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A Multiple Imputation Approach*

 
To measure income inequality with right censored (topcoded) data, we propose multiple 
imputation for censored observations using draws from Generalized Beta of the Second Kind 
distributions to provide partially synthetic datasets analyzed using complete data methods. 
Estimation and inference uses Reiter’s (Survey Methodology 2003) formulae. Using Current 
Population Survey (CPS) internal data, we find few statistically significant differences in 
income inequality for pairs of years between 1995 and 2004. We also show that using CPS 
public use data with cell mean imputations may lead to incorrect inferences about inequality 
differences. Multiply-imputed public use data provide an intermediate solution. 
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1. INTRODUCTION 

 

 For assessing trends in the inequality of earnings or of household income inequality in 

the U.S.A., the March Current Population Survey (CPS) is the premier survey data source, 

widely used both within and outside government. (Administrative data are another source of 

information: see e.g. Piketty and Saez 2003 who use Internal Revenue Service tax data.) The 

CPS is, however, subject to an important limitation: the data are right censored (‘topcoded’). 

To maximize confidentiality and to minimize disclosure risk, income values for each income 

source that are above a source-specific threshold are replaced in the public use data files by 

the threshold itself (the ‘topcode’). Internal CPS data, used by the U.S. Census Bureau 

(various years) to produce official income distribution statistics, are also topcoded for the 

same reasons, albeit to a substantially lesser degree than the public use data. Right censoring 

is a problem for estimation of inequality levels because it suppresses genuine income 

dispersion, and it is a problem for estimation of inequality trends because CPS topcode values 

have not been adjusted consistently over time – the proportion of observations in the public 

use data with right censored values has fluctuated substantially over time. Topcoding also 

affects estimates of standard errors of inequality statistics because variance estimates depend 

on second- and higher-order moments, and their calculation is affected by right censoring. 

See Burkhauser, Feng, Jenkins and Larrimore (2008) for a recent review of topcoding 

practices in the March CPS and for references to earlier discussions of topcoding problems in 

CPS public use and internal data.  

 All previous imputation procedures applied to CPS data that we are aware of have 

used methods that yield a single imputation for each right censored value. And only rarely 

has the sampling variability of the estimates derived from the imputation-augmented data also 

been estimated in a manner that takes proper account of the right censoring. Instead, we 

propose a multiple imputation approach to estimating inequality using topcoded data 

following Reiter (2003). We show how this approach provides consistent estimates of not 

only inequality measures but also their sampling variances, accounting for both stochastic 

imputation error and sampling variability. We use the method to analyze recent trends in 

household income inequality in the U.S.A., exploiting our unprecedented access to internal 

CPS data.  

 Throughout the paper, income is defined in a conventional manner. It is pre-tax post-

transfer household income excluding capital gains, adjusted for differences in household size 

using the square root of household size. (The specific procedures followed for constructing 
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the income measure are as discussed by Burkhauser and Larrimore, in press.) This income 

definition is common in the cross-national comparative income distribution literature (cf. 

Atkinson, Rainwater and Smeeding 1995) and studies of U.S. income distribution trends (cf. 

Gottschalk and Danziger 2005). Each individual is attributed with the size-adjusted income of 

the household to which he or she belongs. Income refers to income for the calendar year 

preceding the March interview. (All references to ‘year’ are to income year rather than survey 

year.) We convert the small number of negative and zero household income values each year 

to one dollar prior to our calculations because a number of inequality indices are defined only 

for positive income values. Our samples comprise all individuals in CPS respondent 

households, excluding individuals in group quarters or in households containing a member of 

the military. All statistics are calculated using the relevant CPS sampling weights. Sample 

sizes are large. For example, for 2004, the sample income distribution refers to 207,925 

individuals in 75,660 households. 

 We compare our multiple imputation estimates of inequality levels and trends from 

the internal CPS data – what we label the Internal-MI series – with two series of estimates 

derived from public use CPS data. The Public-CM series arises when top-coded values are 

replaced by cell mean imputations derived from internal CPS data. These imputations have 

been provided by the U.S. Census Bureau for each year since 1995, and are available to all 

users of public use CPS data. The availability of this series is one reason why we restrict our 

attention to the period 1995–2004 in this paper. A second reason is that we wish to avoid any 

potential inconsistencies in the income series arising from the introduction of computer-

assisted personal interviewing in the CPS in survey year 1994 (Ryscavage 1995). Third, it is 

well-known that U.S. income inequality increased substantially between the mid-1970s and 

the mid-1990s (see e.g. Danziger and Gottschalk 1995), and so we focus on a later period. 

For the decade starting from the mid-1990s, there is debate about the nature of inequality 

trends, but there is agreement that ascertaining trends in the very richest incomes is of 

particular importance in the U.S.A. and a number of other OECD countries (see e.g. Atkinson 

and Piketty 2007, Burkhauser, Feng, Jenkins and Larrimore 2008, and Piketty and Saez 

2003).  

 The third series we analyze, labelled Public-MI, is also derived from public use CPS 

data, but applies a multiple imputation approach to estimation and inference that mimics the 

one that we apply to internal data. Although the internal data provide the best results, 

researchers can get access to them only under special conditions, whereas public use data are 
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available to all researchers. It is therefore of interest to explore the extent to which results 

from the Public-MI series match those from the Internal-MI one. 

 Using multiply-imputed internal CPS data, we show that the inequality of household 

income did not change significantly between 1995 and 2004, whether one uses ordinal 

evaluations based on Lorenz curves or cardinal comparisons based on a number of 

commonly-used inequality indices. We find that the cell mean augmented public use data 

lead to substantial under-estimates of inequality levels in every year, though the trends over 

time are tracked relatively well. However, the sampling variability of estimates derived from 

the cell-mean-augmented distributions is also under-estimated and, as a result, there is a 

tendency for inequality trends over the period to be shown (incorrectly) as statistically 

significant. Multiply-imputed public use data are shown to provide an intermediate case.  

Although our research focuses on the case of right-censored data in the CPS, we 

would emphasize that the issues we have raised are applicable more widely – the CPS is not 

the only survey with topcoded data. For example, in the U.S.A., the National Longitudinal 

Survey of Youth topcodes some of its income sources as does the Panel Study of Income 

Dynamics. In the United Kingdom, in order to comply with the Statistics and Registration 

Services Act of 2007, the Annual Population Survey and the Quarterly Labour Force Survey 

have introduced topcodes on earnings data in their main public release files. In Germany, the 

wage data that are available from social insurance administrative registers are right censored 

at the earnings level corresponding to the upper limit to social insurance contributions.  

 

 

2. RIGHT CENSORING IN INCOME DATA FROM THE MARCH CPS 

 

 In the March CPS, a respondent in each household is asked a series of questions on 

the sources of income for the household. Starting in 1975, respondents reported income from 

11 sources, and since 1987 they have done so for income from 24 sources. High values for 

each separate income source are topcoded by the Census Bureau; it is not simply high total 

household income values that are topcoded. See Larrimore, Burkhauser, Feng and Zayatz (in 

press) for a full list of topcode values in the public use and internal CPS data, by income 

source.  

 An additional complication arises because household income is the aggregation of 

multiple income sources (across income types and household members), each of which may 

be topcoded. As a result, the prevalence of topcoding in total household income is 
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significantly greater than for any specific income source. For this reason, and also because 

income is measured using size-adjusted household income rather than nominal household 

income (see above), topcoded household income values are not necessarily the highest 

incomes – right censored observations may occur throughout the income distribution. Hence 

measuring inequality using the ratio of the 90th percentile to the 10th percentile (the ‘P90/P10 

ratio’) with the goal of minimizing the impact of topcoding on inequality estimates will not 

be entirely successful: see Burkhauser, Feng and Jenkins (in press).  

 The proportion of individuals with topcoded household income in each March CPS 

from 1995 through 2004 is shown in Figure 1. In the public use data, the fraction is 

substantial, ranging between 2.1% and 5.7%. In the internal data, the proportion is roughly 

constant and small, only about .5%. The much lower prevalence of right censoring in the 

internal data indicates their substantial value for assessments of inequality compared to public 

use data. Using internal data rather than the public use data means that incomes are better 

measured for up to approximately 5.5% more observations. Nevertheless, censoring remains 

pervasive in the internal data. The mean size-adjusted household income value for topcoded 

observations in the internal data is around $200,000. The observation at the tenth percentile 

of the distribution of topcoded incomes is at the 55th percentile of the 1995 all-persons 

distribution, at the 87th percentile of the all-persons distribution for 2000, and somewhere 

between these ranks in the other years. So, accurate estimation of the degree of inequality 

needs to account for a non-trivial degree of right-censoring, even with CPS internal data. Our 

multiple imputation approach provides this. 
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Figure 1. Percentage of individuals with topcoded household income in the March CPS 
public use data (solid line) and internal data (dashed line), by year. Authors’ calculations 
from public use and internal March CPS data. 
 

 

3. SINGLE IMPUTATION METHODS TO ACCOUNT FOR TOPCODING 

 

The two principal imputation approaches to account for topcoding in public use CPS data that 

currently exist are reviewed in this section. The first approach is empirically based, using cell 

means derived from internal CPS data. (Another, more ad hoc, imputation procedure is to 

replace each topcoded value by a multiple of the topcode: see e.g. Katz and Murphy (1992), 

Lemieux (2006), and Autor, Katz and Kearney (2008).) The second approach is model based, 

assuming that the upper tail of the income distribution has a specific parametric functional 

form. These approaches yield a single augmented data set for analysis in which each 

topcoded value is replaced by a single imputed value: they are therefore ‘single imputation’ 

methods. 

 For each year of public use data since income year 1995 (survey year 1996), the 

Census Bureau has imputed a cell mean value to each topcoded value in the public use data. 

(Before 1995, the public use CPS data for each income source contained the topcode value 

for each income source for each observation topcoded on that source.) These imputations, 
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derived from internal CPS data, are, for each source, equal to the mean source income of all 

individuals with incomes greater than or equal to the topcode, subject to some constraints on 

minimum cell size. For labour income sources, the means are calculated within cells further 

divided by race, gender, and employment status. The Census Bureau initially provided cell 

means for wages and salaries, self-employment income and farm income, but later extended 

them to other non-governmental income sources (1998 and thereafter). Larrimore, 

Burkhauser, Feng and Zayatz (2008) provide further details of the derivation. They also 

distribute a consistent set of cell mean imputations to the wider research community that 

extends the Census Bureau series back to 1975.  

 These cell mean imputations are a substantial advance for analysis, providing more 

accurate measures of the incomes of topcoded observations than do the topcodes themselves. 

They have two limitations, however, which lead to underestimation of overall inequality 

statistics and their sampling variances. First, by construction, all observations within the same 

cell receive the same imputed value, thereby removing all within-cell income variation. 

Second, the cell means are derived from internal data which are themselves right censored. 

This imparts a downward bias to cell mean estimates of topcoded incomes (of unknown 

degree, since the actual incomes of the censored observations in the internal data are 

unknown), and hence also a downward bias in estimates of overall inequality and its 

sampling variance. 

 The second single imputation approach was developed before the Census Bureau cell 

mean series existed. Fichtenbaum and Shahidi (1988), using public use CPS data for 1967–

1984, proposed that the upper tail of the U.S. income distribution for each year (specifically 

incomes greater than $100,000) be summarized by the one parameter Pareto distribution. The 

authors estimated the Pareto parameter for each year from grouped data published by the 

Census Bureau, and then used the properties of the Pareto distribution to calculate the mean 

income among the richest 5% and hence their share of total income, as well as the adjusted 

income shares of poorer income groups. Estimates of the Gini inequality index for each year 

were then derived from these income share data, and shown to be between .9% and 7.3% 

greater than corresponding Gini indices estimated ignoring topcoding. Essentially the same 

method was applied by Bishop, Chiou and Formby (1994) except that they used unit record 

public use CPS data, examined 1985–1989, and compared entire distributions using Lorenz 

curves as well as Gini coefficients. Notably, Bishop, Chiou, and Formby (1994) also 

estimated sampling variances for their inequality statistics, and used statistical inference 

procedures to test inequality differences. However, these procedures did not take account of 
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the additional variability introduced by the stochastic nature of the imputation process. (Also, 

neither Fichtenbaum and Shahidi (1988) nor Bishop, Chiou and Formby (1994) adjusted their 

family income measure to account for differences in family size and composition, and their 

estimation samples did not cover individuals from non-primary families.) A variation of the 

Pareto imputation method was also applied to public use CPS data on wages for 1979–1996 

by Bernstein and Mishel (1997).  

 In addition to ignoring imputation uncertainty, the Pareto imputation method has the 

disadvantage, shared with the cell mean imputation approach, that only a single value is 

imputed to every topcoded observation in the relevant year, so income dispersion is under-

estimated. Moreover, and as acknowledged by the authors cited, the goodness of the Pareto 

fit to CPS income data is debatable. On this, see also the critical discussion by Angle and 

Tolbert (1999). This suggests that the use of less restrictive parametric functional forms is 

productive in this context. Applications to public use CPS data on earnings include the two 

parameter gamma distribution (Angle 2003), the two parameter generalized Pareto (Stoppa) 

distribution (Burkhauser, Feng and Larrimore 2008), and the four parameter Generalized 

Beta of the Second Kind (GB2) distribution (Feng, Burkhauser and Butler 2006). In the next 

section, we make the case for applying the GB2 distribution to CPS data on household 

incomes, and for using a multiple rather than single imputation approach. 

 

4. A MULTIPLE IMPUTATION APPROACH TO ACCOUNT FOR TOPCODING 

 

Our multiple imputation approach consists of five steps, which we outline before 

discussing in more detail. First we fit an imputation model – a parametric functional form that 

is presumed to describe the income distribution in each year 1995–2004, including right 

censored observations. Second, for each observation with a right censored income, we draw a 

value from the distribution implied by the fitted model using an appropriate randomization 

procedure. Third, using the distribution comprising imputed incomes for censored 

observations and observed incomes for non-censored observations, we estimate our various 

inequality indices and associated sampling variances using complete data methods. Fourth, 

we repeat the second and third steps one hundred times for each year, and finally, we 

combine the estimates from each of the one hundred data sets for each year using the 

averaging rules proposed by Reiter (2003) for the case of ‘partially synthetic’ data. This 

accounts for the uncertainty added to estimates by the imputation process as well as for 

sampling variability. Application of the five-step approach to internal CPS data yields our 
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Internal-MI series of estimates; application to public use CPS data yields our Public-MI 

series. 

 Ours is the only study that we are aware of that has applied multiple imputation 

methods to right censored data for the purposes of analyzing income inequality. The closest 

study to ours is An and Little (2007). They fit lognormal and power-transformed normal 

distributions to data from the 1995 Chinese household income project, and use the estimates 

to multiply impute incomes to topcoded observations. Their focus was on estimation of and 

inference about mean incomes and income regressions for a single year rather than estimates 

of income inequality and trends. Gartner and Rässler (2005) used lognormal distributions 

fitted to German wage data for 1991–2001 to multiply impute values for topcoded 

observations. Again the focus was estimation and inference concerning mean incomes and 

income regressions rather than income inequality. 

 We assume that the distribution of size-adjusted household income in each year is 

described by the four parameter Generalised Beta of the Second Kind (GB2) distribution 

(McDonald 1984), with probability density function 

[ ] 0,
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and cumulative density function (CDF) 

F(y) = I( p, q, (y/b)a / [1 + (y/b)a] ), y > 0 

where parameters a, b, p, q, are each positive. B(p, q) = Γ(p)Γ(q)/Γ(p + q) is the Beta 

function, Γ(.) is the Gamma function, and I(p, q, x) is the regularized incomplete beta 

function also known as the incomplete beta ratio. Parameter b is a scale parameter, and a, p, 

and q are each shape parameters. The GB2 is a flexible functional form incorporating many 

distributions as special cases. For example, the Singh-Maddala (Burr type 12) distribution is 

the special case of the GB2 distribution when p = 1; the Dagum (Burr type 3) distribution is 

the special case when q = 1; and the lognormal distribution is a limiting case. For details, see 

McDonald (1984) and Kleiber and Kotz (2003). Many studies have shown that the GB2 

model fits income distributions extremely well across different times and countries: see inter 

alia McDonald (1984), Bordley, McDonald and Mantrala (1996), Brachmann, Stich and 

Trede (1996), Bandourian, McDonald and Turley (2003), and Jenkins (in press). 

 Of particular importance in the current context is the desirable behaviour of the GB2 

distribution in its upper tail. Consistent with extreme value theory, the upper and lower tails 

lie in the domain of attraction of the Fréchet distribution. The upper tail is regularly varying 

 8



(with variation parameter equal to –aq) and it is heavy in that it decays like a power function 

as income increases, rather than decaying exponentially fast (as for the log-normal 

distribution, with middle heavy upper tail), or polynomial decreasing (as for Pareto 

distributions). See Schluter and Trede (2002, Appendix A) and Kleiber and Kotz (2003) on 

regular variation concepts and the upper tail behaviour of GB2 and other distributions.  

 We estimate the GB2 distribution parameters by maximum likelihood (ML), 

separately for each year 1995–2004. To ensure that model fit was maximized at the top of the 

distribution, we fit each GB2 distribution using observations in the richest 70 percent of the 

distribution only, making appropriate corrections for left truncation in the ML procedure. 

(We chose the 30th percentile as the left truncation point after experiments balancing 

goodness of fit with ease of maximization.) We specify the sample log-likelihood for each 

year’s data as 

∑
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where i = 1,…, N, indexes each individual sample observation, wi is the sample weight for i, 

and ci = 1 if i is an observation with a right censored household income value, and ci = 0 

otherwise. The denominator of the expression adjusts for left truncation: z is the income level 

corresponding to the left truncation point. For maximization, we use the modified Newton-

Raphson procedure implemented in Stata’s ml command (StataCorp, 2005), with the 

parameter covariance matrix estimates based on the negative inverse Hessian. Convergence 

was achieved easily within several iterations. For brevity, we do not report estimates for each 

year but they are available from the authors on request. 

 For the internal data, model fit varied slightly across years, but was generally 

excellent. This is demonstrated first by the precision of the parameter estimates. For example, 

the smallest t-ratio for any parameter estimate (always for p) was greater than seven, and was 

typically at least two or three times larger for a and for q. Wald tests of parameter values 

suggested that we could easily reject restricted models such as the Singh-Maddala or Dagum 

distributions in favour of the GB2 distribution. Excellent goodness of fit to the internal data is 

also demonstrated by the probability plots shown in Figure 2 for each year. These are plots of 

the cumulative probabilities of income expected given the estimated GB2 parameters against 

the cumulative probabilities of income observed in the data. (Each chart is based on the 

richest 70% of each distribution for each year, for the reasons explained earlier.) Excellent 

goodness of fit is demonstrated by the fact that every plot lies extremely close to a 45° ray 
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from the origin. Although fitted values must lie above observed values over the probabilities 

corresponding to right censored observations in the internal data (at the very far right of each 

chart), we note that there is also no perceptible change in the nature of the plots for 

probabilities in the neighbourhood of these observations. Such smooth continuity increases 

our confidence in the use of the GB2 for imputing incomes to right censored observations in 

the internal CPS data. 

 We also fit GB2 models separately to public-use data for each year, using procedures 

that mimicked those for the internal data. Given the greater prevalence of right-censoring, 

model goodness-of-fit was not quite as good as for the internal data, but very good 

nonetheless. This is illustrated by the probability plots shown in Appendix Figure A.  
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Figure 2. Probability plots for GB2 estimates: fitted versus observed. Plot based on richest 
70% of each distribution only. GB2 estimates account for left-truncation and right-censoring 
(see text). Source: authors’ derivations from internal CPS data.
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 The second stage of our multiple imputation approach uses the GB2 estimates to 

derive imputed values for topcoded observations for each year using the inverse transform 

sampling method. Given fitted GB2 CDF, , the corresponding CDF for topcoded 

observation i is, using standard formulae for truncated distributions: 

)(ˆ yF

)](ˆ1/[)](ˆ)(ˆ[)(ˆ
iiii tFtFyFyG −−=  

where ti is the topcode for i, and yi is the ‘true’ value for that observation (which we are 

unable to observe). Letting ui = , and inverting the expression for the income 

distribution among topcoded observations, we have  

)(ˆ
iyG

( ))(ˆ)](ˆ1[ˆ 1
iiii tFtFuFy +−= − . 

A value of yi for each topcoded observation is generated by substituting into this expression a 

value of ui equal to a random draw from a standard uniform distribution. The combination of 

the observed incomes for non-topcoded observations with the imputed incomes for topcoded 

observations produces a partially synthetic data set for each year to which we can apply 

complete data methods to estimate our inequality statistics of interest. (Fully synthetic data 

consist of entirely multiply imputed data.) Repetition of the process m > 1 times produces m 

partially synthetic data sets for each year and, correspondingly, m sets of inequality estimates 

for each year which we combine in a manner discussed shortly. Note that the observations 

without censored data are common across each of the m partially synthetic data sets. Clear cut 

rules for the choice of m do not exist, but the number used is often relatively small (10 or 

fewer). In the next section, we report estimates based on m = 100. (In preliminary research, 

we used m = 20 and derived similar conclusions to those reported here.) 

 For inference from our multiply-imputed partially synthetic data sets, we use the 

combination formulae derived by Reiter (2003), as follows. Suppose that inference is 

required about some scalar Q, where Q is a measure of inequality such as the Gini index, and 

index the partially synthetic data sets by j = 1, …, m. Denote the point estimator of Q from 

partially synthetic data set j by qj and the estimator of its variance by vj. Reiter (2003) shows 

that one should estimate Q using the mean of the point estimators 

mqq
m

j
jm /
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to estimate the variance of mq , where  
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Thus, the multiple imputation point estimate is the simple average of the point estimates 

derived using complete data methods from each of the m partially synthetic data sets. The 

variance of this estimate is the average of the sampling variances plus a term reflecting the 

finite number of imputations, m. Tp differs from Rubin’s (1987) rule for the combination of 

estimates in the fully synthetic data case, in which case mmmp vmbbT ++= / . The expression 

for the fully synthetic data case includes additional variability (the term bm) to average over 

the response mechanism (Rubin 1987). By contrast, ‘[t]his additional averaging is 

unnecessary in partially synthetic data settings since the selection mechanism … is not 

treated as stochastic’ (Reiter 2003, p. 5). The selection mechanism in our case refers to the 

choice of topcodes by the Census Bureau for the CPS. For large sample sizes, inference 

concerning Q can be based on t-distributions with degrees of freedom vp =  

where 

21)1)(1( −+− mrm

)/( 1
mmm vbmr −= . Because our sample sizes are large and m is large, vp is very large 

also, so the t-distribution is approximated very well by a normal distribution and that is what 

we use for inference.  

 Because cardinal indices of inequality differ in their sensitivities to income 

differences in different ranges of the income distribution (Atkinson 1970), we estimate 

inequality indices that reflected this feature in a systematic way. Specifically, we consider the 

mean log deviation, Theil index, and half the coefficient of variation squared, plus the Gini 

coefficient. The first three indices belong to the one parameter Generalized Entropy class 

GE(α) with parameter α = 0, 1, 2, respectively, and range from being bottom-sensitive 

(MLD) to being sensitive to income differences at the top of the distribution (CV2/2). The 

commonly-used Gini coefficient is a middle-sensitive inequality index. (For a review of 

inequality index properties and index formulae, see Cowell 2000.) We computed distribution-

free variance estimates for the inequality indices according to formulae provided by Biewen 

and Jenkins (2006) for GE indices and by Kovačević and Binder (1997) for the Gini index. In 

both cases, we account for the clustering of individuals in households and for the stochastic 

sample weights. The computations were undertaken using the Stata modules provided by 

Biewen and Jenkins (2005) and Jenkins (2006). 

 We also checked whether our estimates of inequality trends were robust to the choice 

of inequality measure by employing Lorenz dominance analysis, checking whether or not 

Lorenz curves of income distributions for pairs of years crossed. In this case, the statistics of 
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relevance for each year are the cumulative shares of income for different income groups for 

the sample ranked in ascending order of income, and their sampling variances. If there is 

statistically significant Lorenz dominance, then there is a unanimous ordering of income 

distributions according to all standard inequality indices (Foster 1985). These include the four 

indices mentioned in the previous paragraph. Again we account for the clustering of 

individuals in households and for the stochastic sample weights. The computations of the 

distribution-free variance formulae provided by Kovačević and Binder (1997) were 

undertaken using the Stata module provided by Jenkins (2006). Following common practice, 

the income shares were computed at the 19 vingtiles.  

 Reiter (2003) provides a Bayesian derivation for his data combination inference 

formulae, and also the two conditions under which the inferences are valid from a frequentist 

perspective: that the analyst uses randomization valid estimators and that the synthetic data 

generation methods are proper in a sense similar to Rubin (1987). Of necessity we argue that 

these conditions are satisfied in our case, though note that it is impossible to test their validity 

since access to the actual values for topcoded observations in the internal CPS data is 

impossible. (Reiter developed his combination rules under the assumption that, in effect, the 

producer of the multiply imputed partially synthetic data sets had used imputation methods 

that satisfy the conditions.) Our imputation procedures are randomization based though not 

fully Bayesian since we did not draw from the posterior predictive distribution of the GB2 

parameters in each year. Because of the complexity of implementing this procedure in our 

context, we drew from the full data posterior distribution, treating the GB2 parameters as 

known and appeal to the excellent fit of our GB2 models. An and Little (2007) employed the 

same procedure when they derived multiple imputations for data assumed to follow a power-

transformed normal distribution. 

 

5. ESTIMATES OF U.S. INCOME INEQUALITY, 1995–2004 

 

We first discuss the results from our analysis of Lorenz dominance, and then the 

inequality indices. Throughout, tests for statistically significant differences are based on 

changes between distributions at least two years apart. We do not test for differences between 

adjacent years because of the rotation group structure of the CPS (about half of the sample is 

the same in the March CPS for consecutive years): our test procedures are predicated on 

having independent samples in each year. The focus is on the Internal-MI series, but 

supplemented by discussion of how the estimates from the Public-CM and Public-MI series 
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compare. Although the latter two series under-estimate inequality measures and associated 

sampling variances (as explained earlier), it is of interest to know whether these features lead 

to erroneous conclusions about inequality differences. 

 Detailed results from the Lorenz dominance analysis of the Internal-MI data for the 

beginning, middle and end of the period (1995, 2000, and 2004) are reported in Table 1. The 

details for the other years are not shown for brevity. Shown are the estimated Lorenz 

ordinates (cumulative income shares) at each successive twentieth of the distributions, 

together with the estimated standard errors (in parentheses) derived using the methods 

discussed in the previous section. The rightmost three columns report distribution-free Lorenz 

dominance test statistics for pairwise comparisons between the three years. For a pairwise 

comparison between year A and year B, and income group k = 1, …, 19, each test statistic 

(∆k) is  

( ) B
k

A
k

B
k

A
kk VVLL ˆˆˆˆ +−=∆ , 

where  is the estimate of the kA
kL̂ th Lorenz ordinate,  is the estimate of its variance, and 

correspondingly for year B. Hypothesis testing uses the multiple comparison union-

intersection method of Bishop, Formby and Smith (1991a, 1991b) and Bishop, Chiou and 

Formby (1994). Tests are based on a 5% significance level and take account of the fact that 

each dominance test is based on 19 simultaneous tests. The critical value is therefore obtained 

from the Student maximum modulus distribution (Beach and Richmond 1985): SMM(19,∞) 

= 3.01.  

A
kV̂

 There are four possible outcomes from each set of tests associated with the 

comparison of years A and B, as Bishop and colleagues explain. First, there may be no 

statistically significant difference between any pair of Lorenz ordinates, in which case A and 

B are ranked as equivalent in terms of inequality (i.e. equality is taken as the null hypothesis): 

|∆k| ≤ 3.01 for all k. Second, if there are positive and statistically significant differences in 

ordinates and no negative and statistically significant differences, then A Lorenz dominates B: 

inequality is lower according to all standard inequality indices (∆k > 3.01 for some k and |∆l| ≤ 

3.01 for l ≠ k). The reverse is the case, third, if there are negative and statistically significant 

differences in ordinates and no positive and statistically significant differences (∆k < –3.01 

for some k and |∆l| ≤ 3.01 for l ≠ k). Fourth, if there are negative and positive differences that 

are statistically significant, the Lorenz curves cross and a unanimous inequality ranking 

cannot be derived (∆k > 3.01 for some k and ∆l < –3.01 for some l ≠ k). 
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Table 1. Lorenz Ordinates, Standard Errors, and Test Statistics for Pairwise Lorenz Comparisons 
(Internal-MI series) 

 Year  SMM test statistics (∆k) 
Cumulative 
population share 1995 2000 2004 2004 vs. 1995 2004 vs. 2000 2000 vs. 1995

.05 .0040 .0040 .0031 –.1167 –.1018 –.0006
 (.0060) (.0074) (.0053)  

.10 .0134 .0137 .0122 –.1587 –.1636 .0234
 (.0060) (.0074) (.0053)  

.15 .0266 .0268 .0250 –.2084 –.2042 .0206
 (.0059) (.0074) (.0053)  

.20 .0433 .0432 .0411 –.2746 –.2378 –.0025
 (.0059) (.0073) (.0053)  

.25 .0633 .0629 .0603 –.3722 –.2870 –.0369
 (.0059) (.0073) (.0052)  

.30 .0866 .0857 .0827 –.4988 –.3427 –.0891
 (.0058) (.0073) (.0052)  

.35 .1132 .1118 .1083 –.6344 –.3958 –.1510
 (.0058) (.0072) (.0052)  

.40 .1431 .1407 .1372 –.7760 –.3958 –.2684
 (.0057) (.0072) (.0051)  

.45 .1764 .1731 .1694 –.9233 –.4153 –.3717
 (.0057) (.0071) (.0051)  

.50 .2133 .2089 .2052 –1.0692 –.4207 –.4867
 (.0056) (.0071) (.0050)  

.55 .2538 .2483 .2447 –1.2269 –.4180 –.6188
 (.0055) (.0070) (.0050)  

.60 .2982 .2915 .2881 –1.3729 –.3981 –.7575
 (.0055) (.0069) (.0049)  

.65 .3467 .3389 .3360 –1.4774 –.3456 –.8917
 (.0054) (.0069) (.0048)  

.70 .4000 .3908 .3888 –1.5692 –.2400 –1.0665
 (.0053) (.0068) (.0048)  

.75 .4587 .4480 .4476 –1.5676 –.0432 –1.2518
 (.0052) (.0067) (.0047)  

.80 .5240 .5116 .5122 –1.7107 .0653 –1.4705
 (.0051) (.0066) (.0046)  

.85 .5975 .5835 .5859 –1.7197 .2967 –1.6982
 (.0050) (.0065) (.0045)  

.90 .6824 .6674 .6715 –1.6448 .5387 –1.8687
 (.0049) (.0064) (.0044)  

.95 .7862 .7713 .7769 –1.4738 .7473 –1.9292
 (.0046) (.0062) (.0043)  

NOTE: Standard errors are in parentheses. Source: authors’ calculations from internal CPS data. 
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 Table 1 suggests that, according to the point estimates of the ordinates, the Lorenz 

curve moved slightly outwards between 1995 and 2004 (indicating greater inequality). 

However, all the test statistics ∆k are smaller than 3.01, and so we cannot reject the null 

hypothesis of equality of ordinates. For the two subperiods, the pattern of change in the 

ordinates is more complex – there are both positive and negative changes in the ordinates – 

but the outcome of the pairwise dominance test is the same. Indeed, we cannot reject the null 

hypothesis of no statistically significant difference between Lorenz ordinates for all 36 

pairwise comparisons undertaken (using all pairs of years 1995–2004 excluding adjacent 

years). Thus, according to Lorenz dominance tests applied to multiply imputed internal data, 

there was no significant change in inequality within and over the period 1995–2004 

according to all standard inequality indices.  

 We repeated the Lorenz dominance tests using the Public-CM data and found the 

same result, with one difference. That is, we could not reject the null hypothesis of no 

statistically significant differences between Lorenz ordinates for all pairwise comparisons 

undertaken, with the exception of comparisons involving 1999 which was apparently more 

equal than any of the other years considered. For example, in the comparison between 1999 

and 2004, ∆k > 3.01 for k = 15, 16, 17, 18, 19, and 0 < ∆k < 3.01 otherwise. That is, 

cumulative income shares were significantly lower in the top quarter of the income 

distribution in 2004 compared to 1999. Apart from the results for 1999, there is consistency 

between the conclusions derived from the Internal-MI and Public-CM series. 

 Lorenz dominance tests based on the Public-MI data led to slightly different results. 

Again, there was less inequality in 1999 than in 1995 and in 1996 and 2003. In addition, 1995 

was more equal than 2003. There were also a number of Lorenz curve crossings (case 4 

above). Three of these involved 1999 (with 2001, 2003 and 2004); the fourth involved 1995 

and 2000. Aside from the results from 1999, there is broad consistency between these 

estimates and those from the Internal-MI series. 

 Estimates of inequality indices and test statistics for pairwise comparisons for selected 

years are shown in Table 2 for the Internal-MI series. The test statistics are for pairwise 

difference-in-means t-tests, and so the relevant critical value using a 5% significance level is 

approximately 1.96. We find that the estimate of each index increased between 1995 and 

2000 and between 2000 and 2004. The estimated increase between 1995 and 2004 is largest 

for the GE(2) and GE(0) indices (20% and 18%, respectively), and smallest for the Gini and 

GE(1) indices (3% and 9%, respectively). However it is only for the Gini and GE(0) indices 
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that the increases are statistically different from zero. (Finding significant differences for a 

specific inequality index is consistent with the Lorenz dominance test results reported above, 

because the latter were only based on comparisons at 19 income values rather than all sample 

values.) Few subperiod increases are statistically significant either – the exceptions mainly 

concern GE(0).  

 

Table 2. Inequality Indices, Standard Errors, and Test Statistics for Pairwise Comparisons 
(Internal-MI series) 

Index Year  Test statistics 
 1995 2000 2004  2004 vs. 1995 2004 vs. 2000 2000 vs. 1995 
Gini .4312 .4426 .4450 3.1020 .4569 2.1027
 (.0033) (.0043) (.0030)  
GE(0) .4017 .4296 .4751 7.6965 4.1924 2.6074
 (.0066) (.0084) (.0069)  
GE(1) .3732 .4156 .4051 1.7503 –.4388 1.7852
 (.0127) (.0200) (.0130)  
GE(2) .9658 1.4101 1.1600 .5650 –.4235 .8079
 (.1894) (.5163) (.2867)  
NOTE: Standard errors are in parentheses. Source: authors’ calculations from internal CPS data.

 

 

The complete set of tests for pairwise inequality index differences are summarized in 

Table 3 for all three series. For each year, inequality index, and data source series, the cell 

entry shows the year(s) for which there is a statistically significant difference in inequality 

between the comparison year (column 1) and the year(s) shown. A blank cell means no 

comparison between that year and any other year is statistically significant. The table points 

to several findings about inequality differences and about consistency in results across series. 

 First, according to the gold standard of the Internal-MI series, few inequality 

differences are significantly different from zero. Where they are statistically significant, they 

typically refer to differences between the beginning of the period and the end of the period. 

The greatest number of statistically significant differences refer to the GE(0) index. Also, 

none of the tests for differences in the top-sensitive index GE(2) based on the Internal-MI 

series are statistically significant. 
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Table 3. Pairwise Comparisons of Inequality Indices, by Index, Year and Estimate Series 
     Gini GE(0) GE(1) GE(2)

Year              Internal-MI Public-CM Public-MI  Internal-MI Public-CM Public-MI Internal-MI Public-CM Public-MI Internal-
MI 

Public-CM Public-MI

1997              1995 1995  1995 1995 1995 1995 1995  1995
1998             

              
           

         

     

               

             

1995, 1996  1995,1996
 

 1995,1996
 

 1995, 1996 1995, 1996 
1999 1995–1997

 
1995–1997 1997 1995, 1996 1995–1997

 
1995–1997 1995–1997

2000 1995 1995, 1996  1995 1995 1995, 1996 1995–1996 1997
2001 1995, 1996,

1999 
1995, 1996, 
1998, 1999 

1995, 1996, 
1999 

1995–1999 1995–1999 1995, 1996 1995, 1999 1995, 1998,
1999 

1995, 1999   1999  

2002 1995 1995, 1999 1995, 1996, 
1999 

1995, 1996,
1999 

1995, 1996, 
1999, 2000 

1995, 1996, 
2000 

  1995, 1999 1995, 1996, 
1999 

1995, 1999,
2000 

 

2003 1995 1995, 1998,
1999 

1995–1997, 
2001 

1995–2000 1995–2000 1995–2001 2001 1995, 1999 1995, 1996 1999

2004 1995 1995, 1996,
1998–2000 

1995, 1996, 
1999 

1995–2000,
2002 

1995–2002 1995–2002 1995, 1998,
1999, 2000 

1995, 1996, 
1999 

1995,
1998–2000 

 

NOTE: For each year, inequality index, and data source series, the cell entry shows the year(s) for which there was a statistically significant difference in inequality between that year and the 
year(s) shown. A blank cell means no comparison between that year and any other year was statistically significant. Comparisons undertaken for every pair of years 1995–2004, adjacent years 
excepted. Authors’ calculations from internal and public use CPS data. 

 

 



 Second, we find more statistically significant differences using the Public-CM series 

than the Internal-MI series. For some reference years when comparisons based on the 

Internal-MI series yield no statistically significant differences at all, there are statistically 

significant differences according to the Public-CM series. Consider, for example, the 

comparisons for each of the reference years 1996–1999 for the Gini and GE(1) indices, and 

all comparisons for GE(2). And, whenever there is any statistically significant difference 

concerning a year A and a year B according to the Internal-MI series, there are often 

statistically significant differences between year A and additional years as well according to 

the other two series. For example, according to the Internal-MI series, there was a statistically 

significant difference between the Gini indices for 2004 and 1995. According to the Public-

CM series, the Gini index for 2004 differed from the estimates for 1995, 1996, 1998, 1999 

and 2000. In only two instances was there a statistically significant difference according to 

the Internal-MI series but not the Public-CM one: the Gini comparison for 2000 and 1995, 

and the GE(1) comparison for 2003 and 2001. 

 The explanation for these findings is that the suppression of genuine within-cell 

income dispersion that is associated with cell mean imputations lead to underestimation of 

not only inequality indices but also their sampling variances. There is therefore a tendency 

for estimated inequality trends based on the Public-CM series to be judged statistically 

significant when they are not. 

 Like the Public-CM series, the Public-MI series of estimates generally leads to more 

statistically significant differences than does the Internal-MI one for any given reference 

year. Observe, for example, that according to the Public-MI series, inequality in 1995 differs 

from inequality in every other year compared, according to all indices except GE(2). There 

are, however, some years and indices for which the Public-MI series shows a significant 

difference and the Internal-MI one does not. See, for instance, the results for reference years 

2001–2003 and GE(0), and reference year 2001 and GE(1). There is also not complete 

consistency between the patterns of pairwise differences found for the Public-MI and Public-

CM series. This is unsurprising, given the different ways in which the estimates were derived. 

 The differences between the three series are highlighted by Figure 3. This shows the 

estimates for each of the four inequality indices, year by year, together with the associated 

95% confidence intervals. Unsurprisingly, estimates of inequality levels in each year are 

greater for the Internal-MI series than for the Public-CM series. However, both series point to 

similar trends over the period: they suggest that inequality levels fell slightly at the end of the 

1990s, especially between 1998 and 1999, and again between 2001 and 2002. This 
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consistency appears reassuring for analysts, especially since all researchers have access to 

cell mean-augmented public use CPS data whereas access to internal CPS data is subject to 

special conditions.  

 However, Figure 3 also clearly shows that confidence intervals for inequality indices 

estimated using the Public-CM data are too narrow by a substantial amount. This feature is 

particularly striking for the top-sensitive GE(2) index, which is not surprising because it is at 

the very top of the distribution that the data series differ in dispersion. Part of the greater 

fluctuation in inequality levels and wider confidence intervals in the Internal-MI series may 

reflect the GE(2)’s relatively greater non-robustness to the effects of outliers in the sense 

discussed by Cowell and Victoria-Feser (1996). However, we would argue that the patterns 

shown in Figure 3 primarily reflect sampling and imputation variability, since the averaging 

process used to combine the estimates from our 100 multiply imputed data sets are likely to 

smooth out the effects of any outliers being added by the imputation process. In sum, the 

reassuring consistency between the Internal-MI and Public-CM series evaporates if the 

researcher is interested in statistical inference and not simply point estimates. 

 The Public-MI estimate for any given year and index lies between the corresponding 

Internal-MI and Public-CM estimate, and is generally closer to the latter rather than the 

former. (There are a few exceptional cases in which the Public-MI estimate is slightly smaller 

than the Public-CM estimate, most of which involve the estimates for 1995 or 1996.) Our 

explanation for lower inequality in the Public-MI series than the Internal-MI one is that the 

imputation model underlying the Public-MI series does not work as well as the model 

underlying the Internal-MI series and this, in turn, is related to the substantially greater 

prevalence of topcoded data in the public use data compared to the internal data. It is the 

same feature that leads to confidence intervals that are smaller than for Internal-MI series. 

(They are, however, larger than for the Public-CM series as the construction of the Public-MI 

series incorporates more variability via its imputation process.) Our explanation for the 

Public-MI estimates being relatively close to the Public-CM one is that derivation of the 

Public-MI series did not use any information from the internal data, whereas the Public-CM 

series did. The impetus to inequality that is added by the randomization process in the 

derivation of the former source is matched by the use of information about actual incomes 

from the internal data in the latter source. 

The final feature of Figure 3 that we wish to comment on is the results for 1999. 

Relative to trend, this appears to be an outlier year, and echoes results from the Lorenz 

dominance analysis reported earlier. Interestingly, the index estimates for 1999 are above 
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those for immediately previous and succeeding years according to the Public-MI series, but 

below them according to the other two series. Indeed, if the results for 1999 were discarded, 

the trends for the three series would look much more similar. We do not have a complete 

explanation for the exceptional 1999 results. We rule out differences in the imputation 

process for the public data for that year, because we can see no clear differences between the 

parameter estimates of the GB model for 1999 and those for the years before and afterwards. 

And the computer code used to implement the imputation randomization process is generic. 

Since the Internal-MI and Public-CM series both rely on internal data for their derivation, 

whereas the Public-MI series does not, we suspect that there is some feature of the internal 

data for that year that underlies the pattern. 
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Figure 3. Inequality indices with 95% confidence intervals, 1995–2004. Internal-MI series 
(solid line), Public-CM series (long-dashed line), and Public-MI series (short-dashed line), 
derived from internal and public use CPS data. 
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6. DISCUSSION 

 

We have demonstrated how a multiple imputation approach may be used to estimate 

inequality levels and trends from right censored income data. With a suitable imputation 

model, researchers may impute values to topcoded observations, thereby creating multiple 

partially synthetic data sets to be analyzed using complete data methods. Estimates combined 

using straightforward formulae can be used for statistical inference.  

 Applying the multiple imputation approach to internal data from the CPS, we have 

shown that no clear cut conclusions about the changes in income inequality over the period 

between 1995 and 2004 can be drawn. According to Lorenz dominance analysis, there was no 

significant change in inequality according to all standard inequality indices. For some 

specific indices, such as the Gini or the GE(0), there was a statistically significant increase in 

inequality between 1995 and 2004; for more top-sensitive indices such as GE(1) and GE(2), 

changes did not differ significantly from zero.  

 Can these results be reconciled with the evidence of an increase in inequality since the 

mid-1990s found by researchers using Internal Revenue Service administrative record data on 

personal adjusted income, notably Piketty and Saez (2003)? In one sense, they cannot, 

because we have used inequality measures that use information about all incomes in the 

distribution, ranging from poorest to richest. This is an important advantage of data from 

large general population surveys such as the CPS. By contrast, the nature of Piketty and 

Saez’s (2003) data means that they focus exclusively on top income shares as their inequality 

measures. In another sense, however, our results can be reconciled with Piketty and Saez’s. 

Burkhauser, Feng, Jenkins and Larrimore (2008) use exactly the same multiply imputed 

partially synthetic data as discussed in this paper and consider statistics summarizing top 

income shares. The estimates of trends in the income shares of subgroups within the richest 

tenth of the distribution match the Piketty and Saez (2003) estimates, with the exception of 

the trends for the top 1% of the distribution. Arguably the mismatch in estimated trends for 

the very richest incomes reflects differences between the data sources in income definitions, 

sample coverage, and changes over time in the way income is reported. For further details, 

see Burkhauser, Feng, Jenkins and Larrimore (2008). 

 Our analysis enables assessment of the public use CPS data augmented by the Census 

Bureau’s cell mean imputations for topcoded observations, at least in the context of 

estimation of income inequality and its trends. Taking the estimates from the multiply 

imputed internal data as the gold standard shows that the cell mean-augumented data track 
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trends in inequality indices over the decade since 1995 reasonably well, though inequality 

levels are – unsurprisingly – underestimated. However, we have also shown that suppression 

of income dispersion within cells, combined with use of right censored CPS internal data to 

construct cell means, also has impacts on variance estimates. Compared to their multiply 

imputed internal data counterparts, they are underestimated, leading to confidence intervals 

that are too narrow and a tendency to incorrectly find statistically significant inequality 

differences. Put another way, cell mean imputations for topcoded observations may do an 

excellent job of helping estimate mean incomes, but their very nature makes them less 

suitable for estimation and inference concerning statistics based on higher order moments. 

 Although few researchers would find it practical to go through the procedures 

required to access the internal CPS data, and to undertake the research using the data within a 

U.S. Census Bureau Data Center, we have shown that there is a feasible alternative that 

works reasonably well. That is, our comparisons of the three series shows a multiple 

imputation approach applied to topcoded public use CPS data can yield results about income 

inequality that in several senses lie between those derived using multiple imputation applied 

to internal data and those derived using cell-mean augmented public use data. The Public-MI 

approach takes account of income dispersion at the top of the distribution and also takes 

account of the variability of estimates. Because the public use data are, by definition, in the 

public domain, it would also be easier for researchers to build more sophisticated imputation 

models and improve the quality of estimates derived. These models might allow for subgroup 

differences, for instance allowing for covariates in the estimation of a parametric model or 

also incorporating the information available from the cell mean imputations. As argued in the 

Introduction, the multiple imputation methods we propose may be applied in a number of 

contexts beyond the CPS: right censoring is a relatively common feature of income data sets. 
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APPENDIX. Probability Plots from GB2 Distribution fit to Public-Use CPS Data 
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Figure A. Probability plots for GB2 estimates: fitted versus observed. Plot based on richest 
70% of each distribution only. GB2 estimates account for left-truncation and right-censoring 
(see text). Source: authors’ derivations from public-use CPS data. 
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