so that
immigration goes in one direction only: wdk > wok for all k. The migration cost is Md

with a distribution g(Md) on [Md
L,M

d
H ]. The cost may vary for an individual for many

reasons such as relatives in the destination country, number of children, language skills,
adaptation capacity, etc.

Consider the decision of an origin worker to emigrate. If she chooses to stay in the
origin country, a worker of skill category k will receive a real net wage wok with certainty.
Workers of all three skill categories can find an unskilled job with certainty if they move
to country d, but professional migrants can only find a professional job in country d with
probability P d

pp, and scientific migrants can only find a scientific job with probability P d
ss

(and scientific workers cannot work as professionals and vice–versa). Moreover, while
scientific knowledge is equivalent in the two countries, a professional migrant needs to
adapt her skills at cost Cd

p > 0 in order to get a professional job in country d. Thus,
P d
pp = 0 unless the worker adapts her skills.

We assume workers are risk neutral, have perfect access to credit, care only about
consumption, and therefore maximize the expected present value of lifetime income. The
expected wage of an worker in the origin country is

E[w|k] = P (emigrate to d)[E(wd|k)−Md|emigrate to d]+(1−P (emigrate to d))wok, (4)

where P (emigrate to d) is the probability of migration. Assuming that the worker prefers
the status quo in case of indifference, she will migrate if

E(wd|k)−Md > wok ⇐⇒ Γdk ≡ E(wd|k)− wok > Md. (5)

Thus, the worker will emigrate to country d with probability G(Γdk). The expected gain
from emigration to country d for unskilled workers is

Γdu = wdu − wou, (6)
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for professional workers is

Γdp =

E[wd|k=p]︷ ︸︸ ︷
max{wdu, P d

ppw
d
p + (1− P d

pp)w
d
u − Cd

p}−wop
= wdu + max{0, P d

pp(w
d
p − wdu)− Cd

p} − wop (7)

= wdu − wou + max{0, P d
pp(w

d
p − wdu)− Cd

p} − wop + wou

= Γdu +max{0, P d
pp(w

d
p − wdu)︸ ︷︷ ︸

Expected productive skill premium in country d

−Cd
p}

︸ ︷︷ ︸
Net expected productive skill premium in country d

− (wop − wou)︸ ︷︷ ︸
Productive skill premium at home

,

and for scientific workers is

Γds =

E[wd|k=s]︷ ︸︸ ︷
P d
ssw

d
s + (1− P d

ss)w
d
u−wos

= wdu + P d
ss(w

d
s − wdu)− wos (8)

= wdu − wou + P d
ss(w

d
s − wdu)− wos + wou

= Γdu + P d
ss(w

d
s − wdu)︸ ︷︷ ︸

Net expected innovative skill premium in country d

− (wos − wou)︸ ︷︷ ︸
Innovative skill premium at home

.

We assume that the cost of acquiring professional and scientific skills is the same, and
that the expected benefits must therefore be the same. If this were not the case, workers
in the origin country would all choose the more profitable skill category. This would
decrease the marginal value of labor of this category, and thus its wage, until equality was
attained again. Therefore, we have

G(Γds)E(Γds −Md|Md < Γds) + wos = G(Γdp)E(Γdp −Md|Md < Γdp) + wop, (9)

which can be rearranged as

G(Γds)E(Γds −Md|Md < Γds)−G(Γdp)E(Γdp −Md|Md < Γdp) = wop − wos . (10)

Let ϕ(Γdk) ≡ G(Γdk)E(Γdk−Md|Md < Γdk). Noting22 that
∂ϕ(Γd

k)

∂Γd
k
> 0 (strict inequality if

Γdk > IdL), we have that Γds −Γdp is of opposite sign from wos −wop. We can use this to show
that, under some conditions, we must have Γds > Γdp i.e. a greater return to migration for
scientific than professional workers.

Proposition 1. If wdu < wos, then a necessary condition that Γds > Γdp is

Ppp(w
d
p −wdu)−Cd

p <
1

G(Γdp)
[(wos −wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s −wdu)],

and a sufficient condition is
Cd
p > Ppp(w

d
p − wdu).

22For the proof, see below.
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Proof. See below.

Focusing on the simpler sufficient condition, we see that for an origin country whose
scientific workers earn more at home than unskilled workers in the destination, scientific
workers have a larger expected gain from migration than professional workers if the skill
adaptation costs for professional migrants are larger than the expected professional skill
premium in the destination. Therefore, scientific workers are more likely to migrate than
professional workers. No correspondingly simple condition exists for the case of wdu > wos ,
where unskilled workers in the destination earn more than scientific workers in the origin
country.23

A.2 Proof of Proposition 1

Proposition 1. If wdu < wos, then a necessary condition that Γds > Γdp is

Ppp(w
d
p −wdu)−Cd

p <
1

G(Γdp)
[(wos −wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s −wdu)],

and a sufficient condition is
Cd
p > Ppp(w

d
p − wdu).

Proof. This is a proof by contradiction. First, replace (7) and (8) in (9). This gives

G(Γds)[Γ
d
u + Pss(w

d
s − wdu)− (wos − wou)− E(Md|Md < Γds)] + wos =

G(Γdp)[Γ
d
u + max{0, Ppp(wdp − wdu)− Cd

p} − (wop − wou)− E(Md|Md < Γdp)] + wop.

Using (6) and rearranging, we get

G(Γds)[w
d
u + Pss(w

d
s − wdu] + [1−G(Γds)]w

o
s − φ(Γds) =

G(Γdp)[w
d
u + max{0, Ppp(wdp − wdu)− Cd

p}] + [1−G(Γdp)]w
o
p − φ(Γdp),

where
φ(Γdk) ≡ G(Γdk)E(Md|Md < Γdk).

Also, using the Fundamental Theorem of Calculus, we have that
∂φ(Γd

k)

∂Γd
k
> 0.

Adding and subtracting G(Γdp)w
o
s on the right side and rearranging gives

(wdu − wos)[G(Γds)−G(Γdp)] = (wop − wos)[1−G(Γdp)] + φ(Γds)− φ(Γdp)

+G(Γdp) max{0, Ppp(wdp − wdu)− Cd
p} −G(Γds)Pss(w

d
s − wdu).

23In principle, we can maximize discounted lifetime income of workers in the origin country, taking
the migration option into account and assuming a distribution of the cost of skilled education relative to
unskilled education, and calculate the share of workers at each skill level, for migrants and non–migrants.
In practice, the resulting non–linear equations cannot be solved analytically.
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Now, suppose that wdu < wos and Γdp > Γds. We have that the left side of the equation is
positive, since G(�) is a density function, so it is increasing. Now, let us look at the right
side of the equation. We have:

(wop − wos)︸ ︷︷ ︸
60, since Γd

p>Γd
s

[1−G(Γdp)]︸ ︷︷ ︸
>0, since G(�) is a density︸ ︷︷ ︸
60

+φ(Γds)− φ(Γdp)︸ ︷︷ ︸
60, since Γd

p>Γd
s

+G(Γdp) max{0, Ppp(wdp − wdu)− Cd
p} −G(Γds)Pss(w

d
s − wdu)︸ ︷︷ ︸

<0, else, no one wants skilled job

.

Therefore, the right side is negative if

max{0, Ppp(wdp − wdu)− Cd
p} <

1

G(Γdp)
[(wos − wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s − wdu)]︸ ︷︷ ︸

>0

.

Thus, a necessary condition to have the right side negative is

Ppp(w
d
p −wdu)−Cd

p <
1

G(Γdp)
[(wos −wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s −wdu)],

and a sufficient condition is
Cd
p > Ppp(w

d
p − wdu).

Under these conditions, we get a contradiction, since the left side is strictly positive,
but the right side is negative. As long as either of these conditions holds, we must have
Γdp < Γds if wdu < wos .

A.3 Proof that ∂ϕ(Γd
k)/∂Γd

k ≥ 0

Proof. We will show that ∂ϕ(Γdk)/∂Γdk ≥ 0 with strict inequality if Γdk > Md
L, where Md

L

is the lower bound on immigration cost. First, note that

ϕ(Γdk) = G(Γdk)E(Γdk −Md|Md < Γdk) =

∫ Γd
k

Md
L

(Γdk −Md)g(Md)dMd

= Γdk

∫ Γd
k

Md
L

g(Md)dMd

︸ ︷︷ ︸
G(Γd

k)

−
∫ Γd

k

Md
L

Mdg(Md)dMd

︸ ︷︷ ︸
φ

∂ϕ(Γdk)/∂Γk = G(Γdk) + Γkg(Γdk)− ∂φ/∂Γdk︸ ︷︷ ︸
=Γkg(Γ

d
k) using Fundamental Theorem of Calculus

= G(Γdk) ≥ 0, since G(.) is a density function
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Appendix B: Algebra for Equation (1)

If immigrants’ share of the population grows by one percentage point,

MS + ∆MS

POP + ∆MS
− MS

POP
= 0.01,

which implies after some rearranging that

∆MS =
0.01POP

0.99POP −MS
.

Therefore, the percent increase in the population can be calculated as

∆MS

MS
=
POP

MS

0.01

0.99− MS

POP

=
1

α1

0.01

0.99− α1

.

The percent increase in the population is

∆MS

POP
=

0.01

0.99− MS

POP

=
0.01

0.99− α1

. (11)

We calculate the percent increase in patents assuming that the additional immigrants
continue to patent at rate PMS

MS :

∆PMS

P
=

1

P

PMS

MS
∆MS = α0

∆MS

MS
. (12)

The expressions (11) and (12) can then be substituted into the expression for the percent
increase in patents per capita on the left hand side of equation (1) to obtain the expression
on the right hand side.
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Appendix C: Data

C.1 National Survey of College Graduates

The data were collected between October 2003 and August 2004 by the U.S. Bureau
of the Census, on behalf of the National Science Foundation. The data consist of a
stratified random sample of people reporting having a bachelor’s degree or higher on the
long form of the (April) 2000 census, who were under age 76 and living in the United
States or its territories including Puerto Rico in the reference week of October 1, 2003.
We drop respondents living outside the United States and define as immigrants those
born outside the United States. Missing information is imputed with a hot deck pro-
cedure, and imputed values are not flagged. More information on the data is provided
at www.nsf.gov/statistics/showsrvy.cfm?srvy CatID=3&srvy Seri=7#fn1. The data are
available at www.nsf.gov/statistics/sestat/.

C.2 Patents

We combine two patent series from the U.S. Patent and Trademark Office. The first
series was compiled for me by the USPTO based on their electronic records which begin
in 1963. This series is utility patents by state and year of application. Year of application
is preferred to year of grant as it is a more accurate match to the time of invention. The
second series (U.S. Department of Commerce 1977) is from paper–based USPTO records
of patents by state and grant year 1883–1976 (application year is not available pre–1963).
Grants lag applications by a median of three years between 1950 and 1963 (according
to our US–wide calculations based on Lexis–Nexis), so we lead this series three years.
Patents grants are also more volatile than patent applications (Hall 2005), so we smooth
the series with a three year moving average. Finally, because for 1930–1960 plants and
designs cannot be separated from utility patents, we leave them in for the whole series,
calculate by state the average percent gap in the overlap years of the two series (18% on
average), and reduce the old series by this percent. We then merge the series, using the
adjusted paper series values only for pre–1963. The USPTO attributes a patent to a state
according to the home address of the first–listed inventor.

We have also used an extract from the Harvard Business School patent data file, which
contains information on utility patents granted from 1975 to 2007, arranged by year of
application and patent class. We have aggregated the patent classes to six categories
using the classification in Hall, Jaffe and Trajtenberg (2001) and our own classification
of patent classes created since 1999. In particular, we attribute classes 506 and 977 to
chemical patents; classes 398, 701–720, 725 and 726 to computers and communication
patents; and classes 901 and 903 to mechanical patents. We have not been able to find
definitions for some patent classes created in 2006 or later (which affects some patents
applied for in earlier years), and a small number of patents have a missing patent class.
For the application years we used, 0.04% of patents are not allocated to one of our six
categories. To examine patents by category, we have simply attributed 1974 values (most
patents granted in 1975 were applied for in 1974 or earlier) to 1971, then used 1971, 1981,
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1991 and 2001 patent values, and 1970, 1980, 1990 and 2000 values for the dependent
variables. Some small states do not have patents in every category in every year, and in
the analysis of log patents these observations are missing.

The extract also contains the number of citations made to patents in each patent
class, state and application year. These may be viewed as a proxy for the quality of the
patent. We calculate citations per patent from 1974 onwards for each state. We then run
a regression of this ratio on a trend for each state from 1974–1980, and use the resulting
coefficient to predict the 1971 value of citations per patent for each state. We then return
to our original, longer patent series obtained directly from the USPTO, and multiply the
patents by the ratio for 1971 onwards. We can then study citations, or quality–adjusted
patents, for 1971, 1981, 1991 and 2001.

C.3 Immigration, education, age, occupation, labor force status

We use extracts from the Integrated Public Use Microdata Series for the United States
Census, available at usa.ipums.org/usa/, and aggregate to the state level using the weights
provided. Variables computed as shares (other than the excluded instruments) are com-
puted as shares of the population or workers aged 18–65, and average population age is
the average age of people aged 18–65. Immigrants are people born outside the United
States. We use the census–provided edurec variable to identify college graduates (16 years
of education or more in the 1940–1980 censuses, and a college or higher degree in the 1990
and 2000 censuses) and high–school dropouts (11 or fewer years of education). People
with post–college education are people with 17 or more years of education in the 1940–
1980 censuses, and a post–college degree in 1990 and 2000. This is the highest level of
education that can be distinguished for the whole 1940–2000 period. Alaska and Hawaii
are not in the 1940 and 1950 IPUMS and we drop them from the analysis. The SIC codes
we count as electrical engineering are 321, 322, 342, 350, 371, 372.

C.4 Other data

We use Bureau of Economic Analysis data for total state population (used to weight the
regressions) and for state personal income per capita (available from 1929 onwards, unlike
gross state product which is not available for our whole period). The data are available
at www.bea.gov/regional/spi/.

Department of Defense procurement contracts by state are available on paper for the
early years in Prime Contract Awards by State, Fiscal Years 1951–1978, published by the
Department of Defense, OASD (Comptroller), Directorate for Information Operations
and Control. The later years are available online at www.fpds.gov. Some measurement
error in the attribution to states is involved, as recipient firms may subcontract the work
to firms in other states. Also, in the electronic records for 1978–1983, 1986 and 1989 (of
which only 1980 is relevant for the paper), the California numbers seem to be too small by
a factor of 1000, so we have multiplied them by 1000. (We have obtained scanned versions
of the paper documents for these years: the values for the non–problematic states and
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years are only approximately the same as those online, but the problematic California
years are indeed about 1000 times higher than the online version.) We attribute the
1951 value to 1950, and set changes in the values involving 1940, for which data are not
available, to zero.

We obtain the land area of each state from the US. Census Bureau at
www.census.gov/population/censusdata/90den stco.txt.
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Table 1: Patenting by immigrant status 
 
 (1) (2) (3) (4) (5) (6) 
 College graduates Post-college graduates Scientists and 

engineers 
 Immigrant Native Immigrant Native Immigrant Native 
Any patent granted 0.019 0.009 0.036 0.013 0.062 0.049 
Number patents 
granted 

0.057 0.028 0.112 0.036 0.178 0.132 

Any patent 
commercialized 

0.012 0.006 0.021 0.008 0.037 0.030 

Number patents 
commercialized 

0.029 0.017 0.054 0.019 0.084 0.074 

Share immigrant 0.136 0.161 0.240 
Observations 20,294 71,186 11,729 30,410 6724 15,502 
 
Notes: Shares weighted with survey weights. Patents questions only asked of respondents who had 
ever worked. Whether a patent has been granted refers to period from October 1998 to the survey 
in 2003, and whether a patent has been commercialized or licensed refers to those patents granted in 
the same period.  
 
Source: 2003 National Survey of College Graduates. 



Table 2: Means of aggregate variables 
 
 (1) (2) (3) 
 1940-2000 1940 2000 
Patents/population, x100 0.023 

(0.015) 
0.018 

(0.013) 
0.035 

(0.020) 
Share of population 18-65 that is:    
     Immigrant, college education and above 0.015 0.003 0.035 
     Native, college education and above 0.127 0.041 0.200 
     Immigrant, post-college education 0.007 0.001 0.016 
     Native, post-college education 0.050 0.011 0.077 
Share of workers 18-65 that are:    
     Immigrant, scientists and engineers 0.003 0.001 0.009 
     Native, scientists and engineers 0.022 0.006 0.035 
Age of population 18-65 38.7 

(1.0) 
37.7 
(1.0) 

39.5 
(0.6) 

DoD prime military procurement contracts 
(millions of nominal $) 

3236 
(4386) 

1500 
(1679) 

5528 
(5809) 

State personal income per capita (nominal $) 11976 
(11098) 

594 
(204) 

29,851 
(4094) 

Land area (millions of square kilometers) 0.190 
(0.161) 

0.166 
(0.145) 

0.207 
(0.173) 

Observations 343 49 49 
 
Notes: Means of state-level variables for population 18-65, weighted by state population the year 
after the census. Standard deviations in parentheses. Patents and population are led by one year. 
Alaska and Hawaii are excluded. Patents are classified by year filed. The predicted increases in 
immigrant college share (instruments) are based on states’ shares of 1940 immigrant high school 
graduates from various countries and national growth in college graduates from those countries (see 
text). The 1940 value of DoD procurement spending is not available, and the 1950 value is given 
instead of 1940, and the 1950-2000 average instead of 1940-2000. 
 
Sources:  
Education, age, occupation, nativity: U.S. Census Bureau, IPUMS decennial census microdata 
usa.ipums.org/usa/ 
Patents: U.S. Patent and Trademark Office, electronic and paper data. 
State income, population: Bureau of Economic Analysis www.bea.gov/regional/spi/ 
Land Area: U.S. Census Bureau www.census.gov/population/censusdata/90den_stco.txt 
 



Table 3: Patenting by field of study and field of study by immigrant status, college graduates 
 
 (1) (2) (3) (4) 
 
Field of highest degree 

Any patent 
granted 

Any patent 
commercialized 

Share 
immigrants 

Share natives 

Computer science, math 0.017 0.012 0.079 0.036 
Biological, agricultural and 
environment sciences 

0.023 0.011 0.055 0.040 

Physical sciences 0.066 0.039 0.036 0.017 
Social and related sciences 0.004 0.002 0.093 0.108 
Engineering 0.061 0.042 0.137 0.053 
Other S&E (mainly health) 0.007 0.004 0.166 0.121 
Non-S&E 0.004 0.003 0.434 0.624 
All fields 0.011 0.007 1.00 1.00 
 
Notes: Shares weighted by survey weights. “S&E” means science and engineering. Full sample (i.e. 
college graduates), 91,480 observations. Whether a patent has been granted refers to period from 
October 1998 to the survey in 2003, and whether a patent has been commercialized or licensed 
refers to those patents granted in the same period. 
 
Source: 2003 National Survey of College Graduates. 
 

 



Table 4: Effect of immigrant status on patenting 
 
 (1) (2) (3) (4) (5) (6) 
 Any patent granted? Any patent 

commercialized? 
College graduates 0.0100** 

(0.0010) 
0.0009** 
(0.0005) 

-0.0007* 
(0.0004) 

-0.0005 
(0.0003) 

0.0062** 
(0.0008) 

-0.0004 
(0.0003) 

     Pseudo-R2 0.01 0.15 0.19 0.21 0.01 0.18 
Post-college 
graduates 

0.0226** 
(0.0018) 

0.0014** 
(0.0008) 

0.0004 
(0.0006) 

0.0005 
(0.0006) 

0.0135** 
(0.0014) 

0.0002 
(0.0004) 

     Pseudo-R2 0.02 0.21 0.24 0.26 0.02 0.21 
Scientists and 
engineers 

0.0131** 
(0.0039) 

0.0031 
(0.0031) 

-0.0095** 
(0.0027) 

-0.0074** 
(0.0026) 

0.0063** 
(0.0030) 

-0.0052** 
(0.0020) 

     Pseudo-R2 0.00 0.08 0.12 0.13 0.00 0.09 
Major field of 
highest degree 

-- Y Y Y -- Y 

Highest degree -- -- Y Y -- Y 
Age, age2, sex, 
employed 

-- -- -- Y -- -- 

 
Notes: Marginal effect on dummy for foreign-born from weighted probits.  There are 91,480 
observations in the college graduate sample, 42,139 in the post-college sample and 22,226 in the 
scientist and engineer sample. All scientists and engineers are employed in the reference week. Post-
college degrees include master’s (including MBA), PhD and professional. There are 30 major field of 
study dummies (we combine the two S&E teacher training categories into one). Standard errors are 
in parentheses. ** indicates coefficients significant at the 5% level, * indicates coefficients significant 
at the 10% level. 
 
 



Table 5: Effect of share of immigrant college graduates on log patents per capita 
 
 (1) (2) (3) (4) 

Difference: 10 year 10 year 30 year 50 year 
Δ Immigrant college  
as share of population 

14.7** 
(5.3) 

13.2** 
(4.3) 

12.1** 
(3.2) 

14.9** 
(4.3) 

Δ Native college  
as share of population 

4.1** 
(1.9) 

1.9 
(2.3) 

4.8** 
(1.8) 

5.8** 
(2.1) 

Δ Age (average) 0.064** 
(0.028) 

0.104** 
(0.035) 

0.163** 
(0.041) 

0.137** 
(0.066) 

Δ DoD procurement (log) -0.033 
(0.025) 

-0.039** 
(0.017) 

-0.081** 
(0.035) 

-0.063 
(0.041) 

Land area (log) 0.046** 
(0.007) 

0.063** 
(0.013) 

0.169** 
(0.032) 

0.281** 
(0.055) 

Population 1940 (log) -0.056** 
(0.015) 

-0.062** 
(0.015) 

-0.161** 
(0.032) 

-0.252** 
(0.060) 

State personal income per 
capita 1940 (log) 

-0.223** 
(0.037) 

-0.162** 
(0.048) 

-0.544** 
(0.103) 

-1.006** 
(0.189) 

Weighted No Yes Yes Yes 
R2 0.47 0.64 0.63 0.70 
Observations 294 294 196 98 
 
Notes: The dependent variable is the difference in log patents per capita across periods ranging from 
ten to 50 years, with a lead of one year compared to the independent variables. Weighted least 
squares regressions have weights 1/(1/popt+1+1/popt-k+1), where k the length of the difference. 
Regressions also include year dummies. Standard errors clustered by state are in parentheses. ** 
indicates coefficients significant at the 5% level, * indicates coefficients significant at the 10% level. 
 



Table 6: Effect of skilled immigrant shares on patents per capita 
 
 (1) (2) (3) (4) 
 Δ Log patents per capita Δ Patents per capita 

Difference: 10 year 50 year 10 year 50 year 
Panel A.  Skilled: college graduates as share of population 
Δ  Skilled immigrant 13.2** 

(4.3) 
14.9** 
(4.3) 

0.368** 
(0.173) 

0.271* 
(0.158) 

Δ  Skilled native 1.9 
(2.3) 

5.8** 
(2.1) 

-0.010 
(0.108) 

0.134* 
(0.081) 

R2 0.64 0.70 0.49 0.42 
Panel B.  Skilled: post-college educated as share of population 
Δ  Skilled immigrant 20.7* 

(10.7) 
29.8** 
(10.9) 

0.686 
(0.501) 

0.538 
(0.403) 

Δ  Skilled native -1.3 
(3.3) 

8.4 
(5.8) 

-0.086 
(0.138) 

0.127 
(0.224) 

R2 0.63 0.66 0.48 0.38 
Panel C. Skilled: scientists and engineers as share of workers 
Δ  Skilled immigrant 52.4** 

(20.7) 
52.6** 
(16.1) 

2.318** 
(0.990) 

1.354** 
(0.661) 

Δ  Skilled native 9.4* 
(5.4) 

24.7** 
(8.0) 

0.212 
(0.239) 

0.665** 
(0.278) 

R2 0.67 0.74 0.56 0.52 
Observations 294 98 294 98 
 
Notes: The dependent variable is the difference in (log) patents per capita across periods ranging 
from ten to 50 years, with a lead of one year compared to the independent variables. Weighted least 
squares with weights 1/(1/popt+1+1/popt-k+1), where k is equal to the difference length. All 
regressions include the covariates of Table 5. Standard errors clustered by state are in parentheses. 
Coefficients in columns 3-4 are multiplied by 100. ** indicates coefficients significant at the 5% level, 
* indicates coefficients significant at the 10% level. 
 
 



Table 7: Effect of college immigrant shares on log patents per capita, ten-year differences, further 
specifications 

 
 (1) (2) 
 WLS IV 
1. Base specifications 
 

13.2** 
(4.3) 

30.3** 
(7.2) 
[27] 

2. Base specifications without California (288 observations) 9.2** 
(4.3) 

26.3** 
(7.1) 
[24] 

3. Base specifications without year 2000 (245 observations) 8.8** 
(3.5) 

18.9** 
(7.1) 
[51] 

4. Include BEA region dummies 
 

11.5** 
(4.5) 

23.4** 
(5.4) 
[30] 

5. Include state dummies 11.6** 
(5.6) 

24.5** 
(6.3) 
[31] 

6. Include BEA region dummies  
    and % electrical workers 1980*year dummies 

9.6** 
(4.7) 

23.1** 
(7.0) 
[28] 

7. Include BEA region dummies  
    and % electrical workers1980*year dummies  
    and 1940 immigrant shares (λ) 

10.1* 
(5.8) 

24.5** 
(7.8) 
[39] 

8. Include BEA region dummies  
   and % electrical workers1980*year dummies;  
   exclude share college natives 

8.6* 
(4.3) 

17.6** 
(5.6) 
[27] 

9. Include BEA region dummies*post-1980 8.4** 
(3.4) 

18.6** 
(7.6) 
[9] 

10. Include BEA region dummies*post-1980;  
      exclude share college natives 

7.0** 
(3.4) 

12.3** 
(6.1) 
[10] 

 
Notes: Each coefficient reported is the effect of a change in college immigrant share of the 
population from a different regression. The dependent variable is the difference in log patents across 
ten years, with a lead of one year compared to the independent variables. 294 observations unless 
otherwise noted. Weighted least squares (column 1) or instrumental variables (column 2) with 
weights 1/(1/popt+1+1/popt). The instruments are the predicted increase in college immigrant 
shares, based on states’ shares of 1940 immigrants from various countries and subsequent national 
growth in college graduates from those countries (see text). F-statistic for test of joint significance of 
excluded instrument in the first stage in brackets. All regressions also include the covariates of Table 
5 including the appropriate differenced share of skilled natives. Standard errors clustered by state are 
in parentheses. ** indicates coefficients significant at the 5% level, * indicates coefficients significant 
at the 10% level. 



Table 8: Effect of skilled immigrant shares on log patents per capita, ten-year differences, preferred 
specifications 

 
 (1) (2) (3) (4) (5) 

Skill represented by: College graduates Post-college Scientists/ 
engineers 

 WLS IV WLS IV WLS 
1. Include BEA region dummies, 
    % electrical workers1980*year 
   dummies;  IV excludes share 
   college natives 

9.6** 
(4.7) 

17.6** 
(5.6) 
[27] 

11.3 
(8.3) 

18.9 
(14.3) 
[18] 

38.2* 
(20.3) 

2. Include BEA region 
   dummies*post-1980; IV 
   excludes share college natives 

8.4** 
(3.4) 

12.3** 
(6.1) 
[10] 

15.9** 
(6.2) 

27.0** 
(13.4) 
[11] 

30.7* 
(16.3) 

 
Notes: Each coefficient reported is the effect of a change in skilled immigrant share from a different 
regression. The dependent variable is the difference in log patents across ten years, with a lead of 
one year compared to the independent variables. Weighted least squares (odd columns) or 
instrumental variables (even columns) with weights 1/(1/popt+1+1/popt). The instruments are the 
predicted increase in skilled immigrant shares, based on states’ shares of 1940 immigrants from 
various countries and subsequent national growth in college graduates from those countries (see 
text). F-statistic for test of joint significance of excluded instrument in the first stage in brackets. All 
regressions also include the covariates of Table 5 including the appropriate differenced share of 
skilled natives. Standard errors clustered by state are in parentheses. 294 observations. ** indicates 
coefficients significant at the 5% level, * indicates coefficients significant at the 10% level. 
 

 
 
 



Table 9: Effect of skilled immigrant shares on log patent citations per capita and log patents per 
capita by type, ten-year differences, 1970-2000 

 
 (1) (2) (3) 

Skill represented by: College graduates Post-college Scientists/engineers 
1. Patents 10.7** 

(4.6) 
15.2 

(11.6) 
45.7** 
(22.0) 

2. Patent citations  
   

9.9** 
(4.8) 

18.5 
(12.4) 

54.4** 
(24.2) 

3. Patent citations, include 
   BEA region dummies 

11.3** 
(5.6) 

24.2* 
(12.2) 

56.2* 
(29.6) 

4. Computer and communications 
    patents (137 observations) 

10.2 
(7.4) 

1.7 
(19.5) 

35.0 
(23.5) 

5. Electrical and electronic patents 
    (145 observations) 

0.1 
(6.1) 

-2.2 
(15.4) 

6.9 
(23.9) 

6. Drug and medical patents 
    (146 observations) 

12.5* 
(6.7) 

9.2 
(14.8) 

50.6 
(30.7) 

7. Chemical patents 
    (145 observations) 

7.5 
(6.4) 

8.7 
(14.9) 

10.3 
(26.5) 

8. Mechanical patents -3.0 
(3.9) 

-15.7 
(9.0) 

3.8 
(16.1) 

9. Other patents -7.7** 
(2.6) 

-19.2** 
(4.9) 

-15.5 
(9.7) 

 
Notes: Each coefficient reported is the effect of a ten-year change in skilled immigrant share from a 
different regression. The dependent variable is the difference in log patents per capita or log of 
patent citations per capita across ten years, with a lead of one year compared to the independent 
variables. Weighted least squares for 1970-2000 with weights 1/(1/popt+1+1/popt). All regressions 
include the covariates included in Table 5. Standard errors clustered by state are in parentheses. 147 
observations, unless otherwise specified. ** indicates coefficients significant at the 5% level, * 
indicates coefficients significant at the 10% level. 
 

 



 Appendix Table 1: States’ 1940 shares of national-level immigrants from various origins 
 
 (1) (2) (3) (4) 
 State’s 1940 share of national total, all immigrants College grad immigrants 
Origin  Mean Maximum State of maximum National total 2000 -

national total 1940 
United Kingdom 0.050 0.19 New York 192,750 
Ireland 0.059 0.32 New York 22,667 
Italy 0.062 0.35 New York 45,368 
Germany 0.052 0.23 New York 216,513 
Poland 0.060 0.28 New York 66,284 
Russia 0.064 0.37 New York 236,052 
Other Europe 0.050 0.19 New York 348,471 
Canada 0.038 0.21 Massachusetts 208,124 
Mexico 0.043 0.39 California 263,006 
Puerto Rico 0.096 0.90 New York 121,761 
Cuba 0.047 0.41 Florida 125,089 
Other Caribbean 0.073 0.61 New York 234,065 
Central America 0.052 0.26 California 130,725 
South America 0.069 0.47 New York 368,186 
China 0.058 0.39 California 617,482 
India 0.047 0.26 California 773,840 
Other Asia 0.045 0.62 California 1,426,943 
Rest of world 0.054 0.26 New York 549,302 
 
Notes: State-level variables, means weighted by state population. Standard deviations in parentheses.  
49 observations. Alaska and Hawaii are excluded.  The minimum share is zero for all origins except 
for the United Kingdom, Germany, other Europe and Canada. Columns 1-3 are based on the full 
population, while column 4 is based on the population 18-65. 



Appendix Table 2: Means of individual-level variables 
 
 College graduates Post-college Scientists/engineers 
 Immigrant Native Immigrant Native Immigrant Native 
Highest degree:       
   Bachelor’s 0.58 0.65 -- -- 0.44 0.68 
   Master’s 0.28 0.26 0.66 0.74 0.39 0.26 
   Doctorate 0.07 0.03 0.17 0.08 0.16 0.06 
   Professional 0.07 0.06 0.17 0.17 0.01 0.01 
Field of highest degree      
   Computer science, 
   mathematics 

0.076 0.036 0.091 0.027 0.219 0.168 

   Biological, agricultural, 
   environment science 

0.056 0.040 0.061 0.030 0.092 0.093 

   Physical science 0.035 0.017 0.044 0.017 0.077 0.072 
   Social science 0.091 0.108 0.069 0.078 0.026 0.046 
   Engineering 0.132 0.053 0.131 0.037 0.397 0.321 
   Other S&E  0.164 0.121 0.199 0.157 0.069 0.058 
   Non-S&E 0.446 0.624 0.406 0.653 0.120 0.243 
Sex (female) 0.48 0.50 0.43 0.49 0.24 0.23 
Age  43.4 

(9.9) 
44.7 

(10.3) 
43.8 
(9.9) 

46.6 
(10.3) 

40.4 
(9.0) 

42.4 
(9.5) 

Employed 0.86 0.85 0.89 0.87 1.00 1.00 
Observations 21,248 71,304 12,042 30,460 6840 15,519 
 
Notes: Means weighted with survey weights. S&E means science and engineering. “Other S&E” 
includes the social sciences. Native movers are natives living in a different census region from their 
census region of birth. 
 
Source: National Survey of College Graduates 
 
 



Appendix Table 3: First stage of instrumental variables regressions for ten-year differences 
 

 (1) (2) 
Skill represented by: College graduates Post-college 

1. Base specifications 
 

0.31** 
(0.06) 

0.29** 
(0.06) 

    R2 [R2 without excluded instrument] 0.78 [0.69] 0.75 [0.67] 
2. Sample without California  
   (288 observations) 

0.25** 
(0.05) 

0.24** 
(0.06) 

    R2 [R2 without excluded instrument] 0.70 [0.63] 0.69 [0.63] 
3. Sample without year 2000  
   (245 observations) 

0.45** 
(0.06) 

0.40** 
(0.06) 

    R2 [R2 without excluded instrument] 0.79 [0.59] 0.69 [0.55] 
4. Include BEA region dummies 0.29** 

(0.05) 
0.27** 
(0.06) 

    R2 [R2 without excluded instrument] 0.83 [0.76] 0.80 [0.74] 
5. Include state dummies 0.34** 

(0.06) 
0.33** 
(0.07) 

    R2 [R2 without excluded instrument] 0.89 [0.82] 0.86 [0.79] 
6. Include BEA region dummies and % electrical workers 
    1980*year dummies 

0.25** 
(0.05) 

0.25** 
(0.06) 

    R2 [R2 without excluded instrument] 0.83 [0.79] 0.80 [0.76] 
7. Include BEA region dummies and % electrical workers 
   1980*year dummies and 1940 immigrant shares 

0.29** 
(0.05) 

0.30** 
(0.06) 

    R2 [R2 without excluded instrument] 0.89 [0.85] 0.85 [0.81] 
8. Include BEA region dummies and % electrical workers 
    1980*year dummies; exclude native skilled share 

0.27** 
(0.05) 

0.29** 
(0.06) 

    R2 [R2 without excluded instrument] 0.83 [0.78] 0.84 [0.80] 
9. Include BEA region dummies*post-1980 0.25** 

(0.09) 
0.26** 
(0.08) 

    R2 [R2 without excluded instrument] 0.81 [0.77] 0.78 [0.73] 
10. Include BEA region dummies*post-1980;  
    exclude native skilled share 

0.27** 
(0.09) 

0.26** 
(0.08) 

    R2 [R2 without excluded instrument] 0.81 [0.76] 0.77 [0.73] 
 
Notes: The dependent variable is the ten-year difference in the share of the population that is a 
skilled immigrant, with skill proxied by college in column 1, post-college in column 2. The 
coefficient reported is that on the excluded instrument, which is the predicted increase in immigrant 
college shares, based on states’ shares of 1940 immigrant graduates from various countries and 
subsequent national growth in college graduates from those countries (see text). Weighted least 
squares with weights 1/(1/popt+1+1/popt). All regressions also include the covariates of Table 5 
(except the difference in the skilled immigrant share). Standard errors clustered by state are in 
parentheses. 294 observations unless otherwise specified. ** indicates coefficients significant at the 
5% level, * indicates coefficients significant at the 10% level. 
 
 



Patents

Patents per 100,000

0

10

20

30

40

50

60

70

80
85

Pa
te

nt
s 

pe
r 1

00
,0

00
 re

sid
en

ts

0

20000

40000

60000

80000

100000
Nu

m
be

r o
f p

at
en

ts

1941 1951 1961 1971 1981 1991 2001
Year (Application Date)

Source: USPTO, BEA and authors’ calculations

Figure 1: U.S. Origin U.S. Patents 1941−2001
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Figure 2: Convergence in Patenting Across States 1929−2001
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Fig 3: Actual, Predicted Change in Immigrant College Share




