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ABSTRACT

Exponent of Cross-sectional Dependence:
Estimation and Inference

An important issue in the analysis of cross-sectional dependence which has received
renewed interest in the past few years is the need for a better understanding of the extent
and nature of such cross dependencies. In this paper we focus on measures of cross-
sectional dependence and how such measures are related to the behaviour of the
aggregates defined as cross-sectional averages. We endeavour to determine the rate at
which the cross-sectional weighted average of a set of variables appropriately demeaned,
tends to zero. One parameterisation sets this to be O(N?*?), for 1/2 < a < 1. Given the fashion
in which it arises, we refer to as the exponent of cross-sectional dependence. We derive an
estimator of from the estimated variance of the cross-sectional average of the variables
under consideration. We propose bias corrected estimators, derive their asymptotic
properties and consider a number of extensions. We include a detailed Monte Carlo study
supporting the theoretical results. Finally, we undertake an empirical investigation of using
the S&P 500 data-set, and a large number of macroeconomic variables across and within
countries.
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1 Introduction

Over the past decade there has been a resurgence of interest in the analysis of cross-sectional depen-
dence applied to households, firms, markets, regional and national economies. Researchers in many
fields have turned to network theory, spatial and factor models to obtain a better understanding of the
extent and nature of such cross dependencies. There are many issues to be considered: how to test for
the presence of cross-sectional dependence, how to measure the degree of cross-sectional dependence,
how to model cross-sectional dependence, and how to carry out counterfactual exercises under alterna-
tive network formations or market inter-connections. Many of these topics are the subject of ongoing
research. In this paper we focus on measures of cross-sectional dependence and how such measures
are related to the behaviour of cross-sectional averages or aggregates.

Perhaps, the simplest and most concise way to motivate the need for determining the extent of
cross-sectional dependence is to view the matter from a simple statistical viewpoint. Let x;; denote
a double array of random variables indexed by ¢ = 1,2,..., N and t = 1,2, ..., T, over space and time,
respectively. Then, a variety of analyses focus on weighted averages of x;; over i. Examples include
the construction of portfolios, when z;; are asset returns, or aggregate macroeconomic variables, when
x4 are firm or consumer level data, such as firm sales, or individual consumption. Weighted averages
take the form z,,; = Zf\i 1 WNiTi¢, where the weights wy; are granular in the sense that wy; = O (%)
For simplicity, we set wy; = % and T.+ = ;. Then, it is of considerable interest to determine the
behaviour of Z; and, in particular, the rate at which z;, when appropriately standardised, tends to
zero. In the case of asset returns this determines the extent to which risk, associated with investing
in particular portfolios of assets, is diversifiable. In the case of firm sales this is of interest in relation
to the effect of idiosyncratic, firm level, shocks onto aggregate macroeconomic variables such as GDP.
In the case where x;; are cross-sectionally independent, using standard law of large numbers, one
obtains the result that z; = O, (N -1/ 2). However, in the more general and realistic case where x;
are cross-sectionally correlated we have!

1 N T
- 2 —1-2
Var (o) = 55 ) 00 33 2. D e =N"'ain + 7, (1)
i=1 i=1 j=1,i#]
where a?z = Var(ziy) and 04, = Cov(x;t, xj;), assuming, for simplicity, stationarity, over time, for ;.

The above result suggests two important conditions under which standard law of large numbers may
fail to apply to the cross-sectional averages. One relates to the absence of finite variances for individual
xiz,2 while the other to the rate at which the remainder term, 7y = ﬁ le\il Z;V:l’#j Oij.z, rows with
N. Determining the extent of cross-sectional dependence, relates directly to the second way, in which
standard law of large numbers may not be applicable, and lead to phenomena of considerable interest
as discussed above. It is, therefore, of interest to investigate the rate at which 7 declines with N.
We may parametrise this by letting 7y = O (N 20‘*2), with « measuring the degree of cross-sectional

=2
dependence. We note that Var (Z;) cannot decline at a rate lower than N~! since U”TN =0 (N *1).

. . . A ~ 1 N N
Consider now the estimator of 7, based on sample covariances, G;; ., namely 7x = = > i, ijl,iij Oijz-

2
It is easily seen that 7y = 62 + Op (N7!), where 62 = %thzl (:Et — %Zle izt) . Therefore, the

T

rate at which Var (#;) tends to zero with N, is governed by the rate at which 62 tends to zero. But

1(1) can be equivalently stated in terms of correlations, but since correlations are more complex to handle we choose
to carry out the analysis in terms of covariances.

2This way has been recently explored, in the case of firm sales data, by Gabaix (2011), who noted that the failure
of such data to have finite variances can lead to idiosyncratic firm shocks determining, to a considerable extent, GDP
growth volatility.



this rate can not be faster than N~! and hence the range of interest for o must lie in the range
—1<2x0—2<0,o0r 1/2 < a <1, This paper focusses on the problem of identification, estimation
and inference regarding «, which we refer to as the exponent of cross-sectional dependence, bearing
in mind that « is defined by 77 = O (N20‘*2).

However, it is important to note that different problems may require the determination of the
exponent of different summaries of the covariance matrix. For example, a summary focused upon by
Chudik, Pesaran, and Tosetti (2011) is the column sum norm of the covariance matrix. The exponent
of that is given by the parametrisation max; Zjvzl |0ije| = O (N®). It is clear that this exponent need
not be the same as the one relating to 7,y. Therefore, while the exponent of cross-sectional dependence
is of great interest for the phenomena outlined above, one needs to be clear about the motivation for
using this measure of cross-sectional dependence.

Also, other measures of cross-sectional dependence can be considered. An important example is
the measure based on the upper bound for Var (z;), which is N~ Apax (En), where Zy = F (x4x}),
xX¢ = (14, T2ty -, oN¢) and Amax (Bn) denotes the maximum eigenvalue of Ln. Apax (EZn) is an
object of considerable interest in the statistical literature on large data sets. However, work in the
area (see, e.g., Yin, Bai, and Krishnaiah (1988), Bai and Silverstein (1998), Hachem, Loubaton, and
Najim (2005a) and Hachem, Loubaton, and Najim (2005b)) suggests that as a statistical measure
of cross-sectional dependence Apax (X ) could be difficult to analyse especially for temporally and
cross-sectionally dependent data. This is partly due to the fact that estimates of A\pax (X n) based on
sample estimates of 3, could be very poor when N is large relative to T', which is the type of data
sets often encountered in macroeconomics and finance. Therefore, we do not pursue its analysis in
this paper, although we acknowledge the need for further investigations in this area, comparing the
performance of estimates of cross-sectional dependence based on o and on N1\ .« (Xn).

The above measures of cross-sectional dependence are related to the degree of pervasiveness of
factors in unobserved factor models often used in the literature to model cross-sectional dependence.?
Consider the following canonical factor model

Tit = a; + Bgft + U,

where f, is the m x 1 vector of unobserved factors (m being fixed), and 3; = (81, Bi2, -+, Bim)’ 18 the
associated vector of factor loadings, and Cov (uj, uj¢) = w;i;. The extent of cross-sectional dependence
in z; crucially depends on the nature of factor loadings. The degree of cross-sectional dependence will
be strong if 3, is bounded away from 0 and the average value of 3, is different from zero. In such a case
sup; N1 Zjvzl 0ijz] = O (1) and 7y = N2 32N | Z;V:L#j 0ije = O (1), for all i, which yields o = 1.
However, other configurations of factor loadings can also be entertained, that yield values of « in the
range (1/2,1]. Since both f; and 3, are unobserved, taking a strong stand on a particular value of «
might not be justified empirically. Accordingly, Chudik, Pesaran, and Tosetti (2011), Kapetanios and
Marcellino (2010) and Onatski (2011) have considered an extension of the above factor model which
allows for a wider spectrum of cross-sectional dependence behaviours by specifying that the factor
loadings 3, may be functions of N and decline in magnitude as N — oo allowing for the possibility
of factors having a weaker effect than is the case for standard factor models.* One such formulation
assumes that factor loadings decline with N, and 3; = O(N*™1), for any a < 1. This specification

/
has the same order for N~2 3N | Z;VZI BiB; = (Nfl PR ,BZ»> (N*1 Zjvzl ,Bj) = O(N?*72), so0 long

3Factor models have a long pedigree both as a conceptual device for summarising multivariate data sets as well as an
empirical framework with sound theoretical underpinnings both in finance and economics. Recent econometric research
on factor models include Bai and Ng (2002), Bai (2003), Stock and Watson (2002), and Pesaran (2006).

“While Chudik, Pesaran, and Tosetti (2011) and Kapetanios and Marcellino (2010) have considered the case where
1/2 < a < 1, Onatski (2011) has focused on the case where a < 1/2.



as N2 Zf\;l Z;V:Li# wjj is of smaller order of magnitude than 7. The latter condition is satisfied
under an approximate factor model, so long as 2(a — 1) > —1, or if a > 1/2.

Although mathematically convenient, the assumption that all factor loadings vary with N (almost
uniformly) is rather restrictive in many economic applications. Therefore, we will not consider it in
detail, but only briefly as an alternative formulation. In this paper we consider a baseline formulation
where we allow 3; to be fixed in N, but assume that only N of the IV factor loadings are individually
important, in the sense that they are bounded away from zero in absolute value.> More specifically,
we consider

Bik = vi for i = 1,2, ... [N], (2)
Bik = crpl 2 for i = [N%] + 1, [N +2, .., N,

for k = 1,2,...,m, where [N] is the integer part of N* 1/2 < «ap < 1, |px| < 1, ¢ is a finite
constant, and vy, ~ id(fy,, ng)’ with p,, # 0 and ng > 0. In effect, the factor loadings are
grouped into two categories, a strong category with effects that are bounded away from zero, and a
weak category with transitory effects that tend to zero exponentially. The focus of our analysis is on
a = maxy (o), which is the cross-sectional exponent as defined above. As we shall see, since we are
interested in the behaviour of cross-sectional averages, our proposed estimator of o will be invariant
to the ordering of the factor loadings within each group. Also the exponential decay assumed for the
second group of factor loadings can be relaxed and replaced by the absolute summability condition,
Zi]\i[ ~ak]11 |Bik| < 0o, which is again invariant to the ordering of the units with weak dependence on
factors. It is important to recognize that while this formulation is the one we focus on, alternative
formulations can give the same exponent. While some details of our inferential theory does depend on
the nature of the specific formulation adopted, it is clear that very similar inferential procedure with
similar asymptotic and small sample properties can be easily developed for alternative formulations.

In cases where the common factors are observed the strength of the factors as measured by a can
be estimated directly in terms of the number of statistically significant g; coefficients. Denoting the
number of such statistically significant estimates of the loadings associated with the i** factor by M;,
the estimates of o; can then be obtained as In(M;)/In(N). We shall consider such a ”direct” estimate
of a in our empirical application to Capital Asset Pricing Model.

Following the theoretical line of reasoning advanced above, in this paper we propose the use of the
variance of the cross-sectional average of the observed data, Ty, to estimate and carry out inference on
a. Focusing, for simplicity, on a single factor representation, we show that®

Var(z,) = % [N** 2] + N"ley + O(N*?),

where k2

= 0']% u2, JJ% is the variance of the factor process, p, is the mean of the factor loadings, and cy
is a bias term that is analysed in detail in the main body of the paper. Using this relationship, we can
provide a feasible estimator for o and derive inferential theory for it. The property of our proposed
estimator depends on the choice of k. For an arbitrary but bounded value of %, our estimator is
consistent but its rate of convergence at 1/In(NV) is rather slow. However, given the identified nature
of UJ% in factor models it seems more sensible to consider estimating « for a given value of 0]2@. In the
factor literature the factor loadings are typically identified by setting UJ% = 1, assuming that the factors
are strong, and the idiosyncratic components are weakly cross correlated. However, since the aim here
is to estimate v, it is more sensible to fix k2. The rationale behind this alternative normalization, and

its empirical implications will be discussed in detail. Further, we propose a second order bias corrected

5Note that « in our baseline formulation is not directly comparable to the o of the almost uniform loadings formulation.
SWe consider a general multi-factor representation, in detail, in Section 3.2.



estimator that addresses the term cp, and derive the asymptotic distribution of both estimators for a
given value of k2. We consider extensions that relate to the presence of multiple factors, potentially
with multiple distinct exponents of cross-sectional dependence, temporal dependence in f; or u;, and
weak cross-sectional dependence in u;;. It is worth noting that our baseline estimator is equivalent to
one obtained by setting up a regression framework whereby the logarithm of the partial sum process
of estimated factor loadings is regressed upon the logarithm of the cross-sectional dimension of the
partial sum.

To illustrate the properties of the proposed estimators of « and their asymptotic distributions,
we carry out a detailed Monte Carlo study that considers a battery of robustness checks. Finally, we
provide a number of empirical applications investigating the degree of inter-linkages in real and financial
variables in the global economy, the extent to which macroeconomic variables are interconnected across
and within countries, with special reference to the US and UK economies in the second case, and
present recursive estimates of a applied to excess returns on securities included in the Standard &
Poor 500 index. In these applications to ensure that our estimates of « are invariant to the scales of
measurement of the observations, x;;, we base our analysis on the standardized variates, (z; — Z;)/$;,
where Z; and s; are sample mean and standard deviation of x;, respectively, over the sample under
consideration.

The rest of the paper is organised as follows: Section 2 provides a formal characterisation of « in
the context of a single factor model, and discusses potential estimation strategies. This section also
presents the rudiments of the analysis of the variance of the cross-sectional average and motivates the
baseline estimator and bias corrected versions of it. Sections 3-3.3 present the theoretical results of
the paper. Section 3 provides the full inferential theory and discusses feasible estimation, including
estimators for the variance of the estimator of cross-sectional dependence. Section 3.2 presents an
extension of the theoretical analysis to a multi-factor setting and briefly touches upon an alternative
specification of factor loadings. Section 3.3 considers the normalization afc,u% = k2, and Section 4
discusses the conditions under which estimation of a and k2 can be carried out jointly. Section 5
presents a detailed Monte Carlo study. The empirical applications are discussed in Section 6. Finally,
Section 7 concludes. Proofs of all theoretical results are relegated to the Appendix.

2 Preliminaries and Motivations

As noted in the Introduction, to characterize the degree of cross-sectional dependence in x;; we use a
possibly weak factor model. We begin with the following single factor specification

Tit =a; + Bift +ug fori=1,2,... N; t=1,2,...,T, (3)

where f; is an unobserved factor, 3; are the associated factor loadings and a; are bounded constants
such that sup; |a;| < K < co. We make the following assumptions.

Assumption 1 The factor loadings are given by

Bi =wv; fori=1,2,...,[N°], (4)
Bi = cp WL for i = [N®] +1,[N®] +2,..., N,

where 1/2 < a < 1, [N?] is the integer part of N¢, |p| < 1, and {’Uz}gi] is an identically, independently
distributed (IID) sequence of random variables with mean p, # 0, and variance o> < 00.



Assumption 2 The factor, fi, follows a linear stationary process given by
o
fo=) _tpivea—j (5)
j=0

where vy is an IID sequence of random variables with mean zero and finite variance and uniformly
finite p-th moments for some ¢ > 4. We assume that

> i gl < o0,
§=0
such that {C(¢—2)}/{2(¢—1)} > 1/2. f; is distributed independently of the idiosyncratic errors, u;y,
and the factor loadings, B3;, for all i, t and t'.

Assumption 3 For each i, uy follows a linear stationary process given by
o o
we— 0 ( 3 gjsuj,m) | ©)
j=0 §=—00

where vy, i = ...,—1,0,..., t =0, ..., is a double sequence of IID random variables with mean zero and
uniformly finite variances, a,i, and uniformly finite @-th moments for some ¢ > 4. We assume that

[o.¢]
sup > j [1hij| < o0, (7)
K3 ]:O
and -
sup Y [s|° [&is| < 00 (8)
v s=—00

such that {{(¢ —2)}/{2(¢ — 1)} > 1/2.

It is worth briefly commenting on these assumptions. Assumption 1 has been motivated in Section
1, and implies that N~! ZfV: 1 ,BZ-Q =0, (N 0‘_1), which is more general than the standard assumption in
the factor literature that requires N ! Ef\; 1 /32 to have a strictly positive limit (see, e.g., Assumption
B of Bai and Ng (2002)). It is easy to see that the standard assumption is satisfied only if a =
1. Assumptions 2 and 3 are mostly straightforward specifications of the factor and error processes
assuming a linear structure with sufficient restrictions to enable the use of central limit theorems. The
only noteworthy part of these assumptions relates to the cross-sectional dependence of the error terms.
Here, cross-sectional dependence is structured in a flexible linear way so as to mirror, to the extent
possible, the conditions assumed for stationary (weak) time series dependence. From Assumption 3 it
follows that E(u%) = 0? =02 (300 &2) (X0, v2) < oo.

A generalization of the factor model and the related Assumptions, 1 and 2, will be considered in
Section 3.2. In the rest of this Section, we motivate our proposed estimator for a.

We write (3) as

xi=a+ 0 fi +w,

where Xt = (xltp Loty oeey :ENt),a a= ((11, az, ..., aN)lv /6: (/Bla BQ? ceey BN)/ and Uy = (Ult, Uty +vy uNt),‘ We
also note that under the above assumptions, X3 = E(83') — E(8)E(3'), with Apax(25) < K < oc;



3, = E(wuy), with Apax(By) < K < o0, E(f;) =0, E(ff) = 07 > 0, and f; and B are distributed
independently. Hence
x¢ — E(xt) = Bfe +uy,

Cov(xt) = E [(Bf: + w) (Bf: + w)']
= E(BB)E(f?) + E (uu})
=[5+ E(B)E(B)] 0} + S

Consider now the cross-sectional averages of the observables defined by z; = 7/yx;/N, where Ty
is an N x 1 vector of ones. Therefore

TGVE@] g )

Var(z;) = N7 27yCov(x;) Ty = N2y [0]%25 + 3] TN+O']2c [ ~

But under (4), it follows that

N [N9] c _ (N=[N?])
3= 01 (g o gy (0 )| = o
=1 =1

where vy = ﬁ ng} v; is Oy (1) and for simplicity, we set v; = 0, for ¢ > [N®]. Note that the
specification of f; for ¢ > [N®] need not be of the form given in (4). Any sequence of loadings, for
which Zé\i[z\/a]ﬂ Bi = Op (1) is acceptable. Hence

N'TNE(B) = py [N*'] +O(NT).

Also
N2 B n=N"TIny S0 Tiv < [N7%] Amnax (Z5)

where 71y is an [N] x 1 vector of ones and ¥4 is the upper [N] x [N]sub-matrix of ¥5. Using
the above results in (9) we now have

Var(e) < (V2] o2 (2) + N ey + 2 [N2072]

where
TN TN

N
But, by assumption Apmax (33) < K < 0o, and hence under 1 > o > 1/2 we have

=cny < K < o0. (10)

Var(z) = k* [N**7?] + N ley + O(N®72). (11)

Depending on how JJ% is normalized, different estimators of o can be envisaged. Since, by assumption,
iy # 0, a natural normalization would be O'J% = 1/u? or k? = 1. Then, a simple manipulation of (11)

yields
N—l
2(a — 1) In(N) = In(02) + In (1 - 20N>
Oz
N—l
~In(o?) - =,
Oz
or
11n(02) CN

(12)



Note that the third term on the RHS of (12) is of smaller order of magnitude than the other two
terms. In cases where av < 1/2, the second term in the RHS of (11), that arises from the contribution
of the idiosyncratic components, will be at least as important as the contribution of a weak factor,
and, in consequence, « cannot be identified. However, for values of « > 1/2, o can be identified from
(12) using a consistent estimator of Var(z;) = o2, given by

KN

T
. 1 2
R D (13)
t=1
where 7 = T~! Zle Z¢. A simple consistent estimator of « is given by
11n(62)
2 In(N)

a=1 . (14)
Further, in the case of exact factor models where 3, is a diagonal matrix, the third term in (12) can
be estimated by

N —
A _1ZA2__2
CN—N j_O-N’
Jj=1

where JJQ. is the j*" diagonal term of ¥, and 6]2- is its estimator. This suggests the following modified

estimator of o

1@ o
2m(N)  2[NIn(N)62’

Note that while ¢y, as an estimator for ¢y, is motivated by appealing to an exact factor model, it is

a=1

(15)

also valid for mild deviations from this model as discussed in the next Section. The above estimators
of a form the basis of the formal analysis that is carried out in Section 3.

3 Theoretical Derivations

In this section we provide a formal analysis of our proposed estimators.

3.1 Main Results

Our first set of theoretical results characterise the asymptotic behaviour of &. Introducing the ad-

2
ditional notations, 73, = N~! sz\il o2, s?c = %Z?zl (ft— %Z?zl ft) . iy = E(ft), and UJ% =
E(fi — puy)?, we have:

Theorem 1 Let Assumptions 1-8 hold, m =1 and o > 1/2. Then,

=2
min(Ne", T) (2 In(N) (& — ™) — NQQJiV_]QVS?) —a N (0,w)
where In (+2)
n (K
* — o — 1
L min(N*,T) . min(N*,T)4o;
W= [ T P N 2] (17
VJTQ =Var <ft2> + ZZCOU (ff, ft{l) ,
i=1

and fi = (fi — ug)/oy.



This theorem shows that &, as an estimator of «, is subject to two sources of bias. The first relates
to the term In (/@2) /In(N) in «*, which arises due to the way identification of the factor loadings
depends on scaling of the factors as defined by 0]20. For example, this term vanishes if O']% is normalised
to 1/pu2 (assuming g, is non-zero). Under this normalization x = 1, and a* = a. We will discuss
the implications of this restriction, and potential ways to circumvent it under certain conditions, in
Section 3.3.7 Clearly, x? is an important determinant of cross-sectional dependence in small samples,
and while its value is irrelevant for the probability limit of &, as shown in Theorem 1, one may wish
to focus on o as a parameter of interest in small samples. The following corollary provides the
asymptotic properties of & when k2 = 1.

Corollary 1 Suppose Assumptions 1 to 3 hold, m = 1 and o > 1/2. Under the normalisation
restriction k> = 1,

min(Ne, T) <2 In(N) (& — a) — N2af1N22> —a N (0,w).

’UNSf

=2
. . ag . .
The second source of bias is the term Lm—f-— which is unobserved. A first order accurate
NSy

=2
estimator of this term is given by % where

SR B
N N Uit

=1

Uit = Ty — 0Ty, Ty =

This suggests the following bias corrected estimator

o}
5= & — . 18
T om(N)Na2 (18)

The following theorem presents the asymptotic properties of .
Theorem 2 Let Assumptions 1-3 hold, m =1 and « > 1/2. Then, as long as either N4a/ > — 0 or
a>4/7,
vmin(N*" T)2In(N) (& — a*) =4 N (0,w),
where o and w are defined in (16) and (17), respectively.

As noted above this estimator is only first order accurate since Theorem 2 only holds under the spec-
ified assumptions concerning « and the assumed relative rate of growth of N and 7T'. Fortunately, a sec-

y -
ond order bias correction is available. This amounts to estimating f=z—1- by (v ) N&? <1 + 15 2)

Accordingly, we define a second bias corrected estimator

Y= a o 1+ UJQV (19)
A=0— ——>
2In(N)N62 N&2

and give its asymptotic distribution in the following theorem.

"Note that as shown in (51) the rate of convergence of & to a without this restriction is a somewhat slow In(N).



Theorem 3 Suppose Assumptions 1 to 3 hold, m =1 and o > 1/2. Then,

vmin(N®" T)2In(N) (& — o) =4 N (0,w),
where a* and w are defined in (16) and (17), respectively.

We consider &, even though & provides a more comprehensive bias correction because small sample
evidence suggests that & may outperform ¢ for values of « in the middle of the admissible range (1/2, 1].
Obviously, equivalent Corollaries to Corollary 1 hold for & and ¢&. The final result of this subsection
relates to providing a consistent estimator for w. Let 9; denote the OLS estimator of the regression

o N ~
coefficient of x;; on Z;. Let {(51-(5) } ) and { 5(*) } ) denote the sequences of §; and ?;, sorted according
1= 1=

to their absolute values in a descending order, and define the following estimators of o2 /2

N 2
IR ETS o OB NG
%) — EANREY for any finite value of 20
— = e 1 , for any finite value of &, (20)

and
w1 YWY
o E(w-wE
< ) = NE 1 , when £ = 1. (21)
:uv -

Theorem 4 Suppose Assumptions 1 to 8 hold and m = 1. Let

. min(N%T).  4min(N¢,T) </\>
w= oy S )
12

T f? Né&
where & = &, &, ¢, and <Z—§> is given by (20) or (21) depending on the value of k,

B (S B E (i) (] e

t=1 T,z j+1 t=1 t=1
L z=T"1 ZtT:1 Ty, and | — oo. Then,

W —w = 0p(1).
where w is defined in (17), so long asl — oo, I =0(T) andl = o0 (N“_1/2T1/2).

3.2 Extensions
Consider now the following multiple factor extension of our basic setup:
m
Tit = ,B{Lft + Uit = Zﬁljfjt + Uit 1= 1a27 "'aN;
j=1

where f, = (fit, fat, -, fmt)" is an m x 1 vector of factors and 3; is the associated vector of factor load-
ings (m is fixed). We make the following assumptions that generalise straightforwardly Assumptions
1 and 2.

10



Assumption 4 We assume that loadings are given by

Bij = vij fori=1,2,...,[NY], (23)
N(X
By =iy T fori = [N+ 1 [N] +2, ... N,
where 1/2 < a; <1, |pj| < 1, and {Uij}?flj is an 11D sequence of random variables with mean ji,; # 0,
and variance 012,], < oo, forall j=1,2,...,m.

Assumption 5 The m x 1 vector of factors, f,, follows a linear stationary process given by

o
Fo= svrei, (24)
§=0
where vyt is a sequence of IID random variables with mean zero and a finite variance matriz, 3,,,
and uniformly finite o-th moments for some ¢ > 4. The matriz coefficients, ¥ ;, satisfy the absolute

summability condition

o0

>3 gl < o,

=0
such that {{(¢—2)}/{2(¢—1)} > 1/2. f, is distributed independently of the idiosyncratic errors, w;y,
for alli, t and t'.

Without loss of generality we assume that o = o1 > «, 7 = 2, ..., m and that factors are orthogonal.
We have

N N; (N=N;)
BjN =N! Zﬁji = % <ZZ]:\%U‘”> + cj]gj ! _1pi o : = No‘f_lﬁj + N_lej (25)
i=1
and
Var(Bjn) = N72T/25j‘7' = O(N% ).
Note that
Ty — E(&1) = Bin fit + Ban for + B frnt + e,
and

Var(z,) = E (Bin fue + Ban for + - BN frmt + at)2

m
:ZE<B%N f+E u3) Z (Bin)] f—i—ZVar Bin)o f+E(a$).
=1 j=1 j=1
Let By = (Bins - Bmn)  and By = (G1n, v, Tn)’. Then,
By =N*"'Dyoy + N 'K, (26)

where D y is an mxm diagonal matrix with diagonal elements given by N~ and K, = (K, ..., K,,,)".
It is important to stress that (23) can be generalised. In particular, the results below hold so long as
Zi]iNjH Bji < 00, in which case, K, = K; = Zf\;NjH Bji. Further, let

— —-1/2 & 1/2
dr = oS Fr — 1,35 Py (27)

where Sy = Syglsizf) = # 0oy (fo = Fr) (Fe = Fr)s pp = Sygloiig) = B [(F = ng) (£ - 1),

Oif = Oisf p’f = E(ft)7 fT = %E?zl fta and Ky = (Mlva -"a:umv)/ = E(vl) Then we have the fol-
lowing theorem which distinguishes between a number of different cases depending on the relative
values of the different exponents, o, for j = 1,2,..,m

11



Theorem 5 Suppose Assumptions 4 to 5 hold, « = oy = ag = ... = ayy, and o > 1/2. Then,

—2
g
in(No",T) ( 2In(N) (& — o*) — -
min( ) )( n(N) (& — a”) N2o=1g) DNSspDNUN

> —a4 N (0, wp,) (28)

where

wm = lim min (N T)Var(d%),
N, T—oc0

dr is defined by (27),

2_\ym 2 2
and k* =", i O f-
T1/2

Continue to assuming that « = a; = ag = ... = auy, and suppose that either oo > 4/7 or ~via—z — 0,
then
Vmin(Ne*, T)2In(N) (& — ™) =4 N (0,wp,) , (29)
and

Vmin(Ne*, T)2In(N) (& — ™) =4 N (0,wy,) . (30)
Further, if either
ap=a>ap+1/4, (31)
or if
1
3af/4, T°=N, b> —— 32
062 < CV/ ) ) > 4(a_a2)7 ( )
and ag > g > ... > auy, (28), (29) and (30) hold with w replacing wy,, where w is defined in (17) and
a* is now defined by (16).
Finally, if o > ag > as... > ap, but neither (29) nor (30) hold, then (28), (29) and (30) hold with
w replacing wy,, and
)
2In (N) '

a*

ay =a+

Up to now we have analysed estimators of the exponent of cross-sectional dependence assuming that
factor loadings take the form given in Assumption 1. We briefly examine an alternative formulation
for the loadings. As we noted in the Introduction this alternative specification is mathematically
convenient, yet economically restrictive. More specifically consider the following formulation of the
factor loadings:

Assumption 6 Suppose that the factor loadings are given by
Bir = N oy, 1/2<a<1 (33)
where {Uik}i]i1 is an i.i.d. sequence of random variables with mean fu, # 0, and variance Jgk < 00.
It is easy to see that even in the case of this alternative specification of the loadings we have

1 N N )

_ -0 «
- 7]\722 : E : T )
TN Oij,x (N )

i=1j=1i#j

and the following Corollary follows easily from the proofs of Theorems 1-3, and Lemma 6.
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Corollary 2 Let Assumptions 6 and 2-3 hold, m =1 and a > 1/2. Let &, & and & be defined as in
(14), (18) and (19) respectively. Then,

As long as either a« > 5/8 or % — 0,

min(N,T)2In(N) (& — a*) =4 N (0,w)

and

vmin(N,T)2In(N) (& — a*) =4 N (0,w).

Remark 1 [t is of interest to consider circumstances where Assumption 6 fails but the above result
still holds. In particular, let
Bi =Nty 1/2<a<1 (34)

where v; = vy; = U; + ey and {172-}1.]\;1 is an i.i.d. sequence of random variables with mean , # 0,
and variance o2 < co. Lemma 14 provides general conditions for this Assumption, under which, our
theoretical results hold. In this remark we explore a leading case of departure from Assumption 6 that
is covered by Lemma 14. Without loss of generality, we order units, such that cy; = N'"%n; for
i=1,2,...,M where {m}fil is an i.i.d. sequence of random variables with mean p, # 0, and variance
0,27 < 0o. This implies that M wunits have loadings that are bounded away from zero. Then, using
Lemma 14, it is easy to see that the theorems relating to the asymptotic distribution of the estimators
continue to hold as long as M = o (No‘_l/2).

3.3 Is the normalization restriction x* = 1 justified?

Since the cross-sectional exponent, «, is identified in terms of the factor loadings, and factor loadings
are in turn identified only up to a non-singular rotation matrix, it is clear that some restriction on
K2 = u%a? is needed before a sufficiently accurate estimator of a can be obtained. Although, as we
shall see below, it might be possible to jointly estimate o and x under our preferred formulation of
the factor loadings, this is not the case in general. For example, joint estimation of x and « does not
seem possible if the factor loadings are generated according to (33). It is, therefore, interesting to
investigate the extent to which the imposition of the restriction x2 = 1 restrict the data generating
process of xj;. A useful way to do this is to consider the extent to which setting x> = 1 imposes
restrictions on the second moment structure of z;. The restriction k2 = 1 has no implications for the
second moments of the individual series, x; = (x;1, 22, ..., z;7)’, and can only affect the cross-sectional
average of the second moments. We have investigated these effects in a not-for-publication appendix
that is available upon request, and conclude that they are reasonably modest.
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4 Joint estimation of o and «

In this section we show that it is in fact possible to jointly estimate o and k, if the factor loadings
follow the set up given under Assumption 1. To see this, without loss of generality, suppose that 3; are
ordered such that |31 > |52] > ... !6[1\;&]‘, with 3; =0 fori = [N*]+1,...,N. Let B, = (b1, B2, ---n)’,
B = %Z?:l B;, and note that

E(Bn) =n~'7! E(B,) = i, if n < [N?]
=n" [Ny, if n > [N,
Similarly, let ¥3,, = Cov(3,,) for n < [N?] and bear in mind that
ST < g (ve)x[ve] 0 >
’ 0 O(v—[Nvep)x (N =[ve)
and note that

Var(ﬂ_n) = n_2T;Cov(ﬂn)T; < n_l)\maX(Eﬂm) = O(n_l), if n < [N¢

_ N“ NeTy . o
=n"2r Cov(B,)T!, < [ng]/\max(zﬁ,[fvﬂ]x[iva}) =0 <[n2]) i n > [N9].

Now let Z,,; be the cross-sectional average of x;; over i = 1,2, ...,n < N, where without loss of generality
we assume that x;; is ordered by |5;|. Then, using the above results

Var(zn) = ajgc,u?)—l—n_lcn +0(n™), if n < [N9],

Na
=n"? [N?*] U]%u%an_lcn—kO <[n2]> , ifn > [N,

where ¢, = n~ 17/ 3, 7, E(uyul,), with u, = (u1,u2,...,u,)’. This result can be written more
compactly as
Var(Zn) —n tep = I([NY] — n)r? + I([N*] = n)O(n™1)

+ 1 —I([NY] —n)] [n2 [N?*] k* + O (UZ:])} ,

where I(A) is an indicator function that takes the value of 1 if A > 0 and zero otherwise. After some
simplifications we have

Var(in) = n” en = {n ™ [N*] + I(N"] = n) [1 = 072 [N**] ] } w?+
1= o -0 (X1 4o (B51)

It is easily seen that for n = N, we obtain our earlier result (note that N < N since o < 1), namely
Var(zne) — N ley = k2 [N**72] + O ([N*7?]) .

But other values of n that are sufficiently large can also be used to provide information on s and .

First we need a consistent estimator of Var(Z,;) — n~'c,, when n is sufficiently large. To this end,

consider the OLS estimator of the slope coefficient in the regression of z;; — Z; on Zny — T, given by
N

;= ZtT:1 (it — 3;) (TN — ) / Zthl (TNt — f)z, where Z = N-13" ;. Order the observations, w;,
i=1

as Z(;);, so that z(q), is associated with oW, T(2); is associated with @, and so on, where 91, 52 ..
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are the values of 01,72, ...,05 ordered in a descending manner. Consider the following estimator of
Var(ZTn),

T oo N2
2 thl(xnt - an)
65, = T ,
where Zp,; = n~ 130 Ty, and T = -1 Zt | Tyt Similarly, estimate ¢, by &, = n™! Z; 1 0(2])

where &(2].) is the estimator of O'(Qj), the standard error of the idiosyncratic component of z(;y for
t=1,2,...,7. Thus

where '&(j)t = T(j)t — i’(]) — @j(s) («th - jNT)-

Based on f}%w we obtain the following estimating equation

62 —nle, ={n"? [N?] + I([N*] —n) [1 —n 2 [N*]]} k*+
I([N%] — n) [O(nl) Yo, (@;]ﬂ +0 CZQ]) + &n,

where &, is the estimation error. It is clear that only the estimates that are based on n > [N®] are

informative for .. This is because for values of n < [N®] we have 62 —n~'¢, = k? + O(n™ 1) + &,.

The above results suggest that joint estimation of o and k can be based on the minimization of
the following quadratic form in terms of « and k:

Qo) = Y (@2, —nte =)+ Y (6, —nt -0 VRRP ()

n<[Ne] n>[Ne]

The first order condition for x2 is

n<[Ne] n>[Ne]
which yields

_ ZnS[Na] (&2 —n ) + [NM] ZTZL[N&] n=? (&%n - n_lén)
[ ] + [ ] Zn>[Na] n—4

n<[Ne] n>[Ne|

The above expressions can be simplified. Let

[Ne] [Ne]
Q=Y (62 —nte)’ a=Y (62, —n e
n=1 n=1
N N
Q= Y (62 -n'e) = > n?(sZ —nle)
n=[N<]+1 n=[N<]+1
N
N(a) =[N+ [N*] Z n4
n=[No]+1
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which yields
_ o+ [N*] g

2
Kk (a) - N(a) (36)
Then,
N
Q(a) = Qi+ Qo+ A ) [N + [N*] &%) D n'—2"(a)q — 27%(a) [N**] g2
n=[No]+1
= Q1+ Q2+ A (@)N(a) — 28%(a) [ + [N*] ¢o]
— Qi Qo |[BF N a2 2N( ) =2 [+ [N**] 2] ot (Ve
=K1 2 N(a) «Q q1 q2 N(a)
2
_ (a1 + [V*?] @o]
= Q1+ Q2 N(a) .
N ~9 1~ \2 . [QI+[N2a]q2] 2
Further, note that Q1+ Q2= >, (Ufn -n cn) which does not depend on «. Then, ey
can be maximised straightforwardly by grid search, which gives an estimator of a (denoted by ¢&).

k? can then be estimated using (36). The consistency of ¢ is established in Appendix IV, although

we have not been able to establish the rate at which this estimator is consistent. But judging by the
results obtained in the structural break literature we conjecture that the rate at which ¢& converges to
a is In(N), and to obtain a better convergence rate some a priori restriction on x might be needed.

5 Monte Carlo Study

We investigate the small sample properties of the proposed estimators of «, through a detailed Monte
Carlo simulation study. We consider the following two factor model

it = Brifit + Boifor + wit, (37)

fori=1,2,...,N,and t = 1,2,...,7T. The factors are generated as
fjt = pjfj,t—l + 1- p?gjta j = 1727 for ¢ = _49) _48) "'70) ]-7 °")T7

with fj _50 = 0, for j = 1,2. The shocks are generated as

Uit = qﬁiuiﬂg_l + \/ 1-— ¢?€’it7 for i = 1, 2, ...,N and t= —49, —48, ...,O, 1, ...,T, with Ui, —50 = 0,
¢t ~ IIDN(0,1), &4 ~ IIDN(0,07), where o7 ~ IID X% i=1,2,...,N.

Therefore, by construction 0]207_ =1, for j = 1,2. In the first instance we set the loadings of the second

factor equal to zero, Bs; = 0, and focus on the properties of 81;. We consider the following generating
mechanism:

,Bh' = V14, for i = 1,2, ,M(N)
Bu=p M fori=M+1,M+2,...,N

where vi; ~ IIDU (py, — 0.5, ptyy, +0.5), M = [N%] and p; = 0.5. The above parametrization ensures
that Nzl(szq = 1, as discussed in the development of the theory. Initially, where m = 1, we consider
the following experiments.
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Experiment A A basic design, where the factor, fi;, is serially uncorrelated and the errors, wu;,
are serially uncorrelated and cross-sectionally independent, namely when

P1 :0, (251 :0, 1= 1,2,...,N
and ;4 ~ IIDN(0,07), for all i and t.

Experiment B This design is as in Experiment A, but allows for temporal dependence in the
factor, so that
P1 = 0.5, Qﬁz = 0, 1= 1,2, ...,N
and g ~ IIDN((),JZ?),for all ¢ and t¢.

Experiment C This design is as in Experiment A, where we continue to set p; = 0, but al-
low the idiosyncratic errors, u;;, to be cross-sectionally dependent according to a first order spatial
autoregressive model. Let us = (uyy, uat, ..., unt) , and set u; as

ut:Q5t7 Et = Ot ThNI[DN(O,IN),

where Q = (Iy — 6S)™!, and

0 1 0 0
1/2 0 1/2 0

S = : o ]
0 0 0 1/2
0 0 ... 1 0

We set § = 0.2, and set 02 = N/Tr(QQ’) which ensures that N~! Zfil var(ui) = 1.

Experiment D Next, we take into account the second factor as well and generate its loadings
as

BZi = V25, for i = ].,2, ...,MQ (N)
Boi = pi M2, for i =My +1,My +1,..., N,

where vy; ~ ITDU (ftyy, — 0.5, i, + 0.5), My = N and p; = 0.5. We examine the case where ay = a
and set oy, = 0y, = 1 and iy, = jty, = V0.5. The rest of the parameters are se as in Experiment A,
namely

ar=a, pj=0, ¢; =0, fori =1,2,...,.N, j=1,2
and u; ~ ITDN(0,1), for all i and ¢.

For all experiments we consider values of o = 0.70,0.75, ...,0.90,0.95,1.00, N = 100, 200, 500, 1000
and T = 100, 200, 500. All experiments are based on 2000 replications. For each replication, the values
of o, pj, p1, ¢; and S are given as set out above. These parameters are fixed across all replications.
The values of vj;, j = 1,2 are drawn randomly (N of them) for each replication.

In the case where the leading factor (fi¢) is serially uncorrelated, the statistic for making inference
about o (when k = 1) is given by (see theorems 1, 3 and 4 )

—\ —1/2
1~ 4 o2 .
fvﬁ—{_ﬁ,@ 2In(N) (& — a) —q N(0,1),
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—

for & = & or . Note that when the leading factor is serially uncorrelated then Af—Q = E(f{)/ J;%I -1,
1

—

where E(f{)/ a? is consistently estimated by

S T ~  ~\4
B(ff)jot, = 2= T

where &; = <N‘1 SN sz‘t) /6z. Also 02/u2 | the estimator of o2/u2, is given by

. . 2
N& [ N&
> (59 ~ L 26@)
=1

ol
o _ =

uE o Né —1

, with & = & or &,

where {SZ(S)} denotes the sequence of 8; sorted according to their absolute values in a descending

order, and 51 is the OLS estimator of the regression coefficient of z;; on Z; = (z; — z)/6z. Also see
Theorem 4 and the discussions that proceed it. The above expressions apply irrespective of whether
the model contains one or two factors.

Size of the tests is computed under Hy : a = «, using a two-sided test where o takes values in the
range [0.70,1.00], as indicated above. Power is computed under the alternatives H, : o = a9 + 0.05
(power+), and H, : ag = a9 — 0.05 (power-). All results are scaled by 100.

Finally, when p; # 0, the case of serially correlated factors, we use a corrected variance estimator
of f;. The relevant formula for the test statistic is given by

—~-1/2
= [Vf(q)} + 4012’] 2In(N) (& — a) —4 N(0,1) (38)
AME N g2 L,

~

for &« = & or a. ij(q) is computed by first estimating an AR(q) process for Z; = z; — z, where
2= (B —8)?, & = (% SN xit> [6z, & =T 'S & and 2 = T7' 3.1 | 2 ,and then V() =
62/(1 = A1 — A2 — ... — 7,)?, where &, is the regression standard error and 7; is the it" estimated AR
coefficient fitted to Z;. The lag order is set to g = T3, and ag//u\% is computed as before. Note that
this correction is not the standard Newey-West one but based on AR approximations. We found that

this correction has better finite samples properties and hence we use this in both the Monte Carlo
study and the empirical applications of Section 6.

5.1 Results

The results for experiment A are summarized in Table A1l giving the bias, Root Mean Square Error
(RMSE), size and power when & is used as the estimator of a. Table A2 presents the same set
of summary statistics for experiment A when the further bias-corrected estimator, ¢, is considered.
We only report results for values of a over the range [0.70,1.0]. Recall that « is identified only if
a > 1/2, and for asymptotically valid inference on « it is further required that o > 4/7, unless
T/2/N#e=2) 0 as N and T — oo. (See Theorem 2).

Both estimators perform reasonably well with & having a slightly smaller bias for values of « in
the range [0.70 — 0.85], but overall there is little to choose between the two estimators, and therefore
in what follows we focus on & as the estimator of o. As predicted by the theory, the bias and RMSE
of & decline with both N and T, and tend to be smaller for larger values of a. A similar pattern can
also be seen in size and power of the tests based on &. There is evidence of some size distortion when
a is below 0.75, but it tends towards the nominal 5% level as « is increased. The size distortion is also
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reduced as N and T are increased. The power of the test also rises in a, N and T, and approaches
unity quite rapidly. However, the power function seems to be asymmetric with the power tending to be
higher for alternatives below the null (denoted by Power-) as compared to the alternatives above the
null (denoted by Power+). This asymmetry is particularly marked for low values of o and disappears
as « is increased.

The results for Experiment B where the factor is allowed to be serially correlated are summarized
in Table B. As compared to the baseline case, we see some deterioration in the results, particularly
for relatively small values of N and T. The RMSEs are slightly higher, the size distortions slightly
larger, and the power slightly lower. But these differences tend to vanish as N and T are increased.

The effects of allowing for weak cross-sectional dependence in the idiosyncratic errors, wu;, on
estimation of o are summarized in Table C for Experiment C. Considering the moderate nature of the
spatial dependence introduced into the errors (with the spatial parameter, 6, set to 0.2), the results
are not that different from the ones reported in Table A2, for the baseline experiments. However, one
would expect greater distortions as 6 is increased, although the effects of introducing weak dependence
in the idiosyncratic errors are likely to be less pronounced if higher values of a are considered. For
values of « near the borderline value of 1/2, it will become particularly difficult to distinguish between
factor and spatial dependent structures.

Finally, the results of Experiment D where one additional factor is included in the baseline case
are summarized in Table D. As can be seen, the results are hardly affected by the addition of the new
factor to the data generating process. Consistent with the one-factor case of Experiment A, both the
bias and RMSE of & fall gradually as N and « are increased, while tests of the null hypothesis based
on &, are correctly sized for o« > 0.7 in this case as well. Similar observations can also be made with
respect to the power.

The above Monte Carlo experiments, although limited in scope, clearly illustrate the potential
utility of the estimation and inferential procedure proposed in the paper for the analysis of cross-
sectional dependence. The results are broadly in agreement with the theory and are reasonably robust
to departures from the basic model. Although, the results tend to deteriorate somewhat when we
consider serially correlated factors or weak cross-sectional dependence in the idiosyncratic errors, the
estimated values of a tend to retain a high degree of accuracy even for moderate sample sizes. It is
also worth bearing in mind that in most empirical applications the interest will be on estimates of «
that are close to unity, as it is for these values that a factor structure makes sense as compared to
spatial or other network models of cross-sectional dependence. It is, therefore, helpful that the quality
of the small sample results tend to improve when values of « close to unity are considered.

6 Empirical Applications

In this section we provide estimates of the exponent of cross-sectional dependence, «, for a number
of panel data sets used extensively in economics and finance. Specifically, we consider three types
of data sets: quarterly cross-country data used in global modelling, large quarterly data sets used in
empirical factor model literature, and monthly stock returns on the constituents of Standard and Poor
500 index.

6.1 Cross-country dependence of macro-variables

Table 1 presents estimates of o for real output growth, inflation, rate of change of real equity prices,
and interest rates (short and long) computed over 33 countries (when available). The data is from
Cesa-Bianchi, Pesaran, Rebucci, and Xu (2012), and covers the period 1979Q2-2009Q4, which updates
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the earlier GVAR (global vector autoregressive) data sets used in Pesaran, Schuermann, and Weiner
(2004), and Dees, di Mauro, Pesaran, and Smith (2007).8 We provide both bias corrected estimates,
a and &, computed using available cross-country time series, y;;, over the full sample period. The
observations were standardized as x;; = (§i; — 9;)/8:, where ¢, is the sample mean of each time series,
and s; is the corresponding standard deviations. Table 1 also reports the 95% confidence bands, the
cross section dimension (N) and the time series dimension (7') for each of the variables. Although,
there are 33 countries in the GVAR data set, not all variables are available for all the 33 countries.
For example, the short term (3 months) interest rate data is not available for Saudi Arabia, and real
equity prices and long term interest rate data (10 year government bond) are available only for some
of the countries.

We first note that the two different estimates of a provided in Table 1 are very close, which are
in line with the Monte Carlo results reported in Tables A1 and A2. Focusing on &, we observe that
the point estimates range between 0.754 for cross dependence of GDP growth rates, to 0.968 for long
term interest rates. The exponent of cross-sectional dependence for short term interest rates and real
equity prices at 0.907 and 0.881 are also quite high, indicating that financial variables are more strongly
correlated as compared to the real variables. The reported confidence bands all lie above 0.5, but none
cover unity either apart from the case of long term interest rates (marginally), suggesting that whilst
a factor structure might be a good approximation for modelling global dependencies, the value of
a = 1 typically assumed in the empirical factor literature might be exaggerating the importance of the
common factors for modelling cross-sectional dependence at the expense of other forms of dependencies
that originate from trade or financial inter-linkages that are more local or regional rather than global
in nature.

Table 1: Exponent of cross-country dependence of macro-variables

N T Mo O Opgrs 0025 O Ofgrs

Real GDP growth, q/q 33 122 0.691 0.754 0.818 0.689 0.752 0.816
Inflation, q/q 33 123 0.778 0.851 0.924 0.777 0.850 0.924

Real equity price change, q/q 26 122 0.797 0.881 0.966 0.796 0.881 0.966
Short-term interest rates 32 123 0.831 0.907 0.983 0.831 0.907 0.983
Long-term interest rates 18 123 0.864 0.968 1.072 0.864 0.968 1.072

*95% level confidence bands

6.2 Within-country dependence of macro-variables

An important strand in the empirical factor literature, promoted through the work of Forni, Hallin,
Lippi, and Reichlin (2000), Forni and Lippi (2001) and Stock and Watson (2002), uses factor models to
forecast a few key macro variables such as output growth, inflation or unemployment rate with a large
number of macro-variables, that could exceed the number of available time periods. It is typically
assumed that the macro variables satisfy a strong factor model with o = 1. We estimated « using the
quarterly data sets used in Eklund, Kapetanios, and Price (2010). For the US the data set comprises
95 variables over the period 1960Q2 to 2008Q3. For the UK the data set covers 94 variables spanning
from 1977Q1 to 2008Q2. The estimates of «, computed from the standardized data sets as explained
in the previous subsection, together with their 95% confidence bands are summarized in Table 2.

For both data sets the estimates, @ and &, are identical up to two decimal places. For the US data
set the point estimate (&) of a, at 0.739, is slightly larger than the estimate obtained for the UK at

8This version of GVAR data set can be downloaded from
http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html
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Table 2: Exponent of within-country dependence of macro-variables

US UK
1960Q2-2008Q3 1977Q1-2008Q2
N=95, T=19/ N=9J, T=126
agozs @ gz agozs @ gz
0.689 0.739 0.788 0.636 0.715 0.793
Agozs & Qgors Apozs @ Gpors
0.689 0.738 0.788 0.635 0.713 0.792

*95% level confidence bands

0.715. The 95% confidence bands for both data sets are well above the threshold value of 0.50, but are
well short of 1.0 at the upper end of the band. Once again there is some evidence of a common factor
dependence, but the evidence is not as strong as it is assumed in the literature.

6.3 Cross-sectional exponent of stock returns

One of the important considerations in the analysis of financial markets is the extent to which asset
returns are interconnected. This is encapsulated in the capital asset pricing model (CAPM) of Sharpe
(1964) and Lintner (1965), and the arbitrage pricing theory (APT) of Ross (1976). Both theories have
factor representations with at least one strong common factor and an idiosyncratic component that
could be weakly correlated (see, for example, Chamberlain (1983)). The strength of the factors in
these asset pricing models is measured by the exponent of the cross-sectional dependence, a. When
a =1, as it is typically assumed in the literature, all individual stock returns are significantly affected
by the factor(s), but there is no reason to believe that this will be the case for all assets and at all
times. The disconnect between some asset returns and the market factor(s) could occur particularly at
times of stock market booms and busts where some asset returns could be driven by non-fundamentals.
Therefore, it would be of interest to investigate possible time variations in the exponent « for stock
returns. Note that under our methodology the market factor associated with the CAPM specification
is implied by the data rather than imposed by use of a specific market portfolio composition which
can be limiting, as explained in Roll (1977).

We base our empirical analysis on monthly excess returns of the securities included in the Standard
& Poor 500 (S&P 500) index of large cap U.S. equities market, and estimate « recursively using rolling
samples of size 120 months (10 years) and 60 months ( 5 years). Due to the way the composition
of S&P 500 changes over time, we compiled returns on all 500 securities at the end of each month
over the period from September 1989 to September 2011, and included in the rolling samples only
those securities that had a sufficiently long history in the month under consideration. On average we
ended up with 439 securities at the end of each month for the rolling samples of size 10 years, and
476 securities when we used a rolling sample of size 5 years. The one-month US treasury bill rate
was chosen as the risk free rate (r), and excess returns computed as 73 = r;; — rp;, where 7 is the
monthly return on the i" security in the sample inclusive of dividend payments (if any).’ Recursive
estimates of a were then computed using the standardized observations x;; = (7 — 7;)/s;, where 7;
is the sample mean of the excess returns over the selected rolling sample, and s; is the corresponding
standard deviations.

The recursive estimates of o based on 10 years and 5 years rolling windows are given in Figure 1.
We also computed rolling standard errors for the estimates, &y, using the serial correlation correction
discussed in Section 5. Based on these standard errors, the 95% confidence bands of the recursive

9For further details of data sources and definitions see Pesaran and Yamagata (2012).
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estimates were on average £0.02 around the point estimates for both rolling sample sizes considered.
These bands are not shown in Figure 1, since the bands are relatively narrow and we aim to highlight
the time variations in the estimates of a.

Figure 1: & associated with S&P 500 securities’ excess returns - 5-yr and 10-yr rolling samples
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The figure covers 23 years of monthly recursive estimates of a, and yet fall in a relatively narrow
range of 0.854 — 0.917 in the case of the 10 years rolling samples, and in a slightly wider range of
0.838 — 0.932 in the case of 5 years rolling samples. These estimates clearly show a high degree of
inter-linkages across individual securities, although the null hypothesis that o = 1 is clearly rejected.
More importantly, there are clear trends in the estimates of . The estimates based on the 10 years
rolling samples fall from a high of 0.92 in 1990 to a low of 0.85 just before the burst of the dot-com
bubble in 1999-2000. The estimates of « then stabilize around 0.86 over the period 2000 — 2008, then
fall quite dramatically towards the end of 2008 at the time of the market crash, before starting to
rise again to its present level of 0.90 in September 2011. The factors behind these fluctuations are
complex and reflect the relative importance of micro and macro fundamentals prevailing in financial
markets. A standard factor model does not seem able to fully account for the changing nature of the
dependencies in securities market over the 1989-2011 period. A similar result is also obtained when
« is estimated using 5-year rolling samples, although as to be expected the estimates are variable.
Indeed, the upward movements in the estimates based on 5-year windows are more pronounced both
in the latest crisis as well as in the period of 1997-2000 that saw smaller crises caused by the Asian
economic turmoil, LTCM and the bursting of the dot-com bubble.

The patterns observed in the above estimates of « are in line with changes in the degree of
correlations in equity markets. It is generally believed that correlations of returns in equity markets
rise at times of financial crises, and it would be of interest to see how our estimates of « relate to return
correlations. To this end in Figure 2 we compare the estimates of o to average pair-wise correlation
coefficients of excess returns (py) on securities included in S&P 500 index, using 10-year and 5-year
rolling windows.'® As the plots in these figures show, our estimates of « closely follow the rolling

0Denote the correlation of excess returns on ¢ and j securities by pi;, the pair-wise average correlation of the market
is then computed as py = (1I/N(N — 1)) 7" Z;V:H_l pij, where N is the number of securities under consideration.
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estimates of py.

Figure 2: Average pair-wise correlations of excess returns for securities in the S&P 500 index and the
associated &y estimate computed using 10-year and 5-year rolling samples
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Further, it would be of interest to see how our estimates of a compare with estimates obtained
using excess returns on market portfolio as a measure of the unobserved factor. This approach starts
with capital asset pricing model (CAPM) and assumes that the single factor in CAPM regressions can
be approximated by a stock market index. Under these assumptions, as noted in the Introduction,
a direct estimate of « is given by &y = In(M)/In(N), where M denotes the estimated number of
non-zero betas, and N is the total number of securities under consideration.!! M can be consistently
estimated (as N and T"— o0) by the number of ¢-tests of 8; = 0 in the CAPM regressions

Tit — g = Qi + Bi (Tt — 7f¢) + wie, for i =1,2,..., N, (39)

that end up in rejection of the null hypothesis at a chosen significance level, where r,,; is a broadly
defined stock market index. In our application we choose the value-weighted return on all NYSE,
AMEX, and NASDAQ stocks to measure r,,;,'? and select 1% as the significance level of the tests.
Such estimates of « obtained recursively using 10-year and 5-year rolling windows are shown in the
two plots in Figure 3. For ease of comparison, these plots also include our (indirect) estimates of «
based on the same data sets (except for the marker return, r,,;, which is not used). The two sets of
estimates co-move over most of the period and tend to become closer in the aftermath of the dot-com
bubble and during the recent financial crisis. The correlation coefficient of the two sets of estimates is
0.923 for the ones based on 10-year rolling samples, and 0.739 for the ones based on the 5-year rolling
samples. The two sets of estimates, however, differ in scale, with the direct estimates being closer to
unity. The scale of the direct estimates clearly depends on the measure of market return, the level of
significance chosen, and the assumption that the model contains only one single factor with o > 1/2,

Almost identical estimates are also obtained if we use returns instead of excess returns.
"Recall that M = [N?®], where M is the true number of non-zero betas.
2The  return data on market index was obtained from Ken  French’s data library.

http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html
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and in consequence is subject to a high degree of uncertainty.'® Nevertheless, it is reassuring that the
direct and indirect estimates of « in this application tend to move together closely.

Figure 3: Direct (d4) and indirect (&) estimates of cross-sectional exponent of the market factor (using
excess returns on S&P 500 securities) based on 10-year and 5-year rolling samples
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There is also a further consideration when comparing the estimates of o and ag. Under CAPM the
errors, uj, in (39) are assumed to be cross-sectionally weakly correlated, namely that the cross-sectional
exponent of the errors, say «,, must be < 1/2. But this need not be the case in reality. Although we
do not observe u;;, under CAPM the OLS residuals from regressions of r;; — ¢ on ry,s — ¢, denoted
by 1, provide an accurate estimate of u; up to Op(T -1/ 2), and can be used to compute consistent
estimates of a,.'* The bias-adjusted estimates of cv,, denoted by é,,, and computed using standardized
residuals over 5-year and 10-year rolling samples, are displayed in Figure 4. Interestingly enough, these
estimates, although much smaller than those estimated using excess returns, nevertheless tend to be
larger than the threshold value of 1/2, suggesting the presence factors other than the market factor
influencing individual security returns. The influence of residual factor(s) is rather weak initially
(around 0.60), but starts to rise in the years leading to the dot-com bubble and reaches the pick of
0.80 in the middle of 2000 and stays at around that level for the period up to 2006 — 2008 (depending
on whether the 10-year or 5-year rolling samples are used), then begins to fall significantly after the
start of the recent financial crisis, and currently stands at around 0.63. Although, special care must be
exercised when interpreting these estimates (both because «, is estimated using residuals and the fact
that & tends to be biased upward particularly when a < 0.75), nevertheless their patterns over time
are indicative of some departures from CAPM during the period 1999 — 2006. Also, it is interesting
that the rolling estimates of «,, tend to move in opposite directions to the estimates of o computed
over the same rolling samples. Weakening of the market factor tends to coincide with strengthening of
the residual factor(s), thus suggesting that correlations across returns could remain high even during

13The distribution theory of the direct estimator of « is complicated by the cross dependence of the errors in the
underlying CAPM regressions and its consideration is outside the scope of the present paper.
14 A formal proof and analysis when « is estimated from regression residuals is beyond the scope of the present paper.
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periods where the cross-sectional exponent of the dominant factor is relatively low, once the presence
of multiple factors with exponents exceeding 0.5 is acknowledged.

Figure 4: Estimates of cross-sectional exponent of residuals (&,,) from CAPM regressions using 5-year
and 10-year rolling samples
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7 Conclusions

Cross-sectional dependence and the extent to which it occurs in large multivariate data sets is of great
interest for a variety of economic, econometric and financial analyses. Such analyses vary widely.
Examples include the effects of idiosyncratic shocks on aggregate macroeconomic variables, the extent
to which financial risk can be diversified by investing in disparate assets or asset classes and the
performance of standard estimators such as principal components when applied to data sets with
unknown collinearity structures. A common characteristic of such analyses is the need to quantify
cross-sectional dependence especially when it is prevalent enough to materially affect the outcome of
the analysis.

In this paper we propose a relatively simple method of measuring the extent of inter-connections in
large panel data sets in terms of a single parameter that we refer to as the exponent of cross-sectional
dependence. We find that this exponent can accommodate a wide range of cross-sectional dependence
manifestations while retaining its simple and tractable form. We propose consistent estimators of
the cross-sectional exponent and derive their asymptotic distribution under plausible conditions. The
inference problem is complex, as it involves handling a variety of bias terms and, from an econometric
point of view, has noteworthy characteristics such as nonstandard rates of convergence. We provide a
feasible and relatively straightforward estimation and inference implementation strategy.

A detailed Monte Carlo study suggests that the estimated measure has desirable small sample
properties. We apply our measure to three widely analysed classes of data sets. In all cases, we find
that the results of the empirical analysis accord with prior intuition. For example, in the case of cross
country applications we obtain larger estimates for the cross-sectional exponent of equity returns as
compared to those estimated for cross country output growths and inflation. For individual securities
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in S&P 500 index, the estimates of cross-sectional exponents are systematically high but not equal to
unity, a widely maintained assumption in the theoretical multi-factor literature.

We conclude by pointing out some of the implications of our analysis for large N factor models of
the type analysed by Bai and Ng (2002), Bai (2003), and Stock and Watson (2002). This literature
assumes that all factors have the same cross-section exponent of o« = 1, which, as our empirical
applications suggest, may be too restrictive, and it is important that implications of this assumption’s
failure are investigated. Chudik, Pesaran, and Tosetti (2011), Kapetanios and Marcellino (2010) and
Onatski (2011) discuss some of these implications, namely that when 1/2 < o < 1, factor estimates are
consistent but their rates of convergence are different (slower) as compared to the case where ao = 1,
and in particular their asymptotic distributions may need to be modified. Methods used to determine
the number of factors in large data sets, discussed in, e.g., Bai and Ng (2002), Onatski (2009) and
Kapetanios (2010), are invalid and will select the wrong number of factors, even asymptotically.!®
Finally, the use of estimated factors in regressions for forecasting or other modelling purposes might
not be justified under the conditions discussed in Bai and Ng (2006).
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Appendix I: Statement of Lemmas

Lemma 1 Under Assumptions 2 and 3, fi,{ui};e,, and {wit};o, are Lr.-bounded, La-NED processes of size —(C, for
some r > 2. This result holds uniformly over i, in the case of {uit}toil, and over t, in the case of {uit};il.

Lemma 2 Under Assumptions 2 and 3,

T
1
\/T Z (ft — f) (\/Nﬂt) —d N(O, 5’30),
t=1
where ( )
S (ef+ 2 0
2. i J=1,j#i
T = Jim N ’ (40)

o? = E(u},), and 0ij = E(upui—j).
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Lemma 3 Under Assumption 3,

% ; [(\/Nat)Q - E (maﬂ —a N(0,V),

where
2 > 2 2
V= lim <Var( \/Naz) > +Z;COU ((\/Nat) ,(\/ﬁﬂt—j) >> ~
i=
Lemma 4 Under Assumptions 1-3, crN —-6% =0, (T_l) +0p ((NT)_I/Q) .

Lemma 5 Under Assumptions 1-2, \/min(N*,T) (In(s70%) — In(0747)) —a N (0,w).
Lemma 6 Under Assumption 6 and Assumptions 2-3, \/min(N,T) (In(s30%) — In(cFu3)) —a N (0,w).

Lemma 7 Under Assumptions 1-3, and as long as a > 4/7,

—

in(N~, T N ox ) _ o) in(Ne, T)N? 4
mln( ) ) N2o— 11)]2\]8? - N&2 - p( mln( 5 ) )

Lemma 8 Under Assumptions 1-2, and as long as a > 1/2,

V/min(Ne, T) In(N) % _ A& 142 ) 2 (1)
’ N2a-12 2~ NeZ NgZ ) ) T\

T

R N YN
Lemma 9 Let { (S)} and {61@} be the reorderings of {@1}5\7:1 and {61} where ’1}2@ >0
i=1 i=1 i

, Vi and ‘&(s) >

5

i1 | Vi. Under Assumptions 1-3, and assuming that limr, N oo T IN® < o0, we have

Ne 2
N2o- 22 ( s(s) _ 1(1 Z@ES)> .2

Ne — 1 = - =0 (1). (41)

Ifaj%,uf, =1, then

Lemma 10 Under Assumptions 1-2, we have foz V= op(1), as long asl — 0o, Il =0(T) andl = o (Na_l/QTl/Q).

Lemma 11 Under Assumptions 1-2, and assuming a; = «, for all j =1,...,m,

min(N,T) (In(Ty S5son) — In(p,Errp,)) —a N (0,wm),

where p, = B (v.), Byp = E (£, = 1) (£, - 1y))

N, T— o0

o= Jim_win (V1) 8 (((0hFr = wasy)” = B (@ Fr - iin)’)))
pp=E(f) and fr=230,f
Lemma 12 Under Assumptions 1-2, and assuming o > Qz > ... > Qm,
min(N®, T) (In(n Syron) — In(p,Brrm,)) —a N (0,w).
Lemma 13 Under either Assumption 1 or 6 and Assumptions 2-8, and @ > a2 > g > ... > Qum,
Vmin (N, T) In (N) In(p, Dy S Dy p,) = In (uiyoiy) = o (1),

if either as — a < —0.25 or, if T = N, a2 < 3a/4 and

1
b> ———. 42
4(a— az) (42)
Lemma 14 Let 8; = N~ 11/1, 1/2 < a < 1, where v; = vNZ = U; + cn; and {vl} _, 18 an i.i.d. sequence of random
variables with mean , # 0, and variance o2 < co. Let ey = ~ 21:1 cni. Under Assumptions 2-3, (a) &, & and & are

consistent estimators of «, if cxy = op (N) for all ¢ > 0, (b) Corollary 2 holds, if VNén = op (1).
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Appendix II: Proofs of Theorems

Proof of Theorem 1

We start by noting that

1 1 < o
2-g3(n-pya) - pya-e
where Z; = Bn fi + @, and Z = T~ ' Y] &, = By f + . Further, let
= 1_p<N7M> «
Komton= 35 ai=p (2 =y "
j=M+1 P

Then we have
T

RN

Oz = 512\73?‘ +2BN

T
s?:%Z(ftff)Qﬁpo?>0,asT%oo.

Therefore ~
. 2By [+ 20 (fo - Dw + [3 2L @ -]
In (ai) :ln(ﬂst)—l—ln 14+ 5 52
NSf

But under Assumption 1, By = (M/N)ox + N"'K,, where oy = M ™! Zi:l v;, we have

In(F%s%) = (N onss + K]’jfy =2(a— 1)In(N) + In(s20%) + 2In <1 + fogN>
=2(a — 1) In(N) + In(s793%) + Op(N ™).
Hence, recalling from (14) that & = 14 1n(62)/21In (N),we have
2 |4 50 (fo = S ] + [ 20, ot - o]

2In(N) (& — a) — In(s7o%) =In | 1 + SR
NSF

+ Op(N™7). (44)

However,
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Inll1+ 32 o2 - 22 .2 +OP(aTN)7
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(45)
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Consider the first term of the RHS of (45). We have,
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We note that s;/of =1+ O,(T~*/?). But, by Lemma 2 (as N and T — o)
T
= 1) (VNa) =, N(0,5%), (46)

where T2, is as in (40). B
We need to determine the probability order of 1/8x. We note that
1 1 1 1 —K,N!
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and hence

2w [+ S0 (- D] Zix |5k S (o= 1) (VN -
Prs ) 318 (s1/7) )
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Consider now the second term on the RHS of (45). We have
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Note that since, by Lemma 1 and Theorems 17.5 and 19.11 of (Davidson, 1994, Theorem 15.18), vV NT'@ = Op(1), then,
since s /07 =1+ Op(T~Y/?) and 0 < o} < oo,
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(N N + N) s} NT(N N + N) s}

Similarly,

pxre s (g S omer -] v} (o L [(5) 1] T

(NDH@N + %)2 5% (Naflz‘)N + %)2 52 - (Naflz‘;N + %)2 5%
52 a: ) 2
_Frn(8e) -] %
(NQ*ITJN{»%)zS?I N(NQ,WNJF%)QS?'
Note that - - .
N (Ne-toy + %) 52 " gy O o

But, by Lemma 3,

and

2
),
L 0,1 AN 0,1 N, (50)
(Na* N + W") 8%
Therefore, collecting all results derived above, and keeping the highest order terms of the RHS of (44), (47), (48), (49)
and (50), we have

)

2In(N) (& — a) — IH(S?‘@?\[) — ]\/20‘?7{\;7232 =0y (max (T71/2N1/27a7T71N172a’T*1/2N172a7N173Q’N7Q)) .
Nof

Since o > 1/2, in the first instance this implies that

G—a=0, (ﬁ) (51)

which establishes the consistency of & as an estimate of « as N and T" — oo, in any order.
Consider now the derivation of the asymptotic distribution of &. We have

. s o T (= ) (Vi)

N g 22
In(N) (& — @) — —5—r— = In(s}0%) + —
NQQ—lv?vs? N sgNe=1on(ss/of)

—+

2 53 T VN, )2
(VNTa) e | () - 1}
+ +Op(N™%)
K,\?2 K,\?
NT (No=toy + 52 ) 3 (Voton + 52 ) 2
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We first examine In(s70%). By Lemma 5 we have

/min(Ne, T') (ln(sfcﬁfv) — ln(a}%,ui)) —4 N (0,w).

Further, since a > 1/2,

G o Tt (F = ) (V)

e _ Jmin(Ne, T)yT~V2NY2-e) =
min(Ne, T) s N"Ton (57 /o) =0, ( min(Ne, T)T N ) op(1).
Similarly,
2
(VNTa)
min(Ne, T) — | =0, ( min(NaT)T*lNl*?a) = 0,(1),
NT (No=toy + 5¢) 3
and ,
5% 1 T VNa
N%ﬁztzl [( Fmt) _1} oo
min(N<, T) . =0, ( min(Ne, TYT /2N~ ‘*) = 0p(1).
(Na—lﬂN + %) 5%
Thus,
. L a3
min(N*, T) <ln(N) (& —an) — ]\72&77{\%?\[5? —4 N (0,w),

where &’y = o+ In (0542)/In (N).

Proof of Theorem 2

_9 5/_2\
We need to show that as long as either o > 4/7 or T/2/N4*=2 — 0, /min(N*,T) In(N) (fif\’“ - ) =o0,(1).
2 .

The result follows immediately by Lemma 7.

Proof of Theorem 3

The result follows immediately by Lemma 8.

Proof of Theorem 4

The proof follows immediately from Lemmas 9 and 10.

Proof of Theorem 5

Under the general factor model, we have

63 :BNSffBN‘i'zB/N +

1 T
TZ(-ft_f)ﬂt

where .
1
Spr= T;(fff) (fo—F) =p 255> 0,88 T — 0.
We have that

BnSyiBn = N** 25\ DnS;;Dnon + 2N 2y DnSsr K, + N 2K,S; K, = N* *5yDnS;Dyon + O (N°72).

So
In (BNSffBN> =In (N***8yDnS;Dnon + 2N *ByDnS; Ky + N K811 K,) =
2N_°‘1_JINDNSffKP+N_2aK/SffK
2(a—1)In(N) +In (txDnS;sDnT In1 . “)
(a )In (N) + 1’1('UN NOff NUN)+ n( + yDnS;sDnUN >
Then,
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2By [+ 50 (7~ Ha + [# o002 - ]

I (62) = n(BySysBx) +1n |1+ T 5.5
NOfFPON

+ 0, (N7,

In (62) = 2(a — 1) In(N) + In(¥y Dn S Dnn)

- 25;\1 [% ZtT:I (ft - f) ﬁt] + [% Zthl - '&2]
BnStiBy

+ In

So

2By [+ S0, (F - Ha] [, @ -7
1+ +

QIH(N) (ol—a)—ln(f;ﬁvDNSffDNz‘zN) =In — — — —
BnSsiBy BnSsiBy

+0p (N7%),

or
25/1\7 [% Zthl (ft - f) ﬁi]
BunSiiBy

[% 23:1 ﬂf - ﬂQ]
BNSffBN

2In(N) (& — o) — In(Fy Dy S Dnby) = + +O0p (N™) + 0p(Bn,1),

where

2By (XL (- D N [+ 20, @ - @]
BrSiiBy BySiiBy
Similarly to (47),

2By [+ X0, (fo - F) ]

-0, (T71/2N1/27o¢) +0, (T71/2N1/272a) .

BnSyiBn
Also
— T V Ny 2
[%ZL&?—@Q} v DI [( (ff\,t) —1} _2
_ " ON +O (N172O¢T71)
B;stfBN \/TN2O‘711_J/NDNSffDNﬁN NQQ_I’E?\]DNSffDN'BN P ’
where )
~ T VNa
UN%Zt:l {( ;\;Vt> _1}
-0, (T71/2N172a) .
\/TNzafli_)gvDNSffDNﬁN
So,
)
2I(N) (& — @) —In(dy DnS ;s Do) — oN -0 (max (T‘I/QN”Q‘“,T—lNl‘Q",T—l/QNl‘Q”,N1‘3°‘,N—a))
(N)( )—In(OnDnSsrDNON) N7 15, DnS;; Dnon »

Using the above derivations gives straightforward extensions of Lemmas 7 and 8. Using these, we get

—

oy o
in(Ne. T -
mln( ) ) N2a71/l_1/]VDNSffDNﬁN Na’%

) =0, ( min(Na,T)N2‘4°‘)

and
2

L = =
: = oN _ OnN oN _
vmin(Ne, T) In(N) <N2a—1f);\,DstfDm—;N N2 (1 * N&g>> o (1)

which together with Lemmas 11, 12 and 13 prove the theorem.

Appendix ITII: Proofs of Lemmas

Proof of Lemma 1

By the Marcinkiewicz—Zygmund inequality (see, e.g., (Stout, 1974, Theorem 3.3.6)),

0o o r o oo r/2
sup E(|ui|") = sup £ ({Z <wu > €isvst—l)} ) <c (sup (Z |wu|2) sup ( > |§i5|2>> (supE(\van)) :
1 7 1—0 [ -0 [ 7,t

s=—00 s=—00
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so ug is Ly-bounded if sup, sup, E(Jv¢|”) < oo which holds by Assumption 2. Moreover, writing ||-||,. for the L,-norm,
we have, by Minkowski’s inequality,

wie = Blual Fj ||, =sup | D0 v | DD g < sup [[vie (St}p > |wij|> sup (D [l | |,
52

sup)
‘ j=m+1 |s|>m ) boj=mtl ©o\s|>m

for any integer m > 0 where }'t"l"m‘
implies that sup, limmn, oo me Z;'im-u [1s;] = O (1) and sup; limm— oo m¢ (Z|S|>m |§i5|) = O (1) . Consequently {us:}§2
and {ui}i2; and L,-bounded, L-NED processes of size —(, uniformly over ¢ and ¢. Similarly, we can show that f; is

an Ly-bounded (r > 2) Lo-NED processes of size —(.

is the ofield generated by {vis;i,s <t —m} U {vis;4, s >t +m}. But, Assumption 2

Proof of Lemma 2

We have % ZtT:1 (ft — f) (\/ﬁﬂt) = % Zthl z¢, where z; = (ft - f) (\/ﬁﬂt). We have that z: is a station-

ary process such that E (z;) = 0. We note that by Lemma 1 and Theorem 24.6 of Davidson (1994), we have that
2

E ((\/NTLO ) = % Zivzl 0? < 0o. Further, by Theorem 17.8 of Davidson (1994), we have that sums of La-bounded,

Lo-NED triangular arrays of size —( are Lg-bounded, L2-NED triangular arrays of size —( as well, implying, given
Lemma 1, that v N4 is an Le-bounded, Lo-NED triangular arrays of size —(. Further, by the Marcinkiewicz—Zygmund

inequality,
r 1 N oo ) e 5 r/2 s
el g (Do hwal )| D2 sl sup B(jvu|") <

i=1 =0 s=—00
(53)

oo o r/2
¢ (Sup <Z ¢i12> sup < > §z‘s|2>> <Sutp E(|vit\r)) < oo.
i =0 i i,

E(‘\/ﬁﬂt

(RS (S e

i=1 =0 s=—00

2~

As a result, VN, is a L,-bounded, L2-NED triangular arrays of size —(.

Finally, since {+/Nu:} and {f:} are L,-bounded (r > 2) L2-NED processes of size — on a ¢-mixing process of size
—n (n > 1), then, by Example 17.17 of Davidson (1994), {z;} is L2-NED of size —{((¢ — 2)}/{2(p — 1)} < —1/2 on a
¢-mixing process of size —n. Since v and vy, are i.i.d. processes they are also ¢-mixing processes of any size. In view
of Theorem 17.5(ii) of Davidson (1994), this in turn implies that {z:} is an Lo-mixingale of size —1/2, if 2n > ¢, which
automatically holds by the i.i.d. property of v;; and vy;. This, implies the result of the Lemma by Theorem 24.6 of
(Davidson, 1994, Theorem 15.18).

Proof of Lemma 3

By Lemma 2, v N4 is a Lr-bounded, L2-NED triangular arrays of size —(. By Example 17.17 of Davidson (1994), and
2

(53), (\/Nat) is L-NED of size —{¢(¢ — 2)}/{2(¢ — 1)} < —1/2, r > 4. Then, by Theorem 24.6 of (Davidson, 1994,

Theorem 15.18), the result follows.

Proof of Lemma 4
We need to show that F;IZ\\, -0 = 0, (T + O, ((NT)71/2). We have that (’;]2\\, = =N ST a2, where

dir = @i — 8;Fr. Then, NT oiet Yoim1 Uit = Np 2oien Yoiea Uit T w7 Doy Sopey (U — uiy) , where wir = @i —

0;%¢. Following similar lines to those of the proof of Lemma 3 we have that ﬁ Zf\;l ZtT:1 u?, —p 7. Further,
= PORIND D (uf, —5%) = O ((NT)fl/Z). Next, we examine DORIND D (47, — uf). It is sufficient to consider

ﬁ Zfil Zthl it (Uit — ust). Noting that lei’;it = Op (1), and denoting equality in order of probability by =,, we
have

1 N T 1 N . T
NT ZZUM (Git — wit) = NT Z (51' - 51‘) Zi’tuit =

=1 t=1 =1 t=1

1 1 al 1 &, qa ’ 1 &, qa ’
NT(%Z?_I(NI—%»?)Z (TZ(N xt)““) - <TZ(N f””““) +

=1




1 N 1 & ’
+]VT< Ztl(Nl "‘.Z‘t )Z < TZ U1t>

i=1 t=1

2
But E <(% S (N'=z) uit> ) < oo and & SE (leo‘a_ct)z = Oy (1), which implies that

N1T<TZT&V>>i ( ZN “) =0,(z)-

2 2
Further, (% ZtT:1 (leaa":t) uit> —F ((% Ethl (leaft) uit) ) is a NED process over ¢, which implies that

1 1 T 2 1T 2 .
s (a5 (e om) —o( (2 oom) ) )= ()

S
proving the required result.

3=
~

Proof of Lemma 5

We have that

P {25)- )

t:l

H

where f = ZL ft, and

Viz = B ((((f = ) fos)? - )+ZCov — ) o = 1) ((fei — np) os) — 1)),

=2 .2 ~ ~ ~
Further, recalling that in = = Z vz, VN« (%) =+/Ne (M) (%) . But “Nu% —p 2, and

Ko

= _ 2
VNo (B ZEe ) N (0, 22) . (54)
oo B3

2 g2 o2 2
Further, E {(u) ( Nuzu”)] = 0, implying that /min( T) (In(s30%) — In(02v2)) —4 N (0,w), where w =
o% v
limN,T%oo [mln(g T)V + mm(]\]]\; ,T) 4:—U :| .

Proof of Lemma 6

The proof follows easily along the same lines as that of Lemma 5. In the present case under Assumption 6 we have
=2 2 — — — —

oy = Nt vazl v;, and thus VN (UNM;Q””) =+N (”NJ"’”) (”NJ”“) , and ”NJ”“ —p 2. Therefore,v/ N (”NM;““) —d

2

N (0, "—2) .

%

Proof of Lemma 7

We need to show that

o ok
in(Ne, T — = 1). 55
mln( ) N2a 1,02 8? NUz Op ( ) ( )
We have . L L .
7 2 &% A, 5 2

201752 52 20-1752 g2 N2a—132 g2 20-152 2 N§2°
N vy 5% ~ N62 N uysy N uysy N vysy  Noz
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But

_2 2
ON oN _ —1/2 prl—2a
N2a— 11)12\,(9? T Nzo—132 sf 7 = Op (T N )’

which is negligible as a bias. Next,

5 >y >y 5
% ONn _2 [ On 1 1 _2 [On 1 2a—1 (72— 20 4 2 2 1
=5 - =on || ~—=—=— | N N?72962 _ 5%s%) ( — ).
N2e-15% 5% N2~ N < ) <N2a 5% 52 No? M\ a% ) \ N2e-1i3 82 ( v ;) N62

But by the proof of Theorem 1, we have

Besh = NT252 = 0, (T72NY270) 40, (T7'N'2%) 4+ 0,(N' ) + O, (N %) + 0, (N~

-
_2 [ ON 1 2a—1 2—2a .2 -2 2 1 _
oN (512\7) <N2a1"712v5§> N (N 6z — UnSY) (—N&%) =

O, (T71/2N1/27QN172¢1) +0, (T71N172aN172a) + Op(lesaleza) + Op(Nfale%‘) 10, (lezaleza) _

So

0, (T—1/2N3/2—3a) 10, (T—1N2—4a) + Op(NQ—Sa) + Op(Nl—Sa) 10, (N2—4a) .

Therefore, as long as a > 4/7, (55) holds, proving the Lemma.

Proof of Lemma 8

We have that

oy T
_2 [ ON 1 2a—1 1-2a 1 _ 2—dapn—1/2
(5 (g ) v (o (G omor -3) ) (s57) =0 (o7er ),

which is negligible as long as « > 1/2. To see the above result note the following. We have

’ﬂ

2
Op(T~"/?). Finally by Lemma 4, T Zz L ey U T Zi\; Soim ui = 0p(T1?). So, T -1 ( Tlﬁ Zivzl u“) ) -

—

52 = 0p(T™?).

Proof of Lemma 9

The first step in the proof is to show that the number of cross-sectional units that are misclassified, i.e., that are included
in the variance calculation when their loading is not a function of any v, is o, (N®). The first thing to note is that we
abstract from the possibility that any v; = 0. By the fact that Pr (v; = 0) = 0, it follows that the number of units that
have v; = 0 is op (N%). Without loss of generality, we further assume that units whose loadings do not depend on any
v; have zero loadings. The probability that o, (IN) units are misclassified is bounded from above by

ON= et Pr (U {100 — il > 2}) U (e {12i] > €3))

for some C; > 0, some € > 0, and any ¢ > 0, where Pr ((Ugf] {|0; — vi| > 5}) U (UfV:[Na]H {|oi] > s})) is an upper
bound for the probability that one unit is misclassified. But

[N?] N
Pr ((U[N {|o; — vi| > e}) ( UN ey {J6:] > g})) <> Pr(foi—wl>e)+ > Pr(ol>e).
i=1 i=[Ne]+1

By —wvy |2 .12
But, by Markov’s 1nequahty Pr(|o; —vi| > ) < (‘1727‘) O(T™ "), i=1,..,[N°] and Pr(|%;| > ¢) < (L;‘ ) —

O (T '), i=[N°]+1,...,N. Therefore, the probablhty that o, (N®) units are mlscla531ﬁed is o (N'~**°T~1) for all
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¢ > 0. Since a > 1/2, this probability goes to zero as long as limr,n 0o T~ N® < 0o, proving the first step in the proof.
Next, we show the first part of the Lemma assuming that we observe which units have non zero loadings. Recall that,
assuming that units whose loadings do not depend on any v; have zero loadings, x;; = 5’ & (N 1_“@) + uit. We analyse

¥; by defining it to be the estimated regression coefficient of the regression of z; on N'~%Z, rather than :c,t on T¢. This
is clearly the case once the normalisation N?22=2 i5 taken into account in (41). Let 1)51) = :’ and vy; = ‘We need to

NOL
show that a— ; (@z o v y1> — 7% =0, (1). We have

Ky

a 2
1 N 1 N R 1 N R 1 N 1 Ne 2
No _1_1<i ZUz) —E Na_ll; (w—NaZw) _No‘—ll; (’L)Ni—mi;l)]vi) —+

i=1

17N

dl\)

2

2
1 N2 1 N9 1 N/ 1 (1) | AeN 1 ¥ o oy
Na—lz;(vm_ﬁgf}m) _Na_lg(vi _Nazv’ +Na—1Z TR ) T

i=1 i=1 My

But by the law of large numbers for i.i.d. random variables with finite variance

1 NY/ oy 1A 252 ~
T R )

i=1 i=1 v

It is sufficient to show that

! Jg fa-fim@- 2— ! NZQ v ~—LNZQv ; 2—o(1) (56)
No —1 1 Na - 1 Ne — 1 Ni No‘izl N1 — Up

1=1 1=1

and

1 X 1 X 1 X 1 X
Ne 12 (vm T Ne ;W) TN 1k (UED T Ne ;vgl)) —orty): o7

No
For (56), it is sufficient that =— Z (0 —vni) = 0p (1) Recall that s = 71 = (N'7*Z¢) 4 uit. So

=1

1 A T =
L Ne o1 2. (thl ftuit)

NeE T T T T (zt J7) sz

But YN 27 fous = O, ((N“T)1/2> and 37| f2 =0, (T). So

v
> (i s
Jéal( 1 (z)) =0y (TN (VD) = 0 (TN = 00 (1.

NO(
For (57), it is sufficient that a— > (UNZ — v(l)) = 0p (1) . We have,

i=1

1 1 e
. ne (TV - ;Tv) 2 i
=1

Na_lz;(’UNl Y N —1
AR 1 1 —a/2 © 1N )2 o2
ut W;Ui =0,(1). Also_— — i = ooy (ON — ) = Op (N @ ) So, overall 2 ( — % iy vi) - =
op (1), proving the result.
Proof of Lemma 10
We need to show foz Ve = op(1). We have foz Ve = AJT - foer Vs — Viz where

B R EOE G
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and ¢; = (hs—;f) But, by Theorem 25.3 of Davidson (1994) and Assumption 3, we have that V53 — V3 = 0,(1), as
long as I — oo and | = o(T'). Then, it is sufficient to examine

1 k) ft ~ 71 ) ft Tt o 1 T T o
2 (57 - (G -5) R (v -

t=1 t=1

1 « oNNOT e+ LS N o Z
w;(ft”N ]\;aflgN 1ut)_ TZZ“ TZZunJrop( TZ_Z””'

t=1 i=1 t=1 i=1

But, "7 SN uy =0, ((NT)W) So, 23T (L; - i«t) -0, (N1/2*°*T*1/2) Thus, Vey—Voy = O, (lNl/Q*aT*ﬂ) ,

proving the Lemma.

Proof of Lemma 11

Without loss of generality we consider the case of two factors. The result extends straightforwardly to m factors. We
further assume, for simplicity, that factors are independent from each other. Then,

_2 2 — — =2 2
_ o _ UVInS1y + 201NTV2N S12F + UanS2
In (vasff+2v1Nv2N512f+U§Ns§f) —In (crff,ui,Jragf,ugv) =In ( f .

O’%fu’%v + O’Sfl’(‘%v

Then,

. (v%stf + 20y N Do S12f + v%ngf) _ Uinsis + 20iv0ansios + 0BsE (58)

3 2 2 2 3 2 3 2
O1§l1y T O35 1o, O1§M1y T O35 12,
—2 2 2 2 2 2 2 2 -
(Vinsty —oipuis) + (V3ns5; — 03 130) + 201N Dan S127 .
3 2 2 2 =
O1pHTy T O35l

=2 2 =2 2 =2 2 2 2 =2 2 =2 2 =2 2 2 2
(U1N51f —UiNnO1f T+ UINOTf — 01fﬂ1v) + (U2N52f — UanOof +UanO2p — szmu) + 2p10plovS12f
U%fﬂ%v + Ugfugv
2 2 2 2 =2 2 2 2 2 2 =2 2
Hiv (51f - U1f) o1y (U1N - Mlu) M2y (32f - U2f) Oaf (U2N - N2v) 2010 fh2vS12F
U%flu%v + O’gflu’%v O’%fﬂ’%v + U%flu‘%v U%fﬂ%v + Ugfp’%v U%fﬂ%v + U%fﬂ%v U%flu’%v + O-gflu’%'u
Note that

UINV2NS12f = UINV2NS12f — UINM20S12f + VINM20S12f — UINM20012f + VINU20012f — 2104200 12f =

S12fU1N (V2N — p2v) + 1N fov (S12f — O12f) + O12f 20 (D1N — 2010) =
(s12f — o12f) D1 (V2N — p2v) + 012§01N (V2N — H2v) + Dinpiow (S127 — O12f) + 0128 20 (D18 — 2p10) -
But
71/2)

(s12f — 012f) Dinv (V2N — pi20) = 0p(T ,

and o125 = 0, and so
(s127 — 0127) Din (Von — p2v) + 012501N (V2N — plav) + Din 2o (S127 — O127) + 0127 20 (D1N — 2H10)

_ v _
= V1NU2vS12f = (%) Hivf2vS12f + Op (T 1/2) .
1v

Then,
/1/121) (S?f - 0'7,'2f) . H?yaff (s?f — o'ff) 19
2 2 10202 o242 fol.u2 5 , 1=1,2,
Ulf"lv O2fHav  OipHiy T O3pfay i
lf ( :u/w) ;u'zzvo-zzf (1_]7,'2N - M?v) .
=2 2 2 2 3 , 1=1,2
Ulfuh’ + U2f“2v O1pHTy T O35l iy
or if ofppi, + o313, =1,
2 (2 2 o (st —ol)
Fiv (sif - Uif) = :u‘zvo—zfi, 1 =1,2,
aif
—2 2
2 2 2 \Uin — Mg )
gif (UzN Nw) = ﬂivo—ifw, 1=1,2.

/-’Li'u
Assuming loadings of factors and factors are independent of each other and across factors, gives

sip — 07 1 & . .
T <\/T(fng)> = uiols (\/T Z { [(fie — fi)/o'if]2 - 1}) —a N (07 (M?uﬂff) ME4)) , 1=1,2
if t=1
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M? 0_2
wlif 2
.U‘iv

(7

Further,

7“”)) = li0is (\/W (mNu__ MU) (

ViN + Wiv
Hiv

)) —d N(OaQO—in/'Lz?vUiZf)v i

flt_fl f2t_ f:

T
g1f02f
Moo VI'S12f = fiv oy ——= E (
T t=1

Further, by factor independence

(&

min (N, T)
T

T

Z{ (fit — fz /Ulf _1}

2 2
(#mfflf <

So

oif

VT (S%f - J%f)
2

)
) (2 (

) + :u‘gvo—gf (

f2
ooy —d N (Ouufva-%f)ugvo-gf) .

-

> + 2ﬂ1vﬂ2vﬁ512f> +

o1f

1
VT

f2t - fTQ

g2f

>

t=1

VT (ng - Ugf)
o3

2 2

in(N>, T 520 — 12 -2 2
mlngva ,T) (I’L%’L}U%f (m <U1N " M1u>> +M§UU§f (m (’UzN . sz))) Sy
Hiy K2y
2
((uuo)® it + (1Buods) us? + 2udu0? bl )

min(N%,T)
N<Q'r

Proof of Lemma 12

Again, without loss of generality we look at the case of two factors.

+ min(lé\faa ,T) (

)

2 2 2 2 2
207,101 + 205, 113,05 5)

further assume, for simplicity, that factors are independent from each other. Then,

1,2.

The result again extends straightforwardly. We

In (ﬂstff + 2N NVaN S127 + N2(e2= a>U2N52f) —In (Uff,u/%u + N2e2me) 52 fuzu) =
VinST; + 2N2 0 NUan S12f + N2O27 0383
oippi, + N2e2=od u3, ’
Then, similarly to the proof of Lemma 11
Vinsip + 2N DN DN S127 + N2 a)U2N32f _ e (S%f - U%f) U%f (U1N Hm)
O-fflu’%v + N2<a27a>0-2f1u’2'u O’%fﬂ‘%v + N2(a27a)o-§f’u§v O’%fﬂ‘%v + N2(a2 a)o-Qflu’%v

I%

N2(a2ia)ﬂgv (ng - Ugf)

N2(o¢2 —a) 0_2

2f ('U2N ugv) 2N 2T Y 1y ph2vS127

T T NI
Then,

U%fﬂ%v + N2(a2 O‘)szf/j%v

T+ N 18,

N%u (S%f - Uff) B H%vU%f (S%f - J%f)
oL+ NAC T 8, T G N g, o
U%f (77%N - M%u) _ ﬂ%vaff (17%1\1 - M%u)
U%fﬂ%v + N2(a2_a)o-§flu‘§u o’%f:u‘%v + NQ(QQ_Q)U%f.“’%v :u’%v ’
N2y, (s3; —0y) H3u05 N2azme) ( 55— 031)
Ulflhv + N2(e2= a)azf,uQu U?fll%u +N2(a270‘>‘7§fﬂ§u UQf '
NQ(QTOOU%f (7731\1 - .u%'u) _ M%uagf N2 (U2N M%v)
J%f,u’%v + N2(a27a)0-§f‘ugv G%fﬂ%v + N2(a27a)o-§f/’bgv l’LZ'u

(59)

(60)

But, then it is obvious that the Lemma holds since (59) and (60) are o, (1), when multiplied by min(\/T, \/Na)

respectively, as well as min <ﬁ7 vV ND‘) N7y fh2vS12f -
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Proof of Lemma 13

We analyse the population counterpart of In (oyDnSsDnTn) assuming for simplicity that 3 is diagonal and o >
s > az > ... > ay;,. We have

In(p, DnEsDyp,) = In <M1v01f + N2 ZNQ(Q’ aZ)N?v%f)

Jj=2
Then,
N2(a2—a) Zm (NQ(QJ_QZ)/LQ O' ) Zm (NQ(QJ_QZ)/LQ O" )
= = f
In(p, DNy Dy p,)—In (pd,0%) =1n [ 1+ =N === 7L ez,
H1,071f H1u071f
So

Vmin(Ne, T)In (N) (In(¥xDnSssDntn) — In(u,DnEsDrp,)) =

2(ag—a) i= 2 (NQ(aJ?aQ)M?U Jf)
vmin(Ne, T)In (N (ln (oyDNS;DnTN) — In( ,ulvalf ) vmin(Ne, T)In (N) N7*2

:u‘%vo—%f
We need

2 i (N2(aj_a2)“2 5

M1UU1f

N2(042—0é)

) :0<min(Na,T)71/2ln(N)_1>.

This holds if\/min(Ne, T)N*®2=%) = o(1). If T < N then a sufficient condition for the above to hold is s —a < —0.25.

Otherwise, the sufficient condition is oz < 3a/4. But, this condition is implied by as — a < —0.25 as long as o < 1.

An alternative condition that relates to the relative rate of growth of N and T is that as < 3a/4 and T® = N and
1

1/(4b)+062—06<001‘b> m

Proof of Lemma 14
We note that the first part of the Lemma holds if

In(s70%)

vy - (61)

We have N
2 2 2 ~ 2 1 -
In(s3oy) =1In(s3) +2In (on) =1In (s3) + 2In (N Zvi —|—CN> .

So (61) holds if %Zil U + v = o0p(N°) for all ¢ > 0, which holds if ey = o0, (N°) for all ¢ > 0, proving
the first part of the Lemma. For the second part of the Lemma we reconsider (54). We have VN (Tx — o) =
\/N(% SN vi+en —,uv) But, \F( SN b —uv) —a N (0,02). Therefore, vVNén = o, (1) is sufficient for
the second part of the Lemma to hold.

Appendix IV: Proof of consistency of joint estimation of a and &

Without loss of generality, we consider a simplified version of the estimation problem. For simplicity, we assume v; = 0
for n > [N“]. By the first part of the proof of Lemma 9, we can disregard the matter of misclassification, when ordering
the estimated factor loadings. We start by noting that

where

We have that
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T

720 (= D)

Uacn ﬂnsf +25n

or
~2 K + (57215?’ - ”2) + 25" [% E?:l (ft - f_) ﬂnt} [ Zt 1 unt 731] , ifn< [Na]
Ozn a o —
D2 4 N (5P = 1) + 280 [+ 0, (fi = F) ] + [ S0, @8 — @3], ifn > (V7]

since

Z Un, if n < [Na]
Ui = N¢) . s
[Na] if n > [Na}

since v; = 0 for n > [N®]. Let
. (633 — K%) + 2B [£ S0, (fo— P e + [3 500 20— ai] . ifn < [N°]
N (et = #%) 280 [ £ S0, (fo = ) ] + [ S0, @ - @] ifn > (N7

Then,
2 K +§n, if n < [N?]
e 62
Ozn { [N li +fn7 ifn> [Na} ( )
But % Ele (ft — f) Unt = Op (n_l/QT_l/Q) , uniformly over n; % Ele a2, = Op (n_l) , uniformly over n; @2 =

Op (nil) , uniformly over n; 17%3?—52 =0y (min (nil/z, Tfl/Q)) , uniformly over n.; and 17[21\,&]33«—52 =0y (min (Nfa/Q,Tfl/Q)) .
Therefore,
&n = 0p (1), uniformly over n. (63)

We estimate ( 62) by NLLS. Define

)

g 62, —i%, if n < [N?]
R = - %ﬁ, if n > [N9]

where &?and & are the NLLS estimators of x? and «, and

. k? — &% if n < [N
dnzgn_gn: &

SO’ N N 1 N
NZénfﬁz ZliJrNZf"d”'

By the definition of the NLLS estimator

N N
IR COWERD o

:w
\_/
||
—
(@2}
=~
=

N =N
If either
p lim k*—&%#0 (65)
n,T— o0
or
p lim &—a#0, (66)
n,T— oo

then + Z Oy (1). Further, by (63),

n= l . N
¥ D Endn = 0p (1)
n=1

Therefore, if either plimy,— oo K2 — k2 # 0 or plimy_ 0o @ — a # 0, then

1 & 1
. L2 2
o im P (szn‘zvzﬁn‘“(’) > &

n=1

for some C > 0 and € > 0. But this contradicts (64). Therefore, neither (65) nor (66) can hold, proving consistency.
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