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1 Introduction

Females are under-represented in high-paid occupations and this fact explains a large part of the gender wage

differential. In this paper, we propose a formal way to quantify the gender difference in access to each position

along the job ladder and to assess whether females have a lower access to high-paid jobs than to low-paid jobs.

Since Albrecht, Bjorklund and Vroman (2003), quantile regressions have been used to estimate the difference

between the conditional wage distributions of males and females. It is said to be a “glass ceiling effect”when this

gap gets wider in the upper tail. This widely used approach is fruitful to highlight the gender bias in promotions

but it remains purely descriptive.

We propose a more precise measure of this gender bias which can be justified with a microfounded framework.

Our work builds on the literature on job assignment models which posits the existence of heterogenous job positions

(see Sattinger, 1993; Teulings, 1995; Fortin and Lemieux, 2002; Costrell and Loury, 2004). In our framework, each

position is characterized by a specific wage offer to applicants. Some male and female workers apply for the best-

paid job. Males and females are characterized by different chances of getting this specific job. The manager of

the best-paid job selects a worker among applicants accordingly. The manager of the second best-paid job hires

an individual among the remaining workers, and so on. We define an access function as the probability ratio of

females and males getting a job of a given rank.

In an empirical section, we estimate this access function on full-time executives aged 40− 45 working in French

private and public firms. We find that at the bottom of the wage distribution (5th percentile), the probability of

females getting a job is 9% lower than that of males. The difference in probability is far larger at the top of the

wage distribution (95th percentile) and climbs to 50%. Females thus have a significantly lower access to high-paid

jobs than to low-paid jobs.

Our analysis is related to a few empirical studies which investigate the gender difference in promotions. Blackaby,

Booth and Frank (2005) find a significant gender promotion gap on the UK academic labour market after controlling

for productivity differences. Pekkarinen and Vartiainen (2006) show on Finnish data that among blue-collar workers,

females have to reach a higher productivity threshold to get promoted than males. This kind of research is limited

to case studies as it exploits detailed information on the individual ranking along the job ladder in a specific sector.

Here, we consider the whole private sector and postulate that the wage is a reasonable proxy for the position

in the job hierarchy: a higher wage corresponds to a better position. The wage has already been used by Bertrand

and Hallock (2001) to define the group of top corporate jobs which is shown to include only 2.5% of women. In

fact, results obtained by Baker, Gibbs and Holmstrom (1994) on a single firm support the fact that the rank of

a position in the job hierarchy is correlated with the wage, although the wage is not strictly attached to the job.
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Killinsworth and Reimers (1983) argue that neither the type nor the rank of a position is perfectly indexed by

the wage. This is particularly true for blue collars, for whom wages increase significantly with job tenure. Also,

some blue collars occupy jobs which are paid at the minimum wage but do not correspond to the same hierarchical

position. Hence, we restrict our attention to executives whose wage reflects more closely the rank along the job

ladder. We only analyse full-time workers aged 40 − 45 who should constitute a rather homogenous population.

Additionally, the effect of supply side factors for female full-time executives aged 40−45 should be rather limited.1

Our results show that females have a lower access to jobs than males at all ranks in the wage distribution.

Moreover, their access to jobs decreases along the job ladder. We also conduct our analysis for specific industries

as they constitute more homogenous labour markets. We consider more specifically banking and insurance as they

are labour intensive with a large share of females and have contrasting wage policies in France. Banks rely on

a rigid job classification inherited from the early eighties when they belonged to the public sector. By contrast,

insurance companies propose much more individualized careers. Females are found to have a far better access to

high-paid jobs than males in the banking industry than in the insurance industry. Results on pooled industries,

insurance and banking are qualitatively in line with the usual interpretation of the gender quantile wage difference

increasing with the rank.

We then stratify our estimation of the access function by group defined from age, labour market experience or

country of birth (France or foreign country). Results are very similar across groups. This is in line with our use of

an homogeneous population. We also make an alternative assumption on the size of the labour market, assuming

that the competition of workers for jobs occurs within each firm rather than on the national market. We estimate

the average access function across large firms employing more than 150 full-time executives aged 40 − 45. When

pooling all industries, results are quite similar to those obtained when competition is supposed to occur on the

national market. For the specific insurance industry, results are a bit different, as we find that the gender difference

in access to high-paid jobs is slightly less pronounced. This change is generated by some heterogeneity in the level

of wages among firms. Finally, we show that our results on the lower access of females to high-paid jobs are robust

when workers occupying lower ranking jobs than executive positions are included in the sample.

In the last section, the access function is micro-founded with three theoretical mechanisms that can lead to a

lower access of females to high-paid jobs. The first one is based on gender differences in labour supply. We consider

that males and females have ex-ante the same distribution of productivity but are heterogenous in their labour

supply. We show that the access function is decreasing if the difference in job application rates between females

and males increases along the job ladder. The second mechanism is based on taste discrimination (Becker, 1971).

1 It can still be argued that, for a given job position, females bargain less for the wage than males and may end up earning less at

the same hierarchical level (Babcock and Lashever, 2003). However, the effect on wages of the gender difference in bargaining power

should be rather small in our case, as French wages scales are based on a job classification system negotiated at the industry level. The

actual wage depends strongly on the ranking of the position in the job classification and is independent of gender.
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It is straighforward to show that the access function is decreasing if the preference for females relative to males

decreases along the job ladder. Finally, the third mechanism is a version of statistical discrimination where the

distribution of skills is the same for males and females but skills are observed with more noise for females than

for males (Aigner and Cain, 1977; Coate and Loury, 1993; Cornell and Welch, 1996).2 We show that statistical

discrimination can then lead to a decreasing access function. This can occur because skilled males are more often

hired for high-paid jobs as their skills are observed with less uncertainty. Males looking for less-paid jobs are those

not selected for high-paid positions and they are on average less skilled than females. As a consequence, the hiring

rate of males for less-paid jobs is lower than for high-paid jobs. The three mechanisms can occur simultanously

and the empirical access function captures the aggregate of the three explanations.e

The rest of the paper is organized as follows. In section 2, we present our framework. Our econometric strategy

to estimate the access function is detailed in section 3. We then describe our dataset and report some stylized

facts in section 4. We comment our estimation results in section 5. We conduct some robustness checks when

taking into account the individual observed heterogeneity and segmented markets in section 6. Some additional

robustness checks such as the inclusion in the sample of workers unable to access an executive position are proposed

in section 7. In section 8, we present three theoretical mechanisms that can generate a decreasing access function.

Concluding remarks are given in the last section.

2 The framework

2.1 Our model

We propose a job assignment framework that allows to consistently measure the gender differences in access to jobs.

Consider a countable number of workers applying for a countable number of job positions. There is a proportion

nm of males in the whole population of workers, which we refer to as the measure of males for clarity hereafter,

and a measure nf = 1−nm of females. For simplicity, we assume that there is a bijection between workers and job

positions. This assumption rules out the existence of workers not being hired and job positions not being filled. It

will be relaxed in Section 7.

A worker is primarily interested in the job yielding the highest wage. Job positions are heterogenous such that

each job position is associated with a specific fixed wage through a contract. This wage is not allowed to depend

on the gender of the applicant. We suppose that two job positions cannot be associated with the same wage offer

so that each job can be uniquely identified by its rank in the wage distribution.3 Workers first consider the best

2Another version of statistical discrimination posits a gender difference in average productivity (Arrow, 1971; Phelps, 1972) but we

think it is more interesting to show that a decreasing access function can be obtained without differences in the intrinsic characteristics

of the male and female subpopulations.

3The wage distribution is supposed to be exogenous. We could introduce some mechanisms on the labour market to endogenize this
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ranked position as it offers the highest wage. Those who are not hired turn to the second best ranked position,

and so on.

For any job position of given rank u, there is a measure denoted nj (u) of gender-j workers considering the job

(ie. all the gender-j workers not hired for jobs of higher rank). We have nj (1) = nj as all workers consider the

first job and nj (0) = 0 as all workers end up being employed.

We can then determine for each gender j a differential equation which is verified by the measure of available

workers at each rank. Consider an arbitrarily small interval du in the unit interval. The proportion of jobs in this

small interval is du since ranks are equally spaced (and dense) in the unit interval. The instantaneous probability

of a gender-j worker getting a job in this interval is denoted φj (u). This probability can vary with gender for

various reasons such as differences in labour supply (a different share of males and females considering that work

conditions are too constraining to apply), taste discrimination against females or statistical discrimination against

females. We discuss in Section 8 how the instantaneous probability can be micro-founded theoretically to embed

these three explanations.

It is possible to relate the instantaneous probabilities of getting a job with the process through which jobs are

filled. The measure of jobs occupied by workers of a given gender j is nj (u)φj (u) du. For this gender, the measure

of workers available for a job of rank u−du can be deduced from the measure of workers available for a job of rank

u substracting the workers who get the jobs of ranks between u− du and u :

nj (u− du) = nj (u)− nj (u)φj (u) du (1)

From this equation, we obtain when du→ 0:

n′j (u) = φj (u)nj (u) (2)

This relationship states that the instantaneous variation in the measure of gender-j workers around rank u depends

on the stock of gender-j workers and their chances of getting a job.

We now introduce a measure of relative access to jobs. Consider one male worker and one female worker available

for a job position of given rank u. These two workers have different chances of being hired as they are not of the

same gender. We can characterize the gender difference in access to jobs with the function defined as the probability

ratio of a female and a male being hired for the job position:

h (u) ≡
φf (u)

φm (u)
(3)

This function h (·) measures the gender relative access to jobs and we label it the “access function”. When the

access function takes the value one at all ranks, males and females have the same chances of getting each job

distribution but it is beyond the scope of this paper as the wage setting is not relevant to our empirical approach.
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position. When the access function takes a value lower than one for a job position of given rank, females have less

chances than males of getting the job.

It is then possible to formally define a lower access to high-paid jobs than to low-paid jobs for females:

Definition 1 Females have a lower access to high-paid jobs than to low-paid jobs if there are some ranks u0

and u1 such that for any u ∈ ]u0, u1[ and v > u1, we have h (u) > h (v) and h (v) < 1.

For instance, females have a lower access to high-paid jobs than to low-paid jobs when the access function is

continuous, strictly decreasing and takes some values lower than one at the highest ranks. It is also the case when

the access function is a two-step function with the second step at a value lower than the first step and lower than

one. In particular, an interpretation of the specification where the second step takes a zero value is the existence

of a glass ceiling.4 In practice, a lower access to high-paid jobs can be contrasted to a uniform access to all jobs

when the access function is constant at all ranks.

2.2 Gender quantile differences

The recent empirical literature on the glass ceiling has focused on the difference between the quantiles of the

wage distributions of males and females. Typically, when this difference increases with the rank, it is usually

said that there is a glass ceiling. We believe that this approach confuses two dimensions, the job position and

the associated wage, possibly leading to inaccurate interpretations. Figure 1 presents a simple scheme illustrating

this point. Suppose a classic job ladder where the wage increases more than proportionally with the rank in the

wage distribution. Positions are occupied alternately by a female and a male. The gender quantile difference for

high-paid jobs is larger than for low-paid jobs, which means that the gender wage gap widens along the job ladder.

It is tempting to conclude that there is a glass ceiling effect (according to the loose labelling of the literature), but

this interpretation is questionable as the odds of a female (or a male) occupying a position are roughly constant

along the job ladder.

[Insert F igure 1]

In fact, this intepretation does not rest on any straightforward rationale and has two caveats. First, it does not

control for the spacing between wages and thus mixes the ranks of positions on the job ladder with earnings. Second,

the rank at which quantiles are computed has a different meaning for the two genders. For males, it corresponds

to the rank in the wage distribution of males. For females, it corresponds to the rank in the wage distribution of

females.

4Very often in the literature, the glass ceiling is more loosely defined. It is considered that there is a glass ceiling effect when females’

access to jobs is particularly low for top positions.
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We now show that it is possible to generate from our framework a gender quantile difference which increases

with the rank even if there is no glass ceiling and the difference in access to jobs between males and females is the

same at all ranks. We first solve the model when the access function is constant with h (u) = .672 at all ranks

and the proportion of females is that of the banking industry (28.7%).5 The numerical solution allows to compute

vj (u) =
nj(u)
nj

as well as uj = v−1
j which gives for a job of given rank in the wage distribution of gender j, its rank

in the wage distribution of job positions.6 We can then relate the quantile function of gender j denoted λj (·) to the

quantile function of job positions λ (·) through the relationship: λj (v) = λ [uj (v)]. The gender quantile difference

is given by:

(λm − λf ) (v) = λ [um (v)]− λ [uf (v)] (4)

We can compute the gender quantile difference using the solution uj (·) of the model and the wage distribution

of job positions in the banking industry for λ (·). The gender quantile difference represented on Figure 2 is an

increasing function above rank .6. Whereas the increase is small just above that rank, the curve becomes very steep

above rank .9. The literature would conclude to a glass ceiling whereas there is none.

[ Insert F igure 2 ]

Hence, economic interpretations should rather rely on the primitive function of a model which is the access function

in our case. We now propose an econometric approach to estimate the access function non parametrically from the

data.

3 Estimation strategy

We now show how the access function can be estimated non-parametrically from a cross-section dataset containing

for each worker some information on gender and wage. First recall that the access function can be reinterpreted as

the unit probability ratio of females and males getting a given job. From equation (2), each unit probability can

be rewritten as:

φj (u) =
n′j (u)

nj (u)
(5)

5These choices are made clear in the empirical section. Indeed, we will show that the gender difference in access to jobs is nearly

uniform in the banking industry and that the access function takes values close to .672 at all ranks.

6We determine numerically for each gender the measure of available workers at each rank at the equilibrium. For females, we use the

algorithm proposed by Bulirsch and Stoer (for the implementation, see Press et al., 1992, p. 724-732) to solve the differential equation

giving nf (·). As all jobs are filled, we have: nf (u) +nm (u) = u. Deriving this equality, we get: n′m (u) = 1−n′f (u). Using (2) for the

two genders, we get: n′f (u) /n′m (u) = h (u)nf (u) /nm (u), which is equivalent to n′f (u) /
[
1− n′f (u)

]
= h (u)nf (u) /

[
u− nf (u)

]
.

Rewriting this expression to get an expression of n′f (u), we obtain: n′f (u) =
nf (u)h(u)

u−nf (u)+nf (u)h(u)
. This differential equation is solved

backward from the highest to the lowest rank using the initial condition nf (1) = nf . After the differential equation for females has

been solved, we deduce the solution for males using the relationship nm (u) = u− nf (u). It is then straightforward to compute vj (·)

and its inverse from the solution.
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We introduce for gender-j workers, the random variable corresponding to their rank in the wage distribution of job

positions, Uj . The cumulative (resp. density) of this variable is denoted FUj (resp. fUj ). The cumulative verifies

the relationship: FUj (u) = nj (u) /nj . Hence, each unit probability can be rewritten as:

φj (u) =
fUj (u)

FUj (u)
(6)

The numerator and denominator of the gender-j unit probability only depend on the distribution of ranks of

gender-j workers in the wage distribution of job positions. This means that in practice, the ranks of workers of

each gender in the distribution of job positions are suffi cient to estimate the unit probabilities, and thus the access

function. These ranks can be computed very easily from the data.

For each gender, the numerator and denominator of the unit probability of getting a job can be evaluated using

the usual Rosenblatt-Parzen Kernel estimator of the density fUj (·) which is given by:

f̃Uj (u) =
1

ωjNj

∑
i|j(i)=j

K

(
u− ui
ωj

)
(7)

where K (·) is a Kernel, ωj is the bandwidth, j (i) is the gender of individual i and ui is his/her rank in the wage

distribution of job positions. A standard estimator of the cumulative FUj (·) is then given by:

F̃Uj (u) =

u∫
0

f̃Uj (u) du =
1

Nj

∑
i|j(i)=j

L

(
u− ui
ωj

)
(8)

where L (u) =

u∫
−∞

K (v) dv. However, we expect the estimators f̃Uj (·) and F̃Uj (·) to perform quite poorly for

ranks close to zero and one as standard non-parametric estimators are asymptotically biased at the boundaries (see

Härdle, 1990).

Therefore, we rather consider some estimators based on local polynomial approximations in line with Jones

(1993) and Lejeune and Sarda (1992). The density and cumulative functions evaluated at a given rank u are

obtained by minimizing:

min
α,β

∫ 1

0

K

(
u− v
ωj

)
[gj (v)− α− β (u− v)]

2
dv (9)

where gj is either the empirical density function defined as gj (v) = N−1
j

∑
i|j(i)=j δui (v) where δu (v) is the Dirac

delta function associated to v, or the empirical cumulative function defined as gj (v) = N−1
j

∑
i|j(i)=j 1{ui≤v}. The

estimators of the density and cumulative functions at rank u, denoted f̂Uj (u) and F̂Uj (u), are given by the value

of α derived from their respective minimization program. Here, the boundary problem is taken into account by

simply fixing the bounds of the integral in (9) to zero and one.7 The bias at thesd boundaries is of order O
(
ω2
j

)
and tends to zero when the bandwidth tends to zero.

7 If, instead, the bounds of the integral in (9) were fixed to −∞ and +∞, the estimators of the density and cumulative would turn

out to be the usual kernel estimators given by (7) and (8).
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In our application, the Kernel is chosen to be Epanechnikov and we experiment with values of bandwidth

which are mutliples of the value given by the rule of thumb (Silverman, 1986). For a bandwidth taking the value

given by the rule of thumb, there are not enough observations at small ranks for the density and cumulative to be

estimated properly. We thus decided to use a bandwidth which is equal to two times the value given by the rule

of thumb.8 Note that the Epanechnikov kernel takes the value zero outside the interval [−ωj , ωj ]. It is possible to

show that because of this property, the estimator of the density obtained from (9) takes exactly the same value

as the estimator given by (7) for ranks in the interval [ωj , 1 − ωj ]. In fact, the two estimators for the density

computed at points in this interval coincide because there is no boundary problem.9 Technical details to obtain

some analytical formulas for the estimators are given in Appendix A.

For gender j, an estimator of the unit probability of getting a job can then be computed as φ̂j (u) = f̂Uj (u) /F̂Uj (u).

We finally obtain an estimator of the access function:

ĥ (u) =
φ̂f (u)

φ̂m (u)
(10)

This estimator is computed for a grid of 1000 ranks in [0, 1] which are equally spaced. The confidence interval of

the access function at each rank is computed by bootstrap with replacement (100 replications).

It is also possible to adopt a parametric specification of the access function and estimate the parameters from a

minimization program as shown in Appendix B. More specifically, we consider the linear specification h (u) = a−b.u

where a is the access to jobs at the lowest rank and b captures a decrease or an increase in access to jobs with the

rank. A test of the linear specification using the Cramer Van-Mises statistic is also provided.

4 Descriptive statistics

4.1 The data

The wage distribution of job positions, as well as the males’and females’wage distributions, are constructed from

the Déclarations Annuelles de Données Sociales (DADS) or Annual Declarations of Social Data database. These

data have been collected from employers for tax purposes every year since 1994. They are exhaustive for all private

and public firms. For each job, the data contain some information on the industry, contract type (full-time/part-

time), daily wage, socio-occupational category, age, sex and country of birth (France/foreign country10) of the

employee. A limitation is that the education level of employees is not reported.

8Results obtained for different values of the bandwidth are available upon request.

9Note that it is not exactly the case for the cumulative as it is computed using values close to boundary 0.

10For workers born in a foreign country, our data do not allow us to distinguish which country it is.
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As our model is static, we consider the single year 2003. For that year, there are 20, 599, 456 jobs in 1, 599, 865

firms. We want to restrict our attention to a subpopulation of workers for whom the assumptions of our model are

more likely to be verified. Because of the mimimum wage, some blue collars and clerks may be paid the same wage

although they are ranked differently along the job ladder. Also, the length of tenure has an important effect on

the wage of blue collars even if they do not move to another job position. We discard low-skilled workers from our

analysis to avoid these issues and rather focus on workers with an executive job position (business managers, top

executives, engineers and marketing staff). There are 2, 173, 975 executive job positions in 318, 852 firms.

We want to study simular subpopulations of males and females competing for the same positions. For that

purpose, we restrict our sample to executives aged 40− 45 working full time. Executive females still on the market

at those ages usually have not experienced career interruptions, are more career-oriented and compete for jobs with

males. Labour supply factors such as family duties should thus play a limited role in the analysis. Having a range

of only six years for age limits the cohort effects.

Table 1 shows that for the 40 − 45 age bracket, there are 354, 968 executive job positions in 86, 989 firms.

22.4% of the executives are females. As reported in Table A.1, the average age is the same for males and females

(42.4 years) and the proportion of workers born in a foreign country is very close at 11% for males and 10% for

females.11 The wage distribution is skewed to the right and the mean daily wage (139 euros) is higher than the

median daily wage (109 euros). The dispersion is very large and the standard error of wages stands at 602 euros.

[ Insert Table 1 ]

Figure 3 represents the log-wage densities of male and female full-time executives aged 40−45 working in a private

or public firm. It shows that wages of males are more dispersed and that high wages are more frequent than

for females. The gender difference in median wage is as large as 17 euros. In line with the literature on quantile

regressions, Figure 4 represents the quantile wage difference as a function of rank. Males have a higher wage than

females at every rank and the gap widens as the rank increases. Using the gender quantile values reported in table

1, we obtain a wage difference of 14% at the bottom of the distribution (5th percentile) which increases to 26% at

the top of the distribution (95th percentile).

[ Insert F igures 3 and 4 ]

We will take a closer look at two industries: banking and insurance. These industries share some similarities as they

are both labor intensive and both employ a high proportion of executives. Also, the proportion of females is above

the average, which is quite usual in the service industries: 28.7% (resp. 36.9%) of executives are females in banking

(resp. insurance). This ensures that there is a large pool of female executives competing for promotion with their

11As shown in Appendix D with the 2003 French Labour Survey, the distributions of diplomas for our subpopulations of males and

females are rather close.
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male counterparts. The common organizational features of the two industries contrast with the differences in their

wage structure. The wage dispersion is far larger in the banking industry than in the insurance industry. There is

also a far larger gender gap in median wage for insurance (21 euros) than for banking (13 euros).

It is of particular interest to study the females’access to high-paid jobs in these two industries as economic

performance in these industries relies heavily on the quality of human resource management (Bartel, 2004). We

represented the gender quantile difference as a function of rank for the two industries in Figures 5 and 6. Whereas

the gender quantile difference starts increasing for insurance at low ranks, it increases only above rank .8 for

banking. Using the gender quantile values reported in Table 1, we obtain a wage difference for insurance (resp.

banking) of 13% (resp.11%) at the bottom of the distribution (5th percentile) which increases to 53% (resp. 33%)

at the top of the distribution (95th percentile).

[ Insert F igures 5 and 6 ]

5 Results

Figure 7 represents the estimator of the access function ĥ and the confidence interval at each rank of the wage

distribution of job positions. Recall that ĥ (u) can be interpreted as the gender probability ratio of getting a job

at rank u. When ĥ (u) > 1, females have a better access to the job than males. When ĥ (u) < 1, males have a

better access to the job than females. As the access function takes values which are always lower than one, the

probability of getting a job at any rank is lower for females than for males. However, the values are close to one for

the first ranks, indicating that females and males have almost the same access to lower-paid jobs. For instance, the

probability of females getting a job at rank .05 is only 9% lower than the probability of males as shown in Table

2. Between ranks .2 and .8, the access to job slightly decreases for females compared to males. After rank .8, the

access function decreases more sharply, pointing to a far lower female access to the best-paid jobs. The probability

of females getting a job at rank .95 is 50% lower than the probability of males.

[ Insert F igure 7 ]

[ Insert Table 2 ]

We now look at banking and insurance, which are closely related as shown by the recent take-overs across these two

industries. These industries have different wage policies. Banks rely on a job classification and on regulations which

are quite rigid as they are inherited from the period when most banks belonged to the public sector. Insurance

companies give more weight to the individualization of careers (Dejonghes and Gasnier, 1990). We find that there

is a sharp constrast in the access function between the two industries. For insurance, it decreases sharply from rank

.6 to rank 1, pointing to a lower female access to high-paid jobs than to low-paid jobs (Figure 8). For banking, the
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access function decreases only at the highest rank and the overall pattern points to a uniform lower access to jobs

for females (Figure 9).

We can assess more accurately the extent to which females have a lower access to high-paid jobs than to low-paid

jobs from the slope of the access function. Indeed, the steeper the slope, the larger the difference in female access to

high-paid jobs and to low-paid jobs. We thus estimate a linear specification of the access function, h (u) = a− b.u,

and compare the value of the slope parameter b for the pooled industries, banking and insurance (see Appendix B

for details on the procedure). For the pooled industries, an increase of one decile in the wage distribution of job

positions (∆u = .1) yields a decrease in access to jobs of females relative to males of 2.8% (b = .28) as shown in

Table 3. Whereas the decrease is smaller in the banking industry, at .7%, it is more than two times larger in the

insurance industry, at 6.0%. Interestingly, a statistical test shows that the linearity of the access function is not

rejected at the five percent level for the pooled industries, nor for banking and insurance. As the slope of the access

function is small in the banking industry for ranks between .1 and .9, we tried to approximate the access function

of that sector with a constant specification: h (u) = γ. The constant is estimated to be .672 and the specification

is not rejected at the five percent level. Hence, the access function in the banking sector is nearly constant except

at the extremes.

[ Insert F igures 8 and 9 ]

[ Insert Table 3 ]

Overall, our results on pooled industries, banking and insurance suggest a lower female access to high-paid jobs

than to low-paid jobs.

6 Individual and market heterogeneity

So far, we have considered that workers are heterogenous only in the gender dimension, in the sense that all workers

of a given gender have ex-ante the same chances of getting a job of a given rank. However, in our data, workers

also differ in age and country of birth, and there is no reason why their access to jobs cannot be influenced by

these factors.12 As a consequence, we estimate access functions for different subgroups of the population and assess

whether our results are robust across subgroups.13

We represent the access functions for the age-40 group and the age-45 group in Figure 10. The two access

functions have a very similar profile although the gender gap in access to jobs is slightly lower for workers aged 40

12Workers also differ in their qualifications and labour market experience, which are likely to affect their chances of getting hired

but are not available in our dataset. We will assess the effect of labour market experience in Section 7 for a subsample of workers for

whom it is possible to construct a measure of labour market experience.

13This amounts to assessing the effect of individual variables using a non-parametric approach. A semi-parametric approach is

developped in Gobillon, Meurs and Roux (2011).

12



than for workers aged 45. We also represent the access functions for workers born in France and workers born in

a foreign country in Figure 11. The two access functions exhibit a very similar profile although the gender gap in

access to jobs is slightly lower for workers born in France than for workers born in a foreign country.

[ Insert F igures 10 and 11 ]

We also implicitly assumed that all workers compete on the national market. This is arguable as some individuals

spend their whole career in a large firm which can be considered as an internal market. We can redefine the access

function under the alternative assumption that each firm is a separate market and workers within each firm compete

with each other but not with outsiders. We first compute non parametrically an access function for each firm using

the estimation procedure developed in Section 3. An overall access function is then defined as a weighted average

of the access functions of firms where the weight is the number of workers in the firm.14 Alternatively, we adopt

a parametric approach and consider that the access function of each firm follows a linear specification where the

parameters are common to all firms. An estimation procedure and a test of the linear specification are provided in

Appendix B.

For this robustness check, we limit our sample to large firms employing at least 150 full-time executives aged

40−45. Indeed, many workers getting their first job in a large firm spend their entire career in that firm. As shown

in Table 1, only 175/86989 ∗ 100 = .5% of firms in our sample are large, but they employ 33% of workers. The

median wage in large firms is 114 euros, which is a bit higher than for the whole sample (109 euros). By contrast,

the wages are far less dispersed, with a standard deviation of 132 euros compared to 602 euros for the whole sample.

Figure 12 shows that the average access function when workers compete on each submarket has a profile quite

similar to the access function when all workers of large firms compete on a common national market. The similarity

between the two curves is confirmed when evaluating some linear specifications of the access function in the two

cases. The estimated specifications are respectively h (u) = .74− .09u and h (u) = .69− .05u which are very close.

Interestingly, our linear specification is rejected only when competition occurs on the national market and not when

it occurs on segmented submarkets. This difference arises because females are often employed by firms offering low

wages and we condition out the heterogeneity among firms only when workers compete on segmented submarkets.

Indeed, we conduct a within-firm estimation in the spirit of what is done for linear panel data models.

[ Insert F igure 12 ]

We performed the same exercise for the insurance and banking industries. For banking, the average access function

when competition occurs on each segmented submarket has a profile similar to the access function when competition

occurs on the national market. Curves seem to differ for insurance. We estimated a linear specification of the two

access functions to facilitate the comparison. We obtained for insurance, respectively, h (u) = .93 − .66u when

14See Gobillon, Meurs and Roux (2011) for more details.
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competition occurs on the national market and h (u) = .74 − .41u when it occurs on each segmented submarket.

Hence, the access function begins at a lower level when competition occurs on each segmented submarket but its

slope is less steep, suggesting that the lower female access to high-paid jobs is less pronounced. Once again, the

difference between the two access functions can be explained by some heterogeneity in the level of wages among

firms and the sorting of females in firms offering low wages. We control for this heterogeneity only when competition

is supposed to occur within firms. In any case, the gender difference in access to high-paid jobs is larger in the

insurance industry than in the banking industry and for pooled industries. Our results are thus qualitatively robust

to the assumption on the extent of the market where workers compete for jobs.

7 Robustness checks

We now assess the robustness of our results to some additional changes in our assumptions.

We argued that our population of interest is homogeneous but this could be questioned as the labour market

experience is missing from our analysis. Females may have accumulated less experience on the labour market than

males because of career interruptions to raise children. For this reason, firms could prefer to select males rather

than females for the best positions. We can evaluate to what extent this type of mechanism plays a role for 4% of

workers for whom we have a panel over the 1984-2003 period.15 A comparison of Table A.2 with Tables 1 and A.1.

shows that descriptive statistics by gender for the whole dataset and for the 4% subsample are quite close.16

We use the panel information to construct a measure of experience defined as the number of days spent in a

firm since 1984. The median experience for our whole sample is 16.5 years. We define two subgroups depending

on whether workers have experience below or above the median. We assess whether our results are robust for each

experience group. This would point to a limited effect of experience on gender differences in access to high-paid

jobs. Figure 13 shows that the profile of the access function is very similar to the one obtained for the whole

population.

[ Insert F igures 13 ]

15We use the panel data of the Déclaration des Données Sociales (DADS) which contains some panel information on all workers born

in October of an even year over the 1976-2003 period (see Abowd, Kramarz and Roux, 2006, for more details). There is no information

for the years 1981 and 1983 because all the resources of the French Institute of Statistics were devoted to the 1982 census. We thus

only consider the information from 1984 onwards. The information is also missing for the census year 1990 and we did not take into

account that year in our computation of the labour market experience.

16The average age, the proportion of workers born in a foreign country and the median wage are slightly higher for males and females

in the subsample than in the whole sample.
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Overall, our findings support our claim that the population is rather homogenous. In particular, this result is

driven by the restriction of the analysis to full-time workers. When part-time workers are included in the analysis,

controlling for experience lowers the gender difference in access to jobs.

Another limit to our analysis is that in our model, all workers get an executive position. This assumption

usually does not hold as some workers may decide not to apply for an executive position because of work conditions

and some applicants may not be selected for any executive position. These workers are employed in intermediate

positions.17 It is possible to extend the model to include males and females who do not get an executive job. For a

given job of rank u in the wage distribution, it is possible to decompose the measure of gender-j workers available

for the job nj (u) into the measure of workers not occupying any executive job n0j and the measure of workers not

yet hired for an executive job but who will be hired ñj (u): nj (u) = n0j + ñj (u). The cumulative of gender-j ranks

now verifies: FUj (u) = ñj (u) /ñj where ñj is the measure of workers occupying an executive job. Using equation

(5), the gender-j unit probability of getting the rank-u job can be rewritten as:

φj (u) =
fUj (u)

ωj + FUj (u)

where ωj = n0j/ñj is the ratio between the measure of workers not occupying an executive job and the measure of

workers occupying an executive job. The access function is given again as the ratio between the unit probabilities

of females and males.

In the computation of the ratios ωj , we use the whole population of workers holding an intermediate position

as a proxy for the population of workers not hired for an executive position. Indeed, these workers belong to

the socio-occupational category just below executive. As one can argue that some of these workers should not be

considered as they do not have the skills for becoming executives, we also considered alternatively the subpopulation

of workers holding intermediate positions for at least ten years during their career. We expect these workers to

have accumulated enough experience to apply for an executive position. In this category, we miss, however, the

workers with less experience but enough skills to become executives. The true ratio ωj probably lies between the

bounds obtained using our two alternative definitions of workers not being selected for executive positions. The

ratios are found to be ωf = 1.651 and ωm = 1.334 when resorting to the whole population of workers occupying

an intermediate position as a measure of workers not hired for executive positions. As the ratios are larger than

one, there are more workers occupying an intermediate position than workers occupying an executive position.

The ratios drop to ωf = .735 and ωm = .607 when restricting the sample to workers having at least ten years

of experience in intermediate positions. Nevertheless, even in this case, the ratios are large and always higher

for females than for males. This means that, as expected, a larger proportion of females occupy an intermediate

position.

17 Intermediate positions include: intermediate positions in the health sector or social work sector, intermediate administrative and

marketing positions in firms, technician positions and supervisor positions.
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Interestingly, the access function at rank zero takes the value (ωm/ωf ) /
(
fUm (0) /fUf (0)

)
and is thus pro-

portional to ωm/ωf . Hence, the access function at rank zero will be very slightly lower when using all workers

occupying an intermediate position as a measure of workers without an executive position (ωm/ωf = .808) than

when using only the workers with at least ten years of experience in intermediate positions (ωm/ωf = .826).

The access functions obtained when considering only workers occupying an executive position and when also

considering the two alternative groups of workers not occupying an executive position are represented in Figure 14.

The two access functions obtained when also considering workers not occupying an executive position are below

one and decreasing. They remain very close to the access function when considering only workers occupying an

executive position for ranks above .5. Results on a lower female access to high-paid jobs would thus be robust to

alternative assumptions on the extent to which all workers occupy an executive job.

[ Insert F igures 14 ]

8 Theoretical foundation of the approach

We now show how the gender access function can be founded theoretically with some simple models of gender

differences in labour supply, taste discrimination of managers against females, and statistical discrimination against

females. In particular, all these mechanisms can generate a decreasing access function in line with our results. For

simplicity, we present these three mechanisms separately, but they can easily be embedded in one single model as

explained at the end of the section. We do not argue that their relative role can be identified separately from the

data, but rather that they can all contribute to explaining a decreasing access function.

When considering gender differences in labour supply and taste discrimination, we assume that the produc-

tivity of all workers whatever their gender is the same. Indeed, no productivity heterogeneity is needed for these

mechanisms as they are not related to productivity. By contrast, we suppose that there is some productivity het-

erogeneity when considering statistical discrimination as, in that case, the choice of workers by firms is based on

the observation of the productivity with error. We show that even when the distribution of skills is the same for

males and females, it is possible to obtain a decreasing access function. This can happen when the measurement

error on female productivity has a larger variance than the measurement error on male productivity.

The recruitment process is similar in the three cases. For a job of rank u, a manager screens the applicants. He

derives a utility Vi (u) from an applicant i whose form depends on the mechanism. The manager hires the applicant

yielding the highest utility. The set of applicants to the job is the set of workers not hired for a job of higher rank

and interested in the job. This set can be defined recursively as:

Ω (u) =

{
i applying for the rank-u job

∣∣∣∣for all ũ > u, i /∈ Ω (ũ) or Vi (ũ) < max
k∈Ω(ũ)

Vk (ũ)

}
(11)
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8.1 Participation

We consider that males and females have ex-ante the same productivity. However, males and females are heteroge-

neous in their labour supply. Some females may find the work conditions for some jobs too constraining more often

than males, especially for well-paid jobs which usually involve long working hours and investment not compatible

with family constraints.

We thus consider that, for a given job of rank u, there is an exogenous share 1 − υj (u) of available gender-j

workers who decide not to apply for the job.18 The measure of applicants for the job is then υj (u)nj (u). We

suppose that υj (u) > 0: there are always some workers interested in the position. The utility derived by a manager

from an applicant i is a random match quality Vi (u) = εi (u) corresponding to the profit associated with the job.

The manager is supposed to observe the match quality so that he can evaluate exactly how much profit he can

make from the job if he hires the applicant. The manager hires the applicant yielding the highest profit. The set of

applicants for the job Ω (u) contains all the workers who did not apply for the jobs above rank u because of work

constraints or did not draw a match quality high enough to get selected for those jobs.

The resulting allocation of workers is a Nash equilibrium. Workers have no incentive to move from their position.

This is because the worker occupying the best position has no incentive to move to a less-paid job. The worker

occupying the second best position cannot move to the best position as it is already occupied. Hence, he has no

incentive to move, and so on. Also, managers have no incentive to fire an employee as they cannot find a better

worker on the market. We assume that at the equilibrium, there is a bijection between workers and job positions

so that all job positions are filled and all workers are employed.

For a given job, it is possible to determine a closed formula for the probability that the selected worker is of

gender j under some additional assumptions. The maximization program of the manager is a multinomial model

with two specificities. First, the choice set consists in all applicants still available after better ranked job positions

have been filled. There would be a selection process based on match qualities if the match quality of the workers

available for the job was correlated with their match quality for better ranked jobs. We suppose that the match

qualities are drawn independently across jobs to avoid this kind of selection mechanism.19 Second, the choice

set contains an infinite but countable number of workers. We extend the extreme value assumption on the law

of residuals that is associated with a logit specification to an infinite countable number of jobs following Dagsvik

(1994).20 In particular, this assumption ensures that for any given job, the probability of selecting a worker in any

18 In particular, this setting corresponds to the case where the decision to apply for the job is drawn randomly and independently

across workers in the same binomial law of parameter υj (u).

19This assumption is extreme as it yields that profits made from a given worker are not correlated across jobs. However, it is easy to

generate a correlation with some unobserved heterogeneity in productivity among workers as shown later when dealing with statistical

discrimination.

20For any job of given rank u, the share of applicants of gender j is given by
υj(u)nj(u)

υf (u)nf (u)+υm(u)nm(u)
. We asume that the points of
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given finite subgroup of available applicants follows a logit model. Under this assumption, the following formula is

verified by the probability that the worker chosen for the job of rank u is of gender j:

P (j (u) = j) = nj (u)φj (u) (12)

with

φj (u) =
υj (u)

nf (u) υf (u) + nm (u) υm (u)
(13)

The denominator of this probability is a competition term which depends on the measures of available workers

of the two genders as well as labour supply effects (preferences for work conditions). Competing workers are

available workers of each gender who decide to apply. Some suffi cient conditions under which (2) has a solution

when instantaneous probabilities of getting a job verify (13) are given in Appendix C.21 From this formula, we can

rewrite the access function as:

h (u) =
υf (u)

υm (u)

The access function is simply the ratio of the application rates of females and males for the job positions along the

wage distribution. The access function is decreasing if the application rate of females relative to males decreases

as the rank of the job position in the wage distribution increases. By contrast, it is constant if the gender ratio of

application rates is constant along the wage distribution.

8.2 Taste discrimination

We now assume that all males and females available for a job of a given rank decide to apply for the job (ie. the

application rate is equal to one for each gender), but that there can be some gender-specific taste dicrimination

by the manager when screening the applicants. We now suppose that the manager chooses an applicant based not

only on profit but also on the effect of the applicant’s gender on his well-being. The manager hiring a worker for a

job of rank u derives a utility from an applicant i which is:

Vi (u) = ln θj(i) (u) + εi (u) (14)

where θj (u) captures the taste of the manager for gender j. Note that the tastes are allowed to vary along the job

ladder. The manager chooses the applicant who grants him the highest level of utility in the set of applicants for

the job, Ω (u), which contains all the workers who did not draw a match quality high enough to get selected for

jobs above rank u.

As previously, the resulting allocation of workers is a Nash equilibrium. Also, it is possible to determine for a

given job, a closed formula for the probability that the selected worker is of gender j under the same assumption

the sequence {j (i) , εi (u)}, i ∈ Ω (u) are the points of a Poisson process with intensity measure
υj(u)nj(u)

υf (u)nf (u)+υm(u)nm(u)
exp(−ε)dε.

21 In fact, conditions are the same for the three mechanisms separately or taken together, and we will only present the existence

theorem for the full model presented in Subsection 8.4.
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as in the case of gender differences in labour supply. The probability that the worker chosen for the job of rank u

is of gender j verifies (12) where the unit probability of a gender-j worker getting the job is now given by:

φj (u) =
θj (u)

nf (u) θf (u) + nm (u) θm (u)
(15)

The denominator of this probability is a competition term which depends on the measures of available workers of

the two genders as well as taste discrimation which can make workers of a given gender more likely to be hired

than workers of the other gender. From this formula, we can rewrite the access function as:

h (u) =
θf (u)

θm (u)

The access function is simply the preference of the managers for females relative to males for the job positions

along the wage distribution. The access function is decreasing if the preference of the manager for males relative

to females increases as the rank of the job position in the wage distribution increases. By contrast, it is constant

if the preferences of managers are the same whatever the position of the jobs in the wage distribution.

8.3 Statistical discrimination

We now assume that all males and females available for a job of a given rank decide to apply for that job (ie. the

application rate is equal to one for each gender) and there is no taste discrimination. However, each worker now has

some specific skills. We also consider that the skills of applicants are only observed with some noise by managers

in line with Aigner and Cain (1977).

Each individual i is now characterized by skills si affecting his productivity and the profit of job u occupied by

an individual i is now given by:

Πi (u) = si + εi (u) (16)

When a worker applies to the job, the manager only observes the worker’s skills with some noise such that the

skills perceived can be written as yi (u) = si + ηi (u) where ηi (u) is a random error term specific to the job of rank

u. Note that this error term is not equivalent to the match-specific quality εi (u). Indeed, whereas the manager

observes the match quality, he does not observe the error term. We consider that the manager is risk neutral such

that his utility is the expected profit. As the manager does not observe the true value of skills, he computes his

expected profit conditionally on the information he has on skills. This information is the observed productivity

and the fact that the applicant is still in the set of available workers of gender j (i). As the match quality is also

observed, the expected profit (ie. utility of the manager) is:

Vi (u) ≡ E
[
Πi (u)

∣∣yi (u) , εi (u) , i ∈ Ωj(i) (u)
]

= E
[
si
∣∣yi (u) , i ∈ Ωj(i) (u)

]
+ εi (u) (17)

This formula embeds the case where there is some skill heterogeneity perfectly observed by the manager, in which

case yi (u) = si and thus E
[
si
∣∣yi (u) , i ∈ Ωj(i) (u)

]
= si. The conditional expected profit for a given individual is
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then positively correlated across jobs with the covariance being equal to V (si). When there is some noise in the

skills observed by the managers, there is still a positive covariance due to skills, but the formula is more intricate

because of the filtering process when the rank decreases and the noise which varies across jobs. We make the

same additional assumption on the discrete choice model for the selection of an applicant as in the case of taste

discrimination such that for any given job, the probability of selecting a worker in any given finite subgroup of

available applicants follows a logit model. Equation (12) is verified with:

φj (u) =
Ψj (u)

nf (u) Ψf (u) + nm (u) Ψm (u)
with Ψj (u) = Eyi(u) [expE [si |yi (u) , i ∈ Ωj (u) ]] (18)

Here, Ψj (u) is the average (exponentiated) expected skills for gender-j workers conditional on the available infor-

mation at rank u. We finally obtain:

h (u) =
Ψf (u)

Ψm (u)
(19)

The gender with the highest average expected skills has a better access to jobs.

Suppose that the distribution of true skills is the same for males and females, and follows a normal law with

mean ω and variance σ2 for each gender.22 Suppose also that the noise on skills has the same distribution at all

ranks for each gender but has a higher dispersion for females. More specifically, the noise is assumed to be normal

with mean zero and gender-specific variance σ2
j where σ

2
f > σ2

m. In that case, it is possible to obtain an access

function which is decreasing even if males and females have the same distribution of skills. We have for a given

individual i applying for the job at rank u = 1 (see Aigner and Cain, 1977):

E
[
si
∣∣yi (1) , i ∈ Ωj(i) (1)

]
= E [si |yi (1) ] =

(
1− γj(i)

)
ω + γj(i)yi (1) (20)

where γj = σ2/
(
σ2 + σ2

j

)
. The formula of the expected skills differs for the two genders only because the variance

of the noise differs as shown by the term γj . Importantly, expected skills are higher for males than for females

for any given level of observed skills yi (1) > ω. As the manager chooses an applicant depending on the expected

skills, the selection process translates into some statistical discrimination in favor of males for observed skills above

the average of true skills. Indeed, for a high level of observed skills, expected skills are higher for males than for

females because there is a less uncertainty on their skills. This makes males with a high level of observed skills

more likely to be hired and there is a filtering process with some transformations of the gender skill distribution

as the rank decreases along the wage distribution. At high ranks, males are more likely to be hired, but as their

average skills decrease faster than females as the rank decreases, the access to jobs at lower ranks gets better for

22Alternatively, the case where there is no noise on the skills observed by the managers can be considered. We then have Ψj (u) =

Esi [exp (si) |i ∈ Ωj (u) ] which is the average exponentiated true skills for gender j. The access function compares the true skills of the

available workers between the two genders at each rank in the wage distribution of job positions. If the exponentiated values of true

skills are on average larger for males than for females, the access function at the highest rank is lower than one. The access function

is decreasing when, as ranks get below one, the best males are on average more often selected for the jobs and leave the population of

available workers. The same mechanisms and conclusions apply when there is a noise following the same law for the two genders.
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females as they have on average better skills than males. However, there is also a compensating mechanism that

goes in the opposite direction. Consider one male and one female having the same value of true skills. As females

have on average a higher variance of the noise, the female may draw a much higher value of the observed skills yi (1)

than the male. In that case, it is the female who is hired rather than the male. As the model is not analytically

tractable even under our parametric assumptions, we show with some simulations that it is possible to generate a

decreasing access function.23 The implementation of the simulations is detailed in Appendix E. For skills following

a standard normal law (ω = 0 and σ2 = 1) and noise of variance σ2
f = 2 for females and σ2

m = 1 for males, Figure

15 shows that the access function is decreasing for ranks above .2. This suggests that statistical discrimination

could contribute to the decrease in the access function estimated from the data.24

[ Insert F igures 15 ]

The assignment of workers is an equilibrium under the extreme assumption that managers do not learn more about

the true skills of workers once they are hired. Was it not the case, managers of good jobs would find that the worker

they hired had skills which were not that high but drew a value of the noise which was high. In that case, he would

want to fire him and hire another worker. Some workers at a lower rank would apply.

8.4 Full model

Of course, the three mechanisms presented here can occur simultaneously. It is easy to show that when including

the three mechanisms in the model, the access function is given by:

h (u) =
µf (u)

µm (u)
with µj (u) = υj (u) θj (u) Ψj (u)

As the three mechanisms can all predict a decreasing access function, this formula confirms that they cannot be

identified separately from the empirical access function obtained from the data. In fact, the access function rather

captures the aggregate of the three mechanisms.

9 Conclusion

In this paper, we propose a measure of gender difference in access to jobs based on a job assignment framework.

Workers compete for job positions which are ranked in decreasing order of their wage. Males and females have

23 In fact, the model is tractable only at rank u = 1 and, according to (20), we have for yi (1) > ω that the expected true skills are

higher for males than for females for some given observed skills. This translates into a higher propensity of managers to hire males

rather than females for some given observed skills, males with high observed skills (and thus on average high true skills) being more

often hired.

24Note that the simulated access function takes values higher than the estimated access function and even higher than one for ranks

below .5. However, this is not contradictory since statistical discrimination can combine with other mechanisms that lower the female

access to jobs at all ranks such as taste discrimination.
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different chances of getting each job. The manager of the best-paid job selects a worker among applicants. The

manager of the second best-paid job hires an individual among the remaining workers, and so on. We define an

access function as the probability ratio of females and males getting a job of a given rank.

We propose a non-parametric approach to estimate the access function from cross-section data. We apply our

approach to full-time workers aged 40 − 45 using the 2003 Déclarations Annuelles des Données Sociales (DADS)

which is exhaustive for all public and private firms. We find that females have a lower access to jobs at all ranks in

the wage distribution of job positions and that the access function is decreasing with the rank. At the lowest ranks,

the probability of females getting a given job is 9% lower than the probability of males. The difference between

these probabilities is far larger at the highest ranks and climbs to 50%. These results are in line with a lower access

to high-paid jobs for females.

We show that a decreasing access function can be theoretically micro-founded with three mechanisms. First,

females may apply less often for high-paid jobs because working hours are less compatible with family constraints.

Second, there can be taste discrimination against females which increases with the rank. Third, there can be

statistical discrimination such that the skill distribution is the same for males and females, but skills are observed

with more uncertainty for females than for males by managers. Indeed, highly skilled males are more often hired

than highly skilled females for high-paid jobs because managers observe their skills with less noise. Moreover,

remaining males who apply to less-paid jobs are on average less skilled than females and the chances of females

being hired for less-paid jobs is higher.

Our model is initially designed to interpret cross-section gender wage differences in terms of gender differences

in access to jobs. Alternatively, it could be applied to other subgroups of the population such as natives and

immigrants. Also, it could be interesting to extend our model to a dynamic setting to study changes in the ranks

of males and females in the wage distribution of job positions through job changes, promotions and lay-offs.
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10 APPENDIX

10.1 Appendix A: Kernel estimator taking boundaries into account

In this Appendix, we explain our approach to estimate the density and cumulative of ranks of gender-j workers in

the wage distribution of job positions. We consider the following generic minimization program:

min
α,β

∫ 1

0

Kω (u− v) [g (v)− α− β (u− v)]
2
dv

where Kω (u) = 1
ωK

(
u
ω

)
with K (u) a kernel with ω the bandwidth, g (v) can be either the empirical cdf Fn (v) =

n−1
∑n
i=1 1{ui≤v} to get an estimate of F̂ (v), or the empirical pdf fn (v) = n−1

∑n
i=1 δui (v), where δu is the Dirac

function associated to u defined such that
∫ 1

0
t (v) δu (v) dv = t (u) for any function t of support [0, 1], to get an

estimate of f̂ (v).

It is possible to solve the minimization program from the two first-order conditions obtained when deriving the

minimized expression with respect to α and β:∫ 1

0

Kω (u− v) g (v) dv = α̂

∫ 1

0

Kω (u− v) dv + β̂

∫ 1

0

Kω (u− v) (u− v) dv∫ 1

0

Kω (u− v) g (v) (u− v) dv = α̂

∫ 1

0

Kω (u− v) (u− v) dv + β̂

∫ 1

0

Kω (u− v) (u− v)
2
dv

The solution of this system for α is either the estimated density when g is the empirical density or the estimated

cumulative when g is the empirical cumulative. Denote:

a` (u, ω, g) =

∫ 1

0

Kω (u− v) t (v) (u− v)
`
dv

where t is any function, we get:

f̂ (u) =
a2 (u, ω, 1) a0 (u, ω, fn)− a1 (u, ω, 1) a1 (u, ω, fn)

a2 (u, ω, 1) a0 (u, ω, 1)− a1 (u, ω, 1)
2

F̂ (u) =
a2 (u, ω, 1) a0 (u, ω, Fn)− a1 (u, ω, 1) a1 (u, ω, Fn)

a2 (u, ω, 1) a0 (u, ω, 1)− a1 (u, ω, 1)
2

with:

a` (u, ω, fn) =

∫ 1

0

Kω (u− v) fn (v) (u− v)
`
dv

=

∫ 1

0

1

ω
K

(
u− v
ω

)
1

n

n∑
i=1

δui (v) (u− v)
`
dv

=
1

nω

n∑
i=1

∫ 1

0

K

(
u− v
ω

)
δui (v) (u− v)

`
dv

=
1

nω
K

(
u− ui
ω

)
(u− ui)l
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and:

a` (u, ω, 1) = ω`
∫ u

ω

u−1
ω

K (v) v`dv

a` (u, ω, Fn) = ω`
∫ u

ω

u−1
ω

K (v) v`Fn (u− ωv) dv

=
ω`

n

n∑
i=1

∫ u
ω

u−1
ω

K (v) v`1ui≤u−ωvdv

Define:

I` (v, u) =

∫ v

u

K (x)x`dx

We have:

a` (u, ω, 1) = ω`I`

(
u

ω
,
u− 1

ω

)
a` (u, ω, Fn) =

ω`

n

n∑
i=1

I`

(
u− ui
ω

,
u− 1

ω

)
From this, we get the expressions:

f̂ (x) =
1

nω

n∑
i=1

K

(
u− ui
ω

)[
I2
(
u
ω ,

u−1
ω

)
−
(
u−ui
ω

)
I1
(
u
ω ,

u−1
ω

)
I2
(
u
ω ,

u−1
ω

)
I0
(
u
ω ,

u−1
ω

)
− I1

(
u
ω ,

u−1
ω

)2
]

F̂ (u) =
1

n

n∑
i=1

[
I2
(
u
ω ,

u−1
ω

)
I0
(
u−ui
ω , u−1

ω

)
− I1

(
u
ω ,

u−1
ω

)
I1
(
u−ui
ω , u−1

ω

)
I2
(
u
ω ,

u−1
ω

)
I0
(
u
ω ,

u−1
ω

)
− I1

(
u
ω ,

u−1
ω

)2
]

We can compute these expressions for an Epanechnikov Kernel K (u) = 3
4

(
1− u2

)
1|u|≤1 using the fact that we

have:

I` (u, v) =

∫ v

u

3/4
(
1− x2

)
x`1{−1≤x≤1}dx

=

∫ v∧1

u∨−1

3/4
(
1− x2

)
x`1{−1≤x≤1}1{−1≤v;u≤1;u≤v}dx

= 1{−1≤v;u≤1;u≤v}3/4

[
(v ∧ 1)

`+1 − (u ∨ −1)
`+1

`+ 1
− (v ∧ 1)

`+3 − (u ∨ −1)
`+3

`+ 3

]

where ∧ (resp. ∨) is the operator taking the minimum (resp. maximum) of two arguments.

10.2 Appendix B: estimating a linear access function

In this appendix, we explain how to approximate the access function by a linear function of ranks. We estimate a

specification of the form: h (u) = a− b.u and test whether this specification fits the data. This is done in the case

of a national job market and some separate firm job submarkets.
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10.2.1 National market

The random variable corresponding to the rank of a gender-j worker in the wage distribution of job positions

is denoted Uj . Its cumulative function is given by: FUj (u) =
nj(u)
nj

. Its quantile function is uj (·). We have by

definition:

v = FUj [uj (v)]

From this equation, we get:

FUf [uf (v)] = FUm [um (v)] (21)

We use Nj

N where N = Nf + Nm as an estimator of nj . For a given linear specification of h (u), we can solve

the model for nf (u) and deduce nm (u) from the equality nm (u) = u − nf (u). We can then deduce the quantile

function of Uj as it can be written as: uj (v) = nj
−1 (nj .v). The parameters a and b are estimated minimizing

the distance between the left and right-hand sides of (21) after replacing FUj , j ∈ {m, f} by their empirical

counterparts. Denoting θ = (a, b), the minimization program is:

min
θ

C (θ) with C (θ) =

1∫
0

[
F̂Uf [uf (v)]− F̂Um [um (v)]

]2
du (22)

Details on how to evaluate the minimization criterion are given in Combes et al. (2012).

The minimization criterion can be used to conduct a specification test. We have Nj

N

P→ pj (the proportion of

gender-j workers in the population) where N = Nf +Nm and pf +pm = 1. Using Donsker’s theorem and Slutsky’s

lemma (see Van der Vaart, 1998, example 20.11), we get:

N1/2

 F̂Uf [uf (v)]− v

F̂Um [um (v)]− v

 =⇒

 1√
pf
Bf (v)

1√
pm
Bm (v)

 (23)

where Bf (·) and Bm (·) are some independent Brownian bridges.

Applying the continuous function Ψ (x1, x2) = (x1 − x2)
2 to (23), we get:

N
[
F̂Uf [uf (v)]− F̂Um [um (v)]

]2
=⇒

(
1

pf
+

1

pm

)
B (v)

2 (24)

where B (v) =
(

1
pf

+ 1
pm

)−1/2 [
1√
pf
Bf (v)− 1√

pm
Bm (v)

]
. It is easy to show that B (·) is a Brownian bridge. Indeed,

B (·) is Gaussian by construction and we have:

cov [B (u) , B (v)] =

(
1

pf
+

1

pm

)−1 [
1

pf
cov [Bf (u) , Bf (v)] +

1

pm
cov [Bm (u) , Bm (v)]

]
=

(
1

pf
+

1

pm

)−1 [
1

pf
(u ∧ v − uv) +

1

pm
(u ∧ v − uv)

]
= u ∧ v − uv
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Integrating (24) over the [0, 1] interval, we obtain:

N

(
1

pf
+

1

pm

)−1

C (θ) =⇒
1∫
0

B (v)
2
dv

and the right-hand side follows a Cramer Van-Mises statistic whose threshold at the 5% level is .46136 (see Knott,

1974). We can approximate the left-hand side replacing pj by
Nj

N and θ by θ̂, and then conduct a specification test

where the hypothesis we test is the equality (21).

10.2.2 Separate market for each firm

For any firm z, we consider that the access function takes the linear form hz (u) = a− bu. We then have:

dz (v) = 0 with dz (v) = F zUz
f

[
uzf (v)

]
− FUz

m
[uzm (v)] (25)

where F zUz
j

(·) is the cumulative function of the random variable Uzj corresponding to the rank of a gender-j worker

in the wage distribution of job positions in firm z, and uzj (·) is the corresponding quantile function. Denote:

d̂z (u) = F̂ zUz
f

[
uzf (v)

]
− F̂ zUz

m
[uzm (v)]

where F̂ zUz
j

(·) is the empirical counterpart of F zUz
j

(·). We can recover an estimator of the parameters θ using the

minimization program:

min
θ

CZ (θ) with CZ (θ) =
∑
z

P z
1∫
0

d̂z (u)
2
du

where P z is a weight (in practice, it is chosen to be the proportion of workers in firm z). The minimization criterion

can be computed in a way similar to the one given by (22).

Once again, the minimization criterion can be used to conduct a specification test. We have
Nz
j

N

P→ pzj (the

proportion of gender-j workers in firm z) where N =

Z∑
z=1

Nz
f +

Z∑
z=1

Nz
m and

Z∑
z=1

pzf +

Z∑
z=1

pzm = 1. Using again

Donsker’s theorem and Slutsky’s Lemma, we get:

N1/2



F̂ 1
U1
f

[
u1
f (v)

]
− v

F̂ 1
U1
m

[
u1
m (v)

]
− v

...

F̂ZUZ
f

[
uZf (v)

]
− v

F̂ZUZ
m

[
uZm (v)

]
− v


=⇒



1√
p1f
B1
f (v)

1√
p1m
B1
m (v)

...

1√
pZf
BZf (v)

1√
pZm
BZm (v)


(26)

where Bzj (·), with j ∈ {f,m} and z ∈ {1, ..., Z} are some independent Brownian Bridges.
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Applying the continuous function Ψ (x1, ..., x2Z) =

Z∑
z=1

P z. (x2z − x2z−1)
2 to (26), we get:

N

Z∑
z=1

P z.d̂z (v)
2

=⇒
Z∑
z=1

P z.

(
1

pzf
+

1

pzm

)
Bz (v)

2

where Bz (·), z ∈ {1, ..., Z} are some independent Brownian bridges. Integrating this equation over the [0, 1] interval,

we obtain:

N

[
Z∑
z=1

P z.

(
1

pzf
+

1

pzm

)]−1

CZ (θ) =⇒
1∫

0

B (v)
2
dv

where the right-hand side follows a Cramer Van-Mises statistic. We can approximate the left-hand side replacing

pzj by
Nz
j

N and θ by θ̂, and then conduct a specification test where the hypothesis we test is the set of equalities

(25).

10.3 Appendix C: solution of the model

10.3.1 Theorem

We have the following existence theorem for the full model (the proof is given in the next subsection):

Theorem 2 Suppose that µm (·) and µf (·) are C1 on (0, 1] and there is a constant c > 0 such that φm (u) > c and

µf (u) > c for all u ∈ (0, 1], then there is a unique two-uplet {nf (·) , nm (·)} verifying (2) where φj (·) is given by:

φj (u) =
µj (u)

nf (u)µf (u) + nm (u)µm (u)

We assume in our theorem that the gender-specific exogenous components must take their value above a strictly

positive threshold, such that males and females can access all jobs. This assumption is made in order to ensure

that the unit probabilities are always well-defined as the denominator in their formula then cannot be zero. We

can extend the model to some cases where workers of a given gender have no access to some jobs and show that

the model still has a solution. Consider, for instance, the case where females cannot access the best-paid jobs of

ranks above a given threshold ũ because of a glass ceiling effect but have access to all jobs of ranks below this

threshold. In that case, all the jobs of ranks above the threshold are occupied by males. For jobs of rank below

the threshold, there is then a measure nf of available females competing with a measure nm − (1− ũ) of available

males (provided that not all males have been hired for the best-paid jobs). It is possible to apply our existence

theorem on the subset of ranks below the threshold and get a global solution on the whole set of ranks using a

continuity argument.

Also note that the theorem can be extended to the case where the gender-value functions are not continuous,

but rather discontinuous at a finite number of ranks. First consider the case where there is only one point of

discontinuity. It is possible to apply the existence theorem separately for the subset of ranks below that point, and
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the subset of ranks above that point. The solution on the whole set of ranks can be recovered from the solutions

on the two subsets of ranks using again a continuity argument. This procedure can easily be extended to the case

where there are more points of discontinuity.

10.3.2 Proof

The proof revolves around the application of the Cauchy-Lipschitz theorem. For the full model, we have:

φf (u) =
µf (u)

nf (u)µf (u) + nm (u)µm (u)
(27)

Plugging (27) into (2) for females, we get:

n′f (u) =
nf (u)µf (u)

nm (u)µm (u) + nf (u)µf (u)
(28)

Using the equality nf (u) + nm (u) = u, we obtain:

n′f (u) = g (u, nf (u)) (29)

where

g (u, n) =
nµf (u)

nµf (u) + (u− n)µm (u)

We can state that the denominator of g (·, ·) is strictly positive for sure only on Φ̃ = {(u, n) ∈ (0, 1]× [0, nf ] |n 6 u}.

As µf (·) and µm (·) are C1 on Φ̃, it is straightforward to show that g (·, ·) is C1 on Φ̃. On any compact set

{(u, n) ∈ [ε, 1]× [0, nf ] |n 6 u} with ε ∈ (0, 1), g (·, ·) is Lipshitzienne and (29) has a solution for nf (·) on [ε, 1].

As this is true for ε arbitrarily close to zero, (29) has a unique solution for nf (·) on (0, 1]. There is then a unique

solution for nm (·) on (0, 1] which is given by nm (u) = u− nf (u).

10.4 Appendix D: characteristics of male and female subpopulations

In this Appendix, we show that the distributions of highest qualifications and age at the end of initial schooling

are close for our subpopulations of males and females using the 2003 French Labour Survey.

We only select executives aged 40-45 working full-time and obtain a subsample of 1, 685 individuals including

24.0% of females (the corresponding figure is 22.4% for our DADS sample). As shown in Table A.3, when comparing

the distributions of highest qualifications for the two genders, we find that the proportions of graduates and

undergraduates are a bit higher for females than for males. Overall, the distributions of highest qualifications of

the two genders are not statistically different at the 5% threshold according to a Chi-square test (but they are

statistically significant at the 10% threshold).

As shown in Table A.4, we also find that the average age of initial schooling is slightly higher for males (21.5

years) than for females (21.2 years). The difference can be explained by a higher average age of initial schooling
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for male graduates than for female graduates (although a slighly lower proportion of males becomes graduates). It

is not significant even at the 10% threshold when conducting a T-student test.

Even though it would be better to control for education in our analysis, it is likely that omitting variables

related to education does not noticeably bias the results as gender differences in education are rather small.

10.5 Appendix E: Simulation procedure for statistical discrimination

In this appendix, we explain how we conduct the simulations to generate the access function when there is some

statistical discrimination. We generate N = 17750 observations among which 3976 are considered to be females.

These number are fixed such that the sample size is 5% of workers in the private sector and the proportion of

females is that observed in the data (22.4%).25 For each observation, we draw the skills in a normal law with mean

ω = 0 and variance σ2 = 1. There are also N jobs ranked in decreasing order of attractiveness for workers.

We want to compute the access function (19) where Ψj (u) is given in (18). We compute the access function

backwards, evaluating it first for the most attractive job at rank u = 1. For an observation which corresponds to a

male (resp. female), we draw a noise in a normal law with mean zero and variance σ2
m = 1 (resp. σ2

f = 2). Summing

the simulated skills and noise, we generate the observed skills yi (1).

We then compute E [si |yi (1) , i ∈ Ωj (1) ] for all i ∈ Ωj (1), where Ωj (1) is the whole sample of gender-j workers.

This is done conducting a non-parametric regression of si on yi (1) such that:

Ê [si |yi (1) , i ∈ Ωj (1) ] =

[∑
k|j(k)=j

K

(
yk (1)− yi (1)

hj

)
sk

]/[∑
k|j(k)=j

K

(
yk (1)− yi (1)

hj

)]
where K (·) is a kernel chosen to be Epanechnikov and hj is the gender-j bandwidth fixed to the value given by the

rule of thumb. An estimator ofΨj (1) denoted Ψ̂j (1) is then given by the sample average of exp Ê [si |yi (1) , i ∈ Ωj (1) ]

for observations in Ωj (1). The value of the access function at rank 1 can then be estimated using the formula:

ĥ (1) = Ψ̂f (1) /Ψ̂m (1).

The manager of the most attractive job derives from a worker i a utility Vi (1) given by (17). He selects the

worker i1 yielding the highest utility. The utility derived from a worker i can be approximated by the sum of

Ê
[
si
∣∣yi (1) , i ∈ Ωj(i) (1)

]
and a draw of the match value in an extreme value law. It is then possible to construct

the set of gender-j workers available for the job of rank (N − 1) /N . If the worker hired by the manager i1 is a

male, we have: Ωf ((N − 1) /N) = Ωf (1) and Ωm ((N − 1) /N) = Ωm (1) \{i1}. If the worker hired by the manager

is a female, we have: Ωm ((N − 1) /N) = Ωm (1) and Ωf ((N − 1) /N) = Ωf (1) \{i1}.

The whole procedure is repeated for the job of rank (N − 1) /N to compute ĥ ((N − 1) /N) and determine

Ωj ((N − 2) /N), j ∈ {1, 2}. We keep repeating the procedure downwards for the jobs of rank (N − 2) /N ,

(N − 3) /N , ..., 1/N .

25We consider this sample size to keep the simulations tractable with current computer resources.
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Figure 1: Distribution of males and females along a job ladder

Note: ∆wj is the gender wage difference for the jth male-female pair.
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Figure 2: Gender quantile difference (M-F) obtained from the model, h(u) = .672
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Source: DADS, 2003, full-time executives of the banking industry aged 40-45.

Note: the curve represents the gender quantile difference when the wage distribution of job positions is supposed to

be the empirical wage distribution in the banking industry (and the proportion of females is fixed to the one in that

industry: 28.7%). The gender quantile difference is the difference between the quantile of males and the quantile of

females.
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Figure 3: Log-wage densities of the two genders, pooled industries
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Source: DADS, 2003, full-time executives of the Private Sector aged 40-45.

Note: in red, log-wage distribution of males; in blue, log-wage distribution of females.
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Figure 4: Gender quantile difference (M-F) as a function of rank, pooled industries
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Source: DADS, 2003, full-time executives of the Private Sector aged 40-45.

Note: the gender quantile difference is the difference between the quantile of males and the quantile of females. Bounds

of the confidence interval estimated by bootstrap (100 replications) are represented by dashed lines.
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Figure 5: Gender quantile difference (M-F) as a function of rank, insurance industry
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Source: DADS, 2003, full-time executives of the insurance industry aged 40-45.

Note: the gender quantile difference is the difference between the quantile of males and the quantile of females. Bounds

of the confidence interval estimated by bootstrap (100 replications) are represented by dashed lines.
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Figure 6: Gender quantile difference (M-F) as a function of rank, banking industry
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Source: DADS, 2003, full-time executives of the banking industry aged 40-45.

Note: the gender quantile difference is the difference between the quantile of males and the quantile of females. Bounds

of the confidence interval estimated by bootstrap (100 replications) are represented by dashed lines.
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Figure 7: Access function (F/M) as a function of job rank, pooled industries
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Source: DADS, 2003, full-time executives of the Private Sector aged 40-45.

Note: see Section 3 for details on the estimation method. Bounds of the confidence interval estimated by bootstrap

(100 replications) are represented by dashed lines.
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Figure 8: Access function (F/M) as a function of job rank, insurance industry
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Source: DADS, 2003, full-time executives of the insurance industry aged 40-45.

Note: see Section 3 for details on the estimation method. Bounds of the confidence interval estimated by bootstrap

(100 replications) are represented by dashed lines.
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Figure 9: Access function (F/M) as a function of job rank, banking industry
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Source: DADS, 2003, full-time executives of the banking industry aged 40-45.

Note: see Section 3 for details on the estimation method. Bounds of the confidence interval estimated by bootstrap

(100 replications) are represented by dashed lines.
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Figure 10: Access function (F/M) as a function of job rank, pooled industries, by age group
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Source: DADS, 2003, full-time executives of the Private Sector aged 40 or 45.

Note: in blue: workers aged 40; in red: workers aged 45. See Section 3 for details on the estimation method. Bounds

of the confidence intervals estimated by bootstrap (100 replications) are represented by dashed lines.
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Figure 11: Access function (F/M) as a function of job rank, pooled industries, by country of birth
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Source: DADS, 2003, full-time executives of the Private Sector.

Note: in blue: born in France; in red: born in a foreign country. See Section 3 for details on the estimation method.

Bounds of the confidence intervals estimated by bootstrap (100 replications) are represented by dashed lines.
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Figure 12: Average access function (F/M) as a function of job rank, large firms,

national market and segmented submarkets
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Source: DADS, 2003, full-time executives aged 40-45 in firms employing more than 150 such executives.

Note: in blue: access function for the national market; in red: average access function computed across segmented

submarkets (each submarket being a large firm). See Section 3 for details on the estimation method. Bounds of the

confidence interval estimated by bootstrap (100 replications) are represented by dashed lines.
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Figure 13: Average access function (F/M) as a function of job rank, by experience group
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Source: DADS, 2003, full-time executives of the Private Sector aged 40-45, born in October of an even year.

Note: in blue: labor market experience above median; in red: labor market experience below median. See Section 3

for details on the estimation method. Bounds of the confidence interval estimated by bootstrap (100 replications) are

represented by dashed lines.
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Figure 14: Access function obtained when workers occupying an intermediate position

are included in the sample
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Source: DADS, 2003, full-time workers occupying an executive or an intermediate position in the Private Sector, aged

40-45, and born in October of an even year.

Note: in blue: access function for executive workers only. In red: access function obtained when the sample includes

executives and workers occupying an intermediate position. In green: access function obtained when the sample

includes executives and workers occupying an intermediate position with at least ten years of experience in intermediate

positions.
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Figure 15: Access function (F/M) from simulation of statistical discrimination
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Table 1: Descriptive statistics by subgroup of firms

Sector Nb. firms Nb. jobs % females Daily wages, all

Mean Std p50 p5 p90 p95

All firms 86989 354968 22.4 139 602 109 64 200 252

Large firms 175 90345 22.2 132 119 113 69 196 245

Banking 545 18628 28.7 142 449 104 68 197 269

Banking, large firms 18 9024 31.0 155 298 112 68 223 320

Insurance 507 9360 36.9 125 74 107 67 186 238

Insurance, large firms 12 4611 39.0 119 64 106 68 175 216

Source: DADS, 2003, full-time executives of the Private Sector aged 40-45.

Note: pX corresponds to the Xth percentile.
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Table 1: Descriptive statistics by subgroup of firms (cont.)

Sector Daily wages, Females Daily wages, Males

Mean Std p50 p5 p90 p95 Mean Std p50 p5 p90 p95

All firms 119 434 96 58 169 209 145 642 113 66 208 263

Large firms 116 83 103 62 170 208 136 126 116 72 202 257

Banking 120 211 95 64 171 220 150 514 108 71 208 292

Banking, large firms 126 134 103 63 190 245 168 347 117 71 240 359

Insurance 105 49 94 63 147 172 136 84 115 71 206 262

Insurance, large firms 102 41 93 64 141 158 131 72 114 72 193 245

Source: DADS, 2003, full-time executives of the Private Sector aged 40-45.

Note: pX corresponds to the Xth percentile.
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Table 3: Linear specification of the access function

Sector National market Segmented markets

Const Slope Stat Const Slope Stat

All firms .80 .28 .453

[.79,.81] [.26,.29]

Large firms .74 .09 .828 .69 .05 .434

[.72,.76] [.07,.14] [.64,.70] [-.02,.07]

Banking .71 .07 .066

[.67,.75] [-.01,.15]

Banking, large firms .83 .26 .077 .77 .25 .300

[.77,.89] [.16,.39] [.67,.82] [.11,.33]

Insurance .90 .60 .078

[.85,.95] [.54,.69]

Insurance, large firms .93 .66 .056 .74 .41 .339

[.82,1.01] [.53,.79] [.60,.79] [.23,.51]

Source: DADS, 2003, full-time executives of the Private Sector aged 40-45.

Note: we report the estimated coefficients of a linear specification of the access function, h (u) = a−bu where “Const”

refers to a and “Slope” refers to b. Bounds of the confidence intervals are estimated by bootstrap (100 replications)

and are given in brackets. We also report the statistic of a specification test for which the threshold at the 5% level

is .461. The method used to estimate the coefficients and to compute the test statistic is detailed in Appendix B.
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Table A.1: Descriptive statistics on age and country of birth by gender

Sector All Females Males

Age Foreign Age Foreign Age Foreign

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

All firms 42.4 1.7 .10 .31 42.4 1.7 .11 .31 42.4 1.7 .10 .30

Large firms 42.5 1.7 .10 .30 42.4 1.7 .11 .31 42.5 1.7 .10 .30

Banking 42.4 1.7 .09 .29 42.3 1.7 .10 .30 42.5 1.7 .09 .28

Banking, large firms 42.4 1.7 .09 .29 42.3 1.7 .10 .30 42.4 1.7 .09 .29

Insurance 42.5 1.7 .08 .27 42.4 1.7 .08 .27 42.5 1.7 .08 .27

Insurance, large firms 42.5 1.7 .07 .26 42.4 1.7 .07 .25 42.6 1.7 .07 .26

Source: DADS, 2003, full-time executives of the Private Sector aged 40-45.

Note: “Foreign” refers to being forn in a foreign country.
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Table A.2: Descriptive statistics on the panel of workers born on octobre of an even year

All Females Males

Age Foreign Age Foreign Age Foreign

Mean Med Std Mean Med Std Mean Med Std Mean Med Std Mean Med Std Mean Med Std

43.0 43.0 1.6 .12 0 .32 42.9 43 1.6 .13 0 .34 43.0 43.0 1.6 .11 0 .32

Wage Experience Wage Experience Wage Experience

Mean Med Std Mean Med Std Mean Med Std Mean Med Std Mean Med Std Mean Med Std

134 114 87 15.4 16.5 4.5 116 101 61 15.4 16.4 4.3 139 118 93 15.4 16.5 4.6

Source: DADS, 2003, full-time executives of the Private Sector aged 40-45 born in october of an even year.

Note: “Med” refers to the median. “Foreign” refers to being forn in a foreign country.
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Table A.3: Highest qualifications by gender computed from the 2003 Labour Force Survey

Highest qualifications Males Females All

Graduate 38.4% 39.9% 38.8%

Undergraduate 24.9% 29.0% 25.9%

High school completed 17.1% 17.3% 17.2%

Below high school 19.6% 13.9% 18.2%

Number of observations 1,281 404 1,685

Source: 2003 French Labour Force Survey, full-time executives of the Private Sector aged 40-45.

Note: Statistics are weighted for the sample to be representative of the population.
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Table A.4: Age at the end of initial schooling by gender computed from the 2003 Labour Force Survey

Statistic Males Females All

Mean 21.47 21.20 21.41

Standard error .09 .15 .08

Number of observations 1,281 404 1,685

Source: 2003 French Labour Force Survey, full-time executives of the Private Sector aged 40-45.

Note: Statistics are weighted for the sample to be representative of the population.
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