
D
I

S
C

U
S

S
I

O
N

 
P

A
P

E
R

 
S

E
R

I
E

S

Forschungsinstitut 
zur Zukunft der Arbeit
Institute for the Study 
of Labor 

Estimation of Heterogeneous Treatment Effects 
on Hazard Rates

IZA DP No. 4794

February 2010

Simen Gaure
Knut Røed
Gerard J. van den Berg
Tao Zhang



 

Estimation of Heterogeneous 
Treatment Effects on Hazard Rates 

 
 

Simen Gaure 
Ragnar Frisch Centre for Economic Research  

 
Knut Røed 

Ragnar Frisch Centre for Economic Research 
and IZA 

 
Gerard J. van den Berg 

University of Mannheim, IFAU-Uppsala 
and IZA 

 
Tao Zhang 

Ragnar Frisch Centre for Economic Research 
 
 

Discussion Paper No. 4794 
February 2010 

 
 
 

IZA 
 

P.O. Box 7240   
53072 Bonn   

Germany   
 

Phone: +49-228-3894-0  
Fax: +49-228-3894-180   

E-mail: iza@iza.org 
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post Foundation. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 



IZA Discussion Paper No. 4794 
February 2010 

 
 
 
 
 
 
 
 
 

ABSTRACT 
 

Estimation of Heterogeneous Treatment Effects on Hazard Rates* 
 
Consider a setting where a treatment that starts at some point during a spell (e.g. in 
unemployment) may impact on the hazard rate of the spell duration, and where the impact 
may be heterogeneous across subjects. We provide Monte Carlo evidence on the feasibility 
of estimating the distribution of treatment effects from duration data with selectivity, by means 
of a nonparametric maximum likelihood estimator with unrestricted numbers of mass points 
for the heterogeneity distribution. We find that specifying the treatment effect as homogenous 
may yield misleading average results if the true effects are heterogeneous, even when the 
sorting into treatment is appropriately accounted for. Specifying the treatment effect as a 
random coefficient allows for precise estimation of informative average treatment effects 
including the program’s overall impact on the mean duration. 
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1. Introduction 

With the increasing availability of administrative data sources in many countries, it may be 

foreseen that in the future, non-experimental evaluations of social programs can be performed 

at a large scale to a very low cost. However, the fruitfulness of this approach depends on the 

extent to which methodological difficulties associated with non-experimental analyses can be 

satisfactorily solved. In particular, non-experimental evaluations of social programs must 

cope with self-selection and unobserved heterogeneity. Valid instruments are often not 

available, since variables that affect the outcome of interest and can be observed by a 

researcher, may also have affected the selection process into the program. Direct comparisons 

of pre and post program outcomes, e.g., by means of fixed effects estimators, are typically not 

appropriate, since participation in a social program often results directly from lack of success 

during the pre program period. Two empirical strategies dominate the literature. The first is to 

use observed characteristics to establish the best possible control groups (through, e.g., 

propensity score matching), and hope that any remaining uncontrolled heterogeneity in the 

participation process is orthogonal to unobserved heterogeneity in the outcome of interest. 

The second strategy is to model unobserved characteristic as random effects (mixture 

distributions) and use the exact timing of events (and not only their occurrence) to disentangle 

causality from sorting. It has been shown that within a mixed proportional hazard (MPH) 

framework, the latter approach does not require access to instrumental variables.  

Modeling unobserved heterogeneity is of course only meaningful if it is 

nonparametrically identified (unless prior knowledge about the functional form of its 

distribution is available). Substantial progress has been made regarding our understanding of 

the identification problem. An important contribution to this literature is the so-called 

“timing-of-events approach”, which provides identification results for hazard rate models 

with endogenous treatments. A substantial part of this literature assumes homogenous 
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treatment effects, i.e., a situation where unobserved “intercepts” in the treatment and final-

destination hazards induce a spurious correlation between treatment propensity and outcome 

measures, but where the effect of interest is the same for all subjects, conditioned on observed 

covariates. However, for most social programs, the assumption of a homogenous effect is not 

convincing. Even among subjects that are equal according to observed characteristics, we 

typically expect treatment effects to vary. Abbring and Van den Berg (2003) and Richardson 

and Van den Berg (2008) show that mixed proportional hazard rate models with selective 

durations until treatment and heterogeneous treatment effects are also nonparametrically 

identified under sets of regularity assumptions. Richardson and Van den Berg (2008) estimate 

such models, where the unobserved heterogeneity distribution is a multivariate discrete 

distribution with a fixed number of points of support.1 Discrete-time duration analyses often 

adopt joint normality and/or factor loading assumptions concerning the heterogeneity 

distribution; see e.g. Carneiro et al. (2003) and Aakvik et al. (2005).  

If the researcher is primarily interested in the average treatment effect (or the average 

treatment effect among the treated), a homogeneity assumption might be justified on the 

ground that it traces out the average effect of interest. However, in non-linear settings, the 

mean effect is not necessarily equal to the effect on the average individual. Little is known 

regarding the appropriate interpretation of estimated homogenous effects in cases where the 

true effects are heterogeneous. In this paper we show that we cannot expect it to capture an 

average treatment effect for the population of potential participants as a whole (ATE) or an 

average treatment effect among the treated (ATET). Moreover, to the extent that the 

unobserved participation propensity is correlated to the treatment effect, the imposition of a 

homogenous effect may yield a significant bias in simulation-based program effect statistics.  

                                                 

1 For matching estimation with duration outcomes and effect heterogeneity, see Fredriksson and Johansson 
(2008) and Crépon et al. (2009).  



 

 

4

The purpose of the present paper is to evaluate the scope for inference on 

heterogeneous treatment effects within the “timing-of-events” framework by means of the 

nonparametric maximum-likelihood estimator (NPMLE). We set up Monte Carlo experiments 

aimed at shedding light on the extent to which key summary statistics and distributional 

parameters can be uncovered from observed data.2 There are three latent variables in all our 

data-generating processes (DGPs): the intercept in the treatment hazard, the intercept in the 

final-destination hazard, and the proportional treatment effect (the shift in the final-destination 

hazard resulting from treatment). These three variables follow a joint distribution that is 

assumed unknown to the researcher. A key finding of our paper is that a number of relevant 

treatment effect statistics, including ATE, ATET, and a host of simulation-based program 

effects, can be reliably uncovered from the data by means of the full-dimensional NPMLE, 

i.e., without restrictions on the joint distribution of the three unobserved determinants. We 

also find that a two-dimensional factor loading model performs well. In terms of robustness, 

the two-dimensional factor loading model even appears to be superior to the full-dimensional 

model. However, a one-dimensional factor loading model performs poorly in our 

experiments. Imposing perfect correlation between latent variables is therefore not advisable, 

unless this restriction is justified by prior knowledge. 

Unfortunately, it turns out to be difficult to evaluate the sampling distribution of the 

treatment effect statistics that we estimate in this paper. We have not been able to compute 

reliable standard errors for either ATE, ATET, or for the simulation-based program effects, 

except by means of nonparametric or semiparametric bootstrap.  We also find that the 

sampling distributions of interest display significant deviations from normality. This problem 

is related to the non-concavity of the likelihood function, which implies that we in some of 

                                                 

2 As such, the paper builds on the literature in which inference of duration models with unobserved heterogeneity 
is assessed using Monte Carlo simulations; see Baker and Melino (2000), Gaure, Røed and Zhang (2007) and 
Van den Berg, Caliendo and Uhlendorff (2009).  
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the trials either fail to identify the global optimum or that sampling error causes the “wrong” 

optimum to represent the global maximum. A typical finding from our nonparametric 

bootstrap exercises is that more than 95 percent of the trials end up yielding a set of normally 

distributed treatment effect statistics, while the rest of the trials produce completely different 

results. We conclude from this experience that nonparametric (or semiparametric) bootstrap 

should be part of a standard estimation procedure, not only to evaluate statistical uncertainty, 

but also to ensure that the original result (based on the full sample) does not belong to the 

group of outliers. Statistical inference cannot be made without discretionary judgment 

regarding identification and handling of outlier results. 

 The next section describes the modeling framework and provides definitions for the 

key treatment and program effect statistics. Section 3 describes the data generating process 

and Section 4 outlines our estimation strategy. Section 5 presents the results and Section 6 

concludes. 

2. The Modeling Framework and Treatment Effect Measures 

The models we examine in this paper portray a subject entering into an origin state, and 

describe its subsequent transition intensity into a destination state. During occupation of the 

origin state, a treatment may occur that affects the final destination transition intensity. For 

simplicity, it is assumed that treatment only occurs once, i.e., realization of a treatment 

removes the subject from the risk of subsequent treatment. There are unobserved jointly 

distributed covariates that describe the subjects’ two transition propensities and their 

treatment effects.  

Our starting point is a simple continuous-time multivariate mixed proportional hazard-

rate model (MMPH). The two events that can occur are transitions to the final-destination 

state (e) and the treatment state (p). While the former transition terminates the spell, the latter 

does not. The event of a treatment may, however, cause a change in the final-destination 
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hazard. Let i be the index for subjects (i=1,2,…,N)  and let d index spell duration ( d R+∈ ). In 

its simplest form, the model is described in terms of two hazard rates: 

( )
( )

exp ,  

(1 ) exp ,

eid e i id i ei

pid i p i pi

x z v

z x v

θ β α

θ β

= + +

= − +
     (1) 

where zid is the treatment indicator, i.e., 1idz = if treatment has been implemented (and zero 

otherwise). The vector xi contains observed covariates. To avoid inessential complications, we 

abstract from duration dependence and time-varying covariates. Gaure et al. (2007) show that 

duration dependencies can be robustly uncovered from observed duration data by means of 

the MMPH model, and that time-varying exogenous covariates significantly improve the 

foundation for nonparametric identification. The triple ( , , )ei pi iv v α  constitutes the three 

unobserved subject-specific characteristics in terms of the final-destination hazard propensity, 

the treatment hazard propensity, and the treatment effect, respectively. We assume that the 

unobserved covariates and treatment effects are time-invariant and independent of observed 

characteristics; hence, (1) may be interpreted as a random coefficients model. 

 An important distinction made in this paper is that between a “treatment effect” and a 

“program effect”. A treatment effect (TE) is the actual or hypothetical effect of being subject 

to treatment. A program effect (PE) is the expected impact of a given program structure 

before the actual timing of treatment is revealed. In the literature, TE and PE are often 

referred to as the ex post and ex ante effects. (Here, we use “ex ante” to refer to the situation 

before treatment in general.) While each subject’s treatment effect is conditional on 

participation (although it can be estimated for non-participants as well) and hence 

independent of the statistical process determining participation, the subjects’ program effects 

clearly depend on the selection process and the overall intensity of treatment. 

A natural measure of a time-invariant subject-specific treatment effect in this model is 

the proportional change in the final-destination hazard caused by treatment; i.e. 
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 ( )expi iTE α= . (2) 

The average treatment effect (ATE) is equal to 

 [ ].ii N
ATE E TE

∈
=       (3) 

ATE as defined in (3) is well-defined provided that there are no defective risks, either in the 

participation or in the final outcome transition processes.3 Clearly, a defective participation 

risk (Pr( ) 0)piv = −∞ >  makes it impossible to identify the treatment effect in the 

corresponding location vector, since any treatment effect αi in the location vector ( , , )el lv α−∞  

fits the data likelihood equally well. A defective ex ante (before treatment) outcome hazard 

(Pr( ) 0)eiv = −∞ >  leads to similar problems, since any finite treatment effect (αi<∞) in the 

location vector ( , , )pl lv α−∞  fits the data likelihood equally well. A particular problem may 

arise if the ex ante hazard in a location vector is zero while the ex post (after treatment) 

hazard is positive, in which case αi=∞ in that location vector. If positive probability is 

attributed to iα = ∞ , we obtain that ATE = ∞ . In principle, these problems can be 

circumvented by restricting hazards to be non-defective. However, it is not obvious how this 

should be done in practice. Moreover, with finite datasets, the issue of “defective risks” is 

more a matter of degree than of kind. As the hazards in question approach zero, it becomes 

more and more difficult to identify the associated treatment effect with any precision. A 

related problem is that ATE attributes the same weight to all proportional treatment effects, 

regardless of the baseline hazard to which they are multiplied. It may be argued that a big 

proportional impact on an almost defective hazard rate is of little interest from a policy point 

of view, particularly if there are competing risks or censoring processes implying that the 

event in question is almost certain not to take place anyway.   

                                                 

3 Abbring and Van den Berg (2005) and Van den Berg, Bozio and Costa Dias (2010) develop a range of 
measures for average treatment effects on duration outcomes in a non-parametric potential-outcome framework.  
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ATE also ignores variation in treatment propensity; hence, the effect for a subject with 

high treatment propensity is attributed the same weight as the effect for a subject with low (or 

even defective) treatment propensity. But a similar effect measure can in principle be 

provided for the population of actually treated subjects, thereby providing the average 

treatment effect on the treated (ATET). Let N∆ be the set of actually treated subjects. We then 

have that  

 [ ].ii N
ATET E TE

∆∈
=  (4) 

Estimation of ATET requires, however, that the members of the treatment group are identified 

and equipped with the appropriate conditional joint distribution of iα . This can be achieved 

by means of simulation. We return to this that later on. 

While the subject-specific treatment effects are naturally evaluated in terms of the 

proportional shift in the hazard rate (or in remaining expected duration) caused by the 

treatment, the program effects are  most naturally evaluated in terms of the program’s overall 

effects on the ex ante expected durations. The latter depend on the distribution of final 

destination hazards, treatment hazards, and treatment effects, and hence on the joint 

distribution of ( , , , )id ei pi ix v v α . Let 0 |i i piD E D v = = −∞   be the expected length of subject 

i’s spell if treatment never occurs and let [ ]i iD E D∆ = be the expected length of such a spell 

given the true enrolment process and the true effect of treatment. The program effect on the 

expected duration for subject i is then equal to 

 0
i i iPE D D∆= − . (5) 

In order to evaluate average program effects, we take the mean of individual effects and 

divide by the scale of the program in terms of the overall frequency of treatments. Hence, we 

define the average program effects on absolute duration as the mean duration effect per 

treatment: 
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[ ]iAD i N

E PE
APE

P
∈= , (6) 

where P is the fraction of treated subjects. In some settings, it seems natural to evaluate the 

average program effect relative to mean duration without the program effect; i.e. 

 
0

AD
RD

ii N

APE
APE

E D
∈

=
  

. (7) 

The selection process into treatment needs to be identified both for the purpose of 

disentangling the causal treatment effects from unobserved sorting and for the purpose of 

estimating program effects. But characterization of the selection process may also be of 

interest in its own right, e.g., in order to assess the extent to which program slots are allocated 

to those who need them most and/or to those with the largest treatment effects. The selection 

process is thus most naturally evaluated in terms of its relationship to the final-destination 

hazard and in relation to the treatment effects. From a policy perspective, it is typically the 

actual features of the selection process that matter, and not the extent to which it can be 

decomposed into factors that are observed or unobserved by the researcher. Hence, we focus 

on selection measures that incorporate both observed and unobserved determinants. We 

examine selection on the final-destination hazard (SFH) and selection on the treatment effect 

(STE). SFH is examined in terms of the statistical association between ( )exp( e i eix vβ + and 

( )exp( p i pix vβ + , while STE is examined in terms of the association between ( )exp( iα and 

( )exp( p i pix vβ + ; conf. Equation (1).4 As summary statistics for SFH and STE, we compute 

correlation and concordance coefficients. While correlation coefficients may have the most 

convenient interpretation, they are highly sensitive towards extreme values in the estimated 

                                                 

4 Note that in the more general case with duration dependence and/or time-varying covariates, these associations 
depend on time/duration, even when the subject-specific effects are assumed time-invariant. This can be handled 
by standardizing on a particular spell duration or by integrating the hazards over time/duration. 
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heterogeneity distribution, which (as discussed above) may be determined on a weak 

empirical basis.  

3. Data Generation 

The strategy we pursue in this paper is that we create a large number of artificial subjects, in 

terms of ( , , , )i ie ip ix v v α  on the basis of various subject generating processes (SGP’s). Each 

SGP is characterized by a particular joint distribution of the unobserved 

characteristics ( , , )ei pi iv v α . After the subjects have been constructed, they participate in an 

event history lottery, where treatment times and durations are drawn randomly on the basis of 

specified hazard-rates. The lottery is based on repeated calculations of the two pseudo 

survival functions. From (1), we have that 

 

( ) ( )( )

( ) ( )( )
0

0

( ) exp exp exp exp ,

( ) exp exp exp exp .

d

ei e i ei e i ei

d

pi p i pi p i pi

S d x v du d x v

S d x v du d x v

β β

β β

 
= − + = − + 

 
 

= − + = − + 
 

∫

∫
 (8) 

To generate durations and treatment times, we draw the survival probabilities and invert the 

two pseudo survival functions; i.e., we replace the left hand side of (8) with [1-uk], where uk 

(k=e,p) are random drawings from a uniform [0,1] distribution, and solve for the resultant 

latent durations; see Crépon et al. (2005, p. 19). If the duration until treatment is shorter than 

the duration until exit, a treatment occurs, and a new duration (for the remaining spell) is 

generated with 1idz = . This lottery is what we refer to as the observation generating process 

(OGP), and it creates the datasets used for estimation purposes. Together SGP and OGP 

constitute the data generating process (DGP). 

In order to construct datasets for analysis, we specify a baseline DGP which will be 

used to examine the key properties of the NPMLE. The baseline DGP consists of 50,000 

subjects. The researcher observes three exogenous time-invariant covariates 1 2 3( , , )x x x . All 
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three are subject to independent normal distributions with means and variances equal to 

(0,0.25), (0,0.25), (1,1), respectively, and with causal coefficients 1 1 21,  1,  1,e p eβ β β= = =  

2 3 31, 0.5,  1p e pβ β β= − = = . This satisfies the condition for model identification spelled out in 

Abbring and Van den Berg (2003, p. 1505). The two intercepts ( , )e pv v are also subject to 

normal distributions with variances equal to 1. We assume that they are negatively correlated 

with ( )( , ) 0.5ei picorr v v = − such that there is a negative selection to treatment on unobserved 

covariates. For the treatment effect, we deliberately construct a non-standard and intricate 

distribution. The treatment parameter α is drawn from three alternative normal distributions 

with mean 0.0, 0.2, and 0.6, respectively. Which of the three distributions a subject draws 

from is determined by its position in the vp-distribution; the higher the vp, the higher is the 

expectedα .5 Hence, we have introduced a positive selection on the treatment effect. The 

resultant average treatment effects are 1.36 [ ] 1.55ATE E ATET= < =  (recall that while ATE is 

a parameter, ATET is a stochastic variable). The distribution of treatment effects in the 

baseline DGP is illustrated in Figure 1 (the distribution of treatment effects among the treated 

is obtained by repeating the OGP 120 times). The means of ( , )e pv v are scaled such that the 

mean expected duration until final exit (in the absence of treatment) is approximately equal to 

13, and such that the mean treatment probability is equal to 0.37. Note that since both the 

treatment effect and the final destination propensity are correlated to the treatment propensity, 

there is also a (negative) correlation between the treatment effect and the final destination 

hazard in the DGP. 

- Figure 1 around here -  

                                                 

5 Subjects belonging to percentiles [0,33] in the vp-distribution draw α from the N(0.0,0.0025) distribution 
(mean, standard deviation), subjects belonging to percentiles (33,66] draw from the N(0.2,0.0025) distribution 
and the rest draw from the N(0.6,0.0225) distribution. 
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4. Estimation 

We put ourselves in the position of a researcher who has access to data with accurately 

measured spell durations, treatment times and observed covariates, but no information about 

the distribution of unobserved covariates and treatment effects. The researcher’s data window 

is also assumed limited, such that spells lasting longer than 100 periods are right-censored. 

Based on this restricted information set, our researcher’s aim is to uncover reliable 

information and make statistical inferences regarding the true treatment and program effects 

and the sorting into treatment.  

Since the distribution of unobserved heterogeneity is assumed completely unknown, it 

is modeled nonparametrically with the aid of a discrete distribution (Lindsay, 1983; Heckman 

and Singer, 1984); i.e., by means of nonparametric maximum likelihood estimators 

(NPMLE). In this section, we first briefly explain how we employ this method in the most 

general case of a completely unrestricted three-dimensional vector of unobserved 

heterogeneity. We then discuss an alternative and more restrictive – but potentially also more 

robust – modeling strategy based on reduced heterogeneity dimensionality.  

4.1 The full-dimensional nonparametric maximum likelihood estimator 

Let di be individual i’s observed spell-duration, and si the realized duration of treatment (if it 

occurred). For a non-treated subject, the contribution to the likelihood function (conditional 

on unobserved characteristics) is 

( ) ( )( )( ) ( )( , , ) | exp exp exp expi e p i i i e i ei p i pi e i eiL v v d s d x v x v x vα β β β< = − + + + + ,         (9) 

and for a treated subject, the contribution is 

          
( ) ( )( )( ) ( )

( )( )( ) ( )

( , , ) | exp exp exp exp

exp ( ) exp exp

i e p i i i e i ei p i pi p i ei

i i e i i ei e i i ei

L v v d s s x v x v x v

d s x v x v

α β β β

β α β α

> = − + + + +

× − − + + + +
     (10) 
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Let W be the (a priori unknown) number of support points in this distribution and let 

{ }( , , ), ,  1, 2,... ,el pl l lv v p l Wα =  be the associated location vectors and probabilities. In terms of 

observed variables (data), the likelihood function is then given as  

1 11 1

[ ( , , )] ( , , ),    1
N N W W

i el pl l l i el pl l l
l li i

L E L v v p L v v pα α
= == =

= = =∑ ∑∏ ∏ .   (11) 

Our estimation procedure is to maximize this function with respect to all the model and 

heterogeneity parameters repeatedly for alternative values of W; see Gaure et al. (2007) for 

details. The maximization is unconstrained, in the sense that we do not restrict the parameter 

space for the unobserved covariates to be consistent with non-defective risks. When we 

interpret the estimation results, however, we do take into account that some parameters of 

interest cannot be identified on the basis of heterogeneity vectors containing defective (or 

close to defective) risks; see Section 2. To determine the “optimal” number of support points, 

we start out with W=1, and then expand the model with new support points until the model is 

“saturated”, in the sense that we are not able to increase the likelihood any further. We then 

chose a preferred model (the number of support points) on the basis of the Akaike information 

criterion (AIC). This choice is motivated both by theoretical considerations and empirical 

evidence. In particular, we have seen from Gaure et al. (2007) that AIC performs well in our 

finite mixture models. Following Burnham and Anderson (2002, Section 6.9.6) we compute 

AIC with the actual number of parameters estimated.  E.g., with W points of support, only W-

1 parameters are estimated for the probabilities in the mixture.  

Standard errors attached to non-random coefficients ( , )e pβ β can be calculated directly 

from the inverted Fisher matrix. Gaure et al. (2007) show that for parameters attached to 

observed covariates, the inverted Fisher matrix from the optimally selected model provides 

standard errors that can be used for standard statistical inference. By means of the delta-

method, a similar procedure can be devised for treatment effect statistics, insofar as they can 
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be expressed directly as a function of estimated parameters. Hence, it is possible to compute 

standard errors for ATE, but not for the other – simulation based – treatment and program 

effect statistics. However, since little is known about the distribution of the parameters 

characterizing the treatment effect distribution, we have little a priori knowledge about the 

performance of these standard errors and their applicability for statistical inference. In 

particular, we have no reason to expect standard inference procedures to be valid. 

4.2 Reduced heterogeneity dimensionality 

Estimation of a full-dimensional model typically requires large computational resources. In 

some applications it is also questionable whether the data-based foundation for nonparametric 

identification is sufficiently strong for a truly nonparametric model to yield robust results. 

These considerations may motivate the researcher to reduce the dimensionality of the 

accounted for unobserved heterogeneity. There are two ways of implementing this idea. The 

first is to assume that at least one of the heterogeneous parameters is really homogenous. In 

the treatment evaluation literature, for example, it is common practice to specify the treatment 

effect as homogenous (fixed), conditioned on observed covariates; see, e.g. Abbring and Van 

den Berg (2004), Van den Berg et al. (2004), Røed and Raaum (2006), and Rosholm and 

Svarer (2008). The second is to use factor loading, i.e., to assume that the full vector of 

unobservables depend (linearly) on a lower number of generic unobservables; see, e.g., 

Carneiro et al. (2003) and Aakvik et al. (2005). To illustrate, assume that the researcher 

specifies unobserved heterogeneity in terms of two generic unobserved covariates, and that 

these two are the final destination and treatment propensities ( , )e pv v , respectively. The two-

dimensional linear factor loading model is then specified by assuming that the treatment 

effect ( )α  is a linear function of ( , )e pv v , i.e., 

 0i e ei p piv vα α α α= + + , (12) 
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where 0( , , )e pα α α are parameters to be estimated. Alternatively, the researcher could express 

the two generic unobservables as being outside the domain of particular hazard rates and 

specify all three intercepts ( , , )e pv v α as distinct linear functions of them. However, given 

required normalizations, it turns out that this model would be equivalent to the one described 

here; see Appendix for proof. It follows that it is also immaterial which of the three 

unobserved variables that is selected for factor loading. 

 With some modifications, the NPMLE estimation procedure is the same for the factor 

loading model as for the full-dimensional model.  

5. Uncovering the Baseline Model from observed data  

The purpose of this section is to assess the ability of NPMLE to uncover key properties of the 

true model. We use the baseline DGP described in Section 3 to generate 120 distinct datasets, 

1 120,..., ,S S  from a common SGP with 50,000 subjects. Each of the 120 datasets is subject to 

the estimation procedures set out in Section 4.  And each estimated model is then used in a 

simulation exercise to compute summary statistics like ATET and APE, and selection statistics 

like SFH and STE. We present the results in three steps. First, Section 5.1 describes the 

alternative models’ ability to uncover correct summary statistics in terms of the various 

treatment effects (ATE, ATET, APE) and sorting parameters (SFH, STE). Section 5.2 then 

discusses the scope for valid statistical inference. Finally, Section 5.3 assesses the models’ 

performance in terms of uncovering the underlying distribution functions of the treatment 

effects, i.e., ( )iF TE . 

5.1 Point estimates for summary statistics  

Table 1 summarizes our key findings. Note first that if the researcher simply disregards 

unobserved heterogeneity (Column I), all the summary statistics are estimated with huge 
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biases. The researcher is led to erroneously conclude that the treatment in question 

significantly reduces the final destination hazard (reflecting the negative selection on 

unobservables in the DGP). Introducing one-dimensional heterogeneity does not alleviate the 

problem very much, regardless of whether factor loading is used to account for heterogeneous 

treatment effects (Column III) or not (Column II). The researcher still gets the signs of both 

treatment and program effects completely wrong. A one-dimensional model simply lacks the 

flexibility required to account for the two sorting processes (on the final destination hazard 

and on the treatment effect) taking place simultaneously in the baseline DGP. 

- Table 1 around here - 

Introducing two-dimensional heterogeneity, however, may improve the model’s 

performance substantially. A popular way of doing this (see references in the previous 

section) is to specify the treatment effect as homogenous, while estimating the joint 

distribution of ,e pv v  nonparametrically (or with a fixed number of support points). This 

procedure is designed to eliminate bias arising from sorting on the final destination hazard, 

but – by construction – it cannot eliminate any bias arising from sorting on the treatment 

effect. The results presented in Table 1, Column IV, indicate that estimates of the assumed 

homogenous treatment effect tend to resemble the true ATE. Average program effects, 

however, are substantially underrated (along with ATET), since the model disregards the 

selection on the treatment effect (which happens to be positive in the baseline DGP). Hence, it 

is tempting to conclude that the common practice within the timing-of-events literature of 

specifying the treatment effect as homogeneous (conditioned on observed covariates) is 

defensible insofar as the researcher is only interested in the average treatment effect (ATE). 

However, it turns out that the ATE-interpretation of the estimated treatment effect is not 

robust. This is illustrated in Table 2, where we compare the estimated homogeneous treatment 

effects with the true ATEs and ATETs under different assumptions regarding the sorting 



 

 

17

processes. It is clear that the resemblance between the estimated homogenous effect and the 

true ATE in our baseline model occurred by coincidence. Insofar as there is systematic sorting 

into the program on the treatment effect ( ( , ) 0pcorr v α ≠ ), the estimated homogenous effect 

generally deviates from both ATE and ATET. The size of the deviations depends on the 

relative importance of the various unaccounted for sorting processes. To the extent that 

treatment effects are correlated with the treatment and final destination propensities in the 

DGP, this is partly picked up by the nonparametrically estimated ( , )e pv v distribution, 

effectively confounding the effects of the treatment. With positive selection on the treatment 

effect, the homogenous estimator tends to lie below both ATE and ATET. With negative 

selection, it tends to lie above ATET. 

- Table 2 around here - 

Introducing linear factor loading in the two-dimensional model improves the 

performance significantly; see Table 1, Column V. All the summary statistics are then 

estimated without noticeable bias, including ATE, ATET and the program effects. Even the 

two sorting statistics are relatively close to their true values. The full-dimensional NPMLE 

also produce very reliable results; see Table 1, Column VI. But there are no evident gains in 

precision compared to the more parsimonious two-dimensional factor loading model. 

Moreover, the standard deviations for the various estimates (taken across the 120 trials) tend 

to be somewhat larger for the full-dimensional than for the two-dimensional model, 

suggesting that the reduced dimensionality yields some gains in robustness. 

 Figures 2 and 3 show the distribution of estimation errors for the six key statistics 

ATE, ATET, APEAD, APERD, SFH, and STE (the latter two based on Kendall’s τ), for the 

two-dimensional factor loading model and the full-dimensional model, respectively. It is 

evident that most of the estimated statistics are heavily concentrated around their true values, 

and apart from a few “outlier” results, most of the statistics seem to be close to normally 
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distributed. This suggests that the models may be applied for statistical inference. The 

existence of outliers is worrying, however, and indicates that robustness needs to be assessed.  

- Figure 2 around here - 

- Figure 3 around here – 

5.2 Robustness and statistical inference 

In order for a researcher to make statistical inference on the basis of estimation on a single 

dataset, standard errors and/or confidence intervals are required. As discussed in Section 4, it 

is in principle possible to compute standard errors for ATE (since ATE is function of the 

estimated parameters and no simulation is required) by means of the Delta-method. As it turns 

out, however, these standard errors are not sufficiently reliable for either the full-dimensional 

or the two-dimensional models. In most of the trials (around 60-80 percent), the estimated 

standard errors do not deviate more than ± 0.2 from the observed standard deviation across all 

trials. But in many of the remaining trials, the deviation is extremely large (and in some very 

few cases, the estimated standard error approaches infinity). These difficulties are actually not 

very surprising, given ATE’s sensitivity towards extreme values. And they suggest that 

statistical inference must be based on bootstrap techniques. This is obviously also the case for 

the other, simulation based, summary statistics.  

We examine the impact of the sampling distribution by means of nonparametric 

bootstrap; i.e., we draw artificial samples with replacement from the observed data and re-

estimate the model several times, each time followed by a new simulation. Given the 

computational costs involved, we have chosen to do the nonparametric bootstrap on ten 

randomly selected datasets only (implying 120×10=1200 estimation and simulation trials). To 

illustrate our findings, we present in Table 3 the key results generated from one of these 10 

trials (still randomly selected), focusing on the two most promising estimation strategies; i.e., 

the two-dimensional linear factor loading model and the full-dimensional model. As it turned 
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out, the randomly selected dataset had generated estimated treatment and program effect 

statistics somewhat below their true values. These errors were maintained through the 

bootstrap trials, indicating that they resulted from sampling error in the original full sample. 

For the two-dimensional factor loading model, the bootstrap standard deviations tended to 

resemble the standard deviations across the original 120 datasets, suggesting that the 

bootstrap procedure does produce valid standard errors. But again, outlier results in some 

cases drive the standard errors completely off target. For the full-dimensional model, we 

simply had to “remove” some extreme outliers before sensible summary statistics could be 

calculated for the treatment effects. Moreover, even for the two-dimensional factor loading 

model, some bootstrap samples ended up yielding results that were completely off target. To 

illustrate, Figure 4 shows the complete results for the estimated ATE from the 10×120 

bootstrap samples. While we had no apparent outliers in the bootstrap based on Dataset 1 

(which forms the basis for Table 3), it is clear that such outliers do appear in some of the other 

bootstrap trials (in particular, datasets 2, 5, and 8). This obviously gives rise to a non-normal 

distribution of estimates, complicating statistical inference. 

- Table 3 around here - 

- Figure 4 around here -  

 We assume that various outlier detection techniques may be applied to eliminate 

atypical results, such that statistical inference can be based on the remaining estimates. 

However, we cannot always expect outliers to be as easily detected as they apparently are in 

Figure 4. Hence, it is probably difficult to eliminate the need for subjective judgment as a 

basis for statistical inference. The existence of outliers probably arises from the fact that the 

likelihood function to be maximized is not globally concave, and that no algorithm known to 

the authors can ensure, in reasonable time, that a global optimum has really been found. It 

may therefore be important (in actual applications) to ensure that the vector of estimates based 
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on the full sample does not by accident belong to a group of outliers. This can be done by 

means of the nonparametric bootstrap. Hence, the nonparametric bootstrap serves a dual 

purpose here; first, to ensure that the original estimates are not atypical from bootstrap-based 

estimates; and second, to facilitate statistical inference.  

Given the large computational costs often associated with just a single estimation of 

NMPLE, the nonparametric bootstrap will for some applications be prohibitively expensive 

and time-consuming. As an alternative, we also explore the properties of a semiparametric 

bootstrap technique based on the following procedure: The model is estimated only once, 

namely on the complete (original) dataset. On the basis of this estimation, repeated drawings 

are made from the vector of parameters attached to observed characteristics ( , )e pβ β , for 

which the joint normality assumption is likely to hold; see Gaure et al., 2007. For each 

drawing of these parameters, the heterogeneity distribution is then re-estimated by means of 

conditional nonparametric likelihood maximization (AIC). To save computational resources, 

this latter step may be conditioned on the number of support points in the heterogeneity 

distribution. Finally, the resultant parameter sets are used for repeated simulations to compute 

the statistics of interest.  

It turns out that the semiparametric bootstrap performs well, even when the re-

estimation of the heterogeneity distribution is performed conditional on the number of support 

points. The empirical standard deviations across summary statistics computed from the 120 

draws/re-estimations are close to the “true” standard deviations reported in Table 1. The risk 

of obtaining outliers also seems to be reduced compared to the nonparametric bootstrap. 

Hence, the semiparametric bootstrap may provide a foundation for assessment of sampling 

variability. 
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5.3 Distribution functions for treatment and program effects 

We now turn to the issue of uncovering the distribution of individual treatment effects iTE . 

The NPMLE can obviously not provide a correct distribution of treatment effects since it 

gives a discrete representation (typically with around 8-12 support points) of the underlying 

continuous distribution. However, in order to check whether the underlying distributions are 

really identified in practice, we can again use the bootstrap; i.e., we can collect all the 120 

estimated bootstrap distributions generated from a single dataset into a single distribution, and 

compare it to the true one (DGP).  

- Figure 5 around here - 

 Figure 5 provides some illustrative results based on the two-dimensional factor 

loading model (the full-dimensional model produces similar results) and the nonparametric 

bootstrap. The upper panels plot the distribution functions of iTE  for all subjects (panel a) and 

for treated subjects (panel b) based on a single estimation on the original Dataset 1. The lower 

panels plot the distribution functions that arise when the results from all the 120 bootstrap 

trials based on Dataset 1 are merged into one single distribution. For comparison, all panels 

also plot the true distributions. Since we already know that average treatment effects were 

somewhat underestimated on Dataset 1, it is no surprise that the estimated distributions do not 

match the true distributions perfectly. A more interesting finding is that the estimated 

distributions seem to have a larger probability mass in the central area of the distribution than 

the true distribution. The estimated distributions are also smoother than the true distributions, 

i.e., they fail to pick up the small “humps” deliberately imposed in the DGP. 

6. Conclusion 

We have shown that if the true effects are heterogeneous, then an estimated homogeneous 

treatment effect may not be informative on outcome measures of interest. Unless the 
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distribution of treatment effects is independent of the unobserved treatment and final 

destination propensities, the estimated treatment effect will generally be a biased estimator for 

both the average treatment effect and for the average treatment effect on the treated.  

 We have also shown that it is possible to obtain a number of informative treatment 

effect statistics from observed data by estimating the distribution of treatment effects jointly 

with the distribution of other unobserved covariates. This can be done by means of a full-

dimensional nonparametric maximum likelihood estimator or by a factor loading model of 

reduced dimensionality. In our trials, the latter approach turns out to yield more robust results 

than the former. It is essential, however, that the factor loading dimensionality is sufficient to 

represent the relevant sorting processes with some flexibility. A factor loading model with 

only a single latent variable performs poorly.  

The nonparametric specification of the distribution of treatment effects and the other 

unobserved covariates also makes it possible to examine the sorting into treatment, both with 

respect to the final outcome of interest and with respect to the size of the treatment effect. We 

argue that it is important to uncover these sorting processes in order to assess and understand 

the overall impacts of a program. Characterizing the sorting process may also be of interest in 

its own right, and we show that correlation measures are reasonably well estimated.    

An important limitation to nonparametric modeling of unobserved treatment effects is 

that the resultant treatment effect statistics are subject to an unknown sampling distribution, 

making it difficult to perform statistical inference. This problem is amplified by the fact that 

the likelihood function subject to maximization is not globally concave, implying that there is 

a likelihood of ending up at a non-global local maximum. We argue that nonparametric or 

semiparametric bootstrap techniques can be successfully applied both to ensure that a given 

estimation result is not based on a non-global maximum and to provide some basis for 

statistical inference. It appears that most treatment effect statistics are approximately normally 
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distributed apart from outlier results due to selection of a non-global optimum. However, we 

have not been able to provide a recipe for statistical inference that is completely free from 

subjective judgment. 
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Appendix 

Invariance of factor loading model with respect to selection of loading factors 

We have written the W-vector α as a linear combination of 
ev  and pv : 

 1

1

1 ... 1

...

...

W
e e

W
p p

V v v

v v

α
 
 =  
  

. (13) 

An alternative would be to write α ,
ev  and pv as linear combinations of freely estimated 

parameter vectors 1φ  and 2φ . 

 1
1 1
1
2 2

' 1 ... 1

' ...

' ...

W
e e

W
p p

V

v V

v V

αα
φ φ
φ φ

     
     =     
         

 (14) 

(where apostrophes do not indicate transposes, just names). 

 Given V, 
ev  and pv as in (13) we may take 
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in (14); thus (13) is a special case of (14). 

 On the other hand, given (14) we may take ' , 'e e p pv v v v= = , let 

 

1   ...   1

'

'
e

p

A v

v

 
 =  
  

 

and solve ' VAα =  for V in (13) to see that (14) is a special case of (13), thus the formulations 

are equivalent. To see that we may actually find such a V, we note that AAt is invertible if A 
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has rank 3, thus ( ) 1
' t tV A AAα

−
= . That A has rank 3 is merely that 

ev  and pv are linearly 

independent (together with a constant term). In any case we do not get more from (14) than  

from (13). This argument easily generalizes to higher dimensions. 
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Figure 1. Cumulative distribution functions (CDF) for treatment effects and treatment effects 
among the treated in the baseline DGP 
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Figure 2. The distribution of estimation errors over the 120 trials. Two-dimensional linear 
factor loading model.  
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Figure 3. The distribution of estimation errors over the 120 trials. Full-dimensional NPMLE 
model.  
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Figure 4. ATE-estimates based on 10×120 bootstrap samples. 
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Figure 5.  Distribution of estimated treatment effects based on a single full-sample estimation 
(upper panels) and on 120 bootstrap estimations (lower panels). Dataset 1. Two-dimensional 
linear factor loading model.
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