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This paper examines the effects of foreign- and native-born STEM graduates and non-STEM 
graduates on patent intensity in U.S. metropolitan areas. I find that both native and foreign-
born STEM graduates significantly increase metropolitan area patent intensity, but college 
graduates in non-STEM fields have a smaller and statistically insignificant effect on patenting. 
These findings hold for both cross-sectional OLS and 2SLS regressions. I also use time-
differenced 2SLS regressions to estimate the effects of STEM-driven increases in native and 
foreign college graduate shares and again find that both native and foreign STEM graduates 
have statistically significant and economically large effects on innovation. Together these 
results suggest that policies that increase the stocks of both foreign and native STEM 
graduates increase innovation and provide considerable economic benefits to regions and 
nations. 
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1. Introduction 

 Technological innovation is critical for economic growth and development, and many 

nations and regions are very interested in how they can increase innovation.  Skilled labor is 

widely recognized as an important ingredient in the innovation process (Carlino, Chatterjee, and 

Hunt 2007), and workers in science, engineering, technology and math (STEM) fields are 

believed to especially important (Atkinson and Mayo 2010).  Therefore, many researchers, 

policymakers, and businesses support various public policies to increase the stock of skilled 

labor both locally and nationally (Moretti 2013).1  One way to increase the stock of skilled labor 

is by increasing human capital levels of the existing population, and there are numerous policy 

efforts intended to so.  However, it is unclear if natives are sufficiently responsive to human 

capital policies, and many employers and policymakers in advanced economies claim that there 

is a shortage of skilled workers especially in STEM fields (National Academies 2010).  Areas 

can also increase human capital stocks via in-migration of persons who acquired the needed 

skills elsewhere.  This latter option has led to considerable debate on high-skilled immigration 

policy in advanced economies such as the United States.2  However, there is still much that is 

unknown about how high-skilled immigration affects receiving areas.3  Surveying the research 

                                                 
1 The local stock of high skilled workers in an area has been shown to increase wages and employment rates for both 

high and low skilled persons (Moretti 2004; Winters 2013) and increase future employment and population growth 

(Simon 1998; Simon and Nardinelli 2002; Shapiro 2006). 
2 Much of the debate in the U.S. is centered around the H-1B visa program, which allows employers to apply for 

temporary visas for skilled foreigners working in specialty occupations.  The program began in 1990 and the annual 

quota has varied considerably since inception.  Various stakeholders argue that the quota should be increased, 

decreased or even reduced to zero.  Kerr and Lincoln (2010) provide additional details.  
3 A major concern raised by critics of increased skilled immigration is how such actions affect natives.  Traditional 

models of supply and demand suggest that increasing the supply of skilled labor through in-migration will lower 

wages for natives, and there is some empirical evidence to support this contention (Borjas 2003, 2006).  There is 

also some evidence that increased immigration partially “crowds out” natives in areas receiving large immigrant 

inflows by encouraging them to migrate to areas receiving smaller immigrant shocks (Borjas 2006; Ali, Partridge 

and Rickman 2012) and by encouraging them to work in occupations less affected by immigrant labor supply shocks 

(Levin et al. 2004; Peri and Sparber 2011).  However, researchers have also suggested that foreign and native 

workers may experience considerable complementarities, and some have found wage effects of immigrants on 
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literature, Kerr (2013) concludes that “the global migration of talented workers … is vastly 

understudied compared to its economic importance.”   

 There is only a small literature that directly examines the effects of skilled foreigners on 

innovation.4  Hunt and Gauthier-Loiselle (2010) and Kerr and Lincoln (2010) examine the 

effects of immigrants on innovation by looking at patent data.5  Hunt and Gauthier-Loiselle 

(2010) first examine the 2003 National Survey of College Graduates (NSCG) to assess 

individual determinants of patenting.  They find that the average foreign college graduate patents 

at double the rate of the average native graduate but indicate that this effect largely results 

because foreigners are more likely to have earned degrees in science and engineering fields.6  

Conditional on earning a degree in science or engineering, foreign and native graduates patent at 

rates that are statistically similar.  However, examining individual self-reported data on patenting 

has some limitations: it ignores potential crowds out effects, knowledge spillovers, 

complementarities between different types of workers, differences in the collaboration patterns 

between natives and foreigners, and the possibility that foreign graduates disproportionately 

locate in areas that make them more likely to patent.   

                                                                                                                                                             
natives to be either small, zero, or even positive (Peri and Sparber 2009; Ottaviano and Peri 2012; Peri, Shih, and 

Sparber 2014).  Kerr (2013) and Lewis and Peri (2014) review recent literature. 
4 A related literature looks at how foreigners compare to natives in various measures of innovation.  Much of this 

literature has examined differences in academic achievements between native and foreign born faculty and graduate 

students and found mixed results.  Levin and Stephan (1999), Stephan and Levin (2001), Corley and Sabharwal 

(2007), Chellaraj, Maskus, and Mattoo (2008), and Gaulé and Piacentini (2013) find that foreign born academics 

outperform their native counterparts.  However, Stuen, Mobarak, and Maskus (2012) find that foreign and native 

doctoral students have statistically comparable effects on academic innovation in science and engineering 

departments at American universities.  Gurmu, Black, and Stephan (2010) find that the relative contributions of 

natives and foreigners to academic innovation vary between graduate students and postdoctoral scholars and also 

depend on the temporary or permanent visa status of foreigners. 
5 Waldinger (2012) and Moser, Waldinger and Voena (2014) examine the effects of a specific historical immigration 

shock, Jewish émigrés from Nazi Germany.  Both studies find no evidence of knowledge spillovers from émigrés to 

prior residents.  Moser, Waldinger and Voena (2014), however, do find a large positive effect on U.S. chemical 

innovation due to more researchers working in those fields.  Additionally, Borjas and Doran (2012) find that the 

collapse of the Soviet Union and subsequent influx of Soviet mathematicians into the U.S. actually reduced the 

productivity of mathematicians working in the U.S. prior to the influx. 
6 Hunt (2011) also uses the NSCG to examine the effects of immigrants on innovation by entry visa type.  She finds 

that immigrants who were initially admitted as legal permanent residents (such as through family unification) have 

similar patenting outcomes as natives. 
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Hunt and Gauthier-Loiselle (2010) also examine the effects of skilled immigrants on 

regional innovation using 1940-2000 state-level panel data on patents per capita and the stocks of 

foreign and native college graduates per capita measured at ten year increments.  Their preferred 

specifications instrument for decadal growth in the skilled immigrant population share using the 

predicted growth based on state immigrant shares for various origin countries in 1940 and the 

national growth in the immigrant population from those countries during the decade in question.  

They find that both foreign and native college graduates increase patent intensity, and the 

estimated coefficients imply considerable spillovers relative to the effects predicted by 

individual-level data.   

Kerr and Lincoln (2010) exploit the H-1B visa program to identify large annual changes 

in skilled foreigner inflows across 281 metropolitan areas for the years 1995-2007.  They 

estimate reduced form regressions of the effect of predicted flows of H-1B visa holders on patent 

intensity.  Examining annual changes makes their analysis primarily short-run in nature, and they 

do not examine the effect of native skill levels on patent intensity.  They find that increased 

predicted H-1B immigrant inflows significantly increased local patenting.  They also match 

patents to ethnic surnames and find that much of the increase is attributable to Indian and 

Chinese surnames.  However, they do find some evidence of increased patenting for Anglo-

Saxon surnames due to H-1B inflows, which may suggest positive innovation spillovers from 

foreigners to natives, i.e., natives may be crowded into innovation instead of crowded out.   

The current paper builds on the work of Hunt and Gauthier-Loiselle (2010) and Kerr and 

Lincoln (2010) by examining the effects of foreign- and native-born STEM graduates and non-

STEM graduates on patent intensity in U.S. metropolitan areas.7  I first use year 2010 data to 

                                                 
7 Related studies have also considered the effects of various types of skilled workers, including skilled immigrants, 

on regional innovation in other countries, especially in Europe (e.g., Simonen and McCann 2008; Faggian and 
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estimate cross-sectional effects using ordinary least squares (OLS).  However, my preferred 

results use instrumental variables (IV) methods to estimate causal effects.  I identify the effects 

of foreign-born STEM graduates using a similar instrument as Hunt and Gauthier-Loiselle 

(2010) and Peri et al. (2014) based on “shift-share” predicted immigrant inflows.  To identify the 

effects of native STEM and non-STEM graduates, I use predicted flows of native STEM and 

non-STEM graduates from colleges to metropolitan areas based on the 1980 decennial census 

and the 1980 Integrated Postsecondary Education Data System (IPEDS).   

This paper differs from previous literature in several important ways.  To my knowledge, 

this is the first study to estimate causal effects of skilled natives on patent intensity.  This is an 

important contribution that can help policymakers assess the benefits of higher education 

policies, especially policies intended to affect the domestic production of STEM graduates.  

Investments in higher education are costly to both individuals and society, and STEM graduates 

are among the most expensive to educate (Nelson 2008).  There is some evidence that college 

major decisions can be effected by differential tuition and financial aid policies (Stange 2013; 

Denning and Turley 2013; Sjoquist and Winters 2015a, b).  However, there is also evidence that 

many college students start out pursuing a STEM major but end up switching to less challenging 

majors because they lack sufficient preparation in math and science skills (Griffith 2010; 

Arcidiacono, Aucejo and Spenner 2012; Arcidiacono, Aucejo and Hotz 2013; Stinebrickner and 

Stinebrickner 2014).  If there are especially large social benefits from STEM education, then 

understanding how public policies can affect STEM education outcomes becomes increasingly 

important.  

                                                                                                                                                             
McCann 2009; Niebuhr 2010; Nathan and Lee 2013; Ozgen, Nijkamp and Poot 2013; Lee 2014; Maré, Fabling, and 

Stillman 2014; Nathan 2014).   
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My study also differs from previous literature by focusing on the effects of STEM 

graduates on innovation.  Previous literature has focused on the effects of STEM occupations8 

rather than STEM graduates, largely because measures of local stocks of STEM graduates have 

not been available until very recently.  STEM graduates and STEM occupations are closely 

related, but there are differences.  Some individuals who report working in a STEM occupation 

do not have a STEM degree and some have no college degree at all.9  Similarly, many STEM 

graduates end up working in non-STEM occupations such as business, management, healthcare, 

and education.  Furthermore, innovation is not always directly related to what one does at work.  

Many innovations come from persons developing them at home in their spare time; some of 

these inventors have day jobs that are not in STEM occupations and others may be unemployed 

or not in the labor force.  While there are some differences between STEM occupations and 

STEM graduates, trying to separate the effects of the two is not the focus of the current study.  

Instead, I try to identify exogenous increases in the stocks of foreign and native STEM graduates 

and examine their effects on innovation.10   

Measuring human capital based on college major also allows me to examine the separate 

effects of STEM graduates and non-STEM graduates on innovation, which more closely aligns 

with public policies than does looking at occupations.  Many researchers and policymakers 

advocate for increased STEM education based on the expectation that they contribute greater 

benefits to society than non-STEM graduates (National Academies 2010; PCAST 2012).  

Consistent with that notion, Winters (2014a) examines the extent of human capital wage 

                                                 
8 Researchers have also explored related occupational groupings such as science and engineering, technical, etc. 
9 This may in part result from ambiguous titles of occupations.  For example, some workers may refer to themselves 

as engineers but have completed no higher education and perform duties such as operating machinery and 

equipment that might incline an outside observer to view them as a technician rather than an engineer.   
10 My study also differs from Hunt and Gauthier-Loiselle (2010) in the time period considered and the geographic 

unit of analysis.   
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externalities created by STEM and non-STEM graduates and finds that STEM graduates have a 

much larger positive external effect on the wages of non-college graduates in the same 

metropolitan area.  Thus, the general expectation is that STEM graduates will have a greater 

effect on regional innovation, but it is unclear how different the effects will be.  Previous 

researchers have been unable to offer empirical evidence on this issue because reliable estimates 

of geographic differences in the densities of STEM and non-STEM graduate across the U.S. have 

not been available until recently.  To my knowledge, this is the first study to exploit newly 

collected information in the American Community Survey to assess the importance of STEM 

and non-STEM major college graduates on local innovation. 

Previewing the results, I find that both native and foreign-born STEM graduates have 

statistically significant and economically large effects on metropolitan area patent intensity, but 

college graduates in non-STEM fields have a smaller and statistically insignificant effect on 

patenting.  This result holds for both cross-sectional OLS and 2SLS regressions.  I also use time-

differencing to estimate 2SLS effects of STEM-driven increases in native and foreign college 

graduate shares and again find that both native and foreign STEM graduates have large 

statistically significant effects on innovation.  These results suggest that policies that increase the 

stocks of both native and foreign STEM graduates increase innovation and provide considerable 

economic benefits to regions and nations. 

 

2. Empirical Methods 

2.1 Data and Descriptive Methods 

 This paper examines the effects of foreign and native STEM graduates and non-STEM 

graduates on patent intensity in U.S. metropolitan areas.  Patent intensity is measured as the log 
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of patents per 100,000 population.  Patent data are obtained from the U.S. Patent and Trademark 

Office, and population data are obtained from the U.S. Bureau of the Census.  Data on foreign 

and native STEM and non-STEM graduates come from the 2010 American Community Survey 

(ACS) accessed from IPUMS (Ruggles et al. 2010).  The stock of foreign (native) STEM 

graduates in each metropolitan area is measured as the number of foreign-born (native) college 

graduates ages 25 and up with a bachelor’s degree in a STEM field divided by the total adult 

(ages 25 and up) population.  The stock of non-STEM graduates is computed as the number of 

college graduates with bachelor’s degrees in non-STEM fields relative to the adult population.11  

The ACS began asking college graduates to report their major field of study for their bachelor’s 

degree in 2009.  Before 2009 reliable measures of local stocks of STEM and non-STEM 

graduates were not available.  I define college majors as STEM fields based on definitions used 

by U.S. Immigration and Customs Enforcement (ICE); a full list of STEM majors and 

corresponding ACS codes is provided in Appendix Table A.   

U.S. Census Bureau confidentiality restrictions prevent identification of geographic areas 

with less than 100,000 people.  As a result, the lowest level of geography in the census 

microdata, PUMAs, often combine parts of metropolitan areas with parts of other nearby 

metropolitan areas or non-metropolitan areas.  I assign a PUMA to a metropolitan area if the 

majority of the PUMA population is included in the metropolitan area; other PUMAs, including 

wholly non-metropolitan ones are excluded from the analysis.  The 2010 ACS PUMAs are 

defined based on 1999 Census metropolitan boundaries, and I use the 1999 metro area 

boundaries to measure all of the variables included in this study.  I can identify 325 metropolitan 

                                                 
11 I do not differentiate between foreign and native non-STEM graduates for various reasons.  First, foreigners make 

up a much smaller percentage of non-STEM graduates than STEM graduates.  Second, STEM fields are expected to 

have a stronger effect on innovation, so I focus much of the attention on STEM graduates.  Third, the instrumental 

variables methods used become increasingly complicated as the number of endogenous variables and required 

instruments increases and one becomes more concerned about problems with weak instruments. 
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areas (out of 331) in the 2010 ACS, but the instrumental variables I use below are not available 

for 18 small metropolitan areas.  I exclude these 18 from the OLS analysis to increase 

comparability with the 2SLS results, but including the additional 18 excluded metropolitan areas 

does not meaningfully affect the OLS estimates presented below.  The analytical sample, 

therefore, includes 307 metropolitan areas.   

Figures 1-4 illustrate the bivariate relationship between the four main human capital stock 

variables in this study and the log of patents per 100,000 population.  The four human capital 

variables are the shares of the adult population that are: 1) STEM graduates, 2) native STEM 

graduates, 3) foreign STEM graduates, and 4) non-STEM graduates.  The second and third 

human capital variables sum to equal the first one.  The figures illustrate a strong positive 

bivariate descriptive relationship between patent intensity and all of the four human capital 

variables.  To better understand how different types of human capital contribute to innovation, I 

turn to multivariate regression and experiment with including multiple human capital stock 

variables simultaneously. 

 I begin by estimating cross-sectional OLS regressions that include a number of control 

variables.  These include several time-varying metropolitan area variables measured as of 2010 

including the log of the population, the unemployment rate, the mean age of the adult labor 

force, the average firm size, and university research expenditures per 100,000 population.  I also 

include three census region dummies (with the Northeast being the omitted region), mean 

January temperature, mean July temperature, mean precipitation, and the incremental distance to 

the nearest metropolitan area with a population of at least 250,000, 500,000, and 1,500,000.   

A large literature following Jaffe, Trajtenberg and Henderson (1993) has suggested that 

knowledge spillovers decline with distance.  Larger metropolitan areas are likely to experience 
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greater knowledge spillovers, so log population is included to account for the effects of city size 

on innovation (Carlino, Chatterjee, and Hunt 2007; Carlino and Kerr 2014).  However, 

agglomeration economies might spill across the urban hierarchy as suggested by Partridge, 

Rickman, Ali and Olfert (2009, 2010), so also I control for proximity to progressively larger 

metropolitan areas similarly to Partridge et al. (2009, 2010).  The region dummies are intended to 

account for broad differences in innovative activity across regions.  The climate variables are 

intended to account for local amenities that might be especially attractive to highly skilled 

workers.  The climate variables are measured based on the 2007 County and City Data Book; 

each metropolitan area is assigned the values of its principal municipality.  The unemployment 

rate measures local labor market conditions and labor utilization, and the mean age of the 

workforce proxies for worker experience; both are computed using the 2010 ACS.  Average firm 

size is included to proxy for the level of entrepreneurship in each metropolitan area, which is 

expected to increase innovation and growth (Glaeser, Kerr, and Ponzetto 2010; Glaeser, Kerr, 

and Kerr 2012; Chatterji, Glaeser, and Kerr 2013).  Average firm size is calculated from the 

Business Dynamics Statistics (BDS) Data Tables produced by the U.S. Census Bureau.  

University research is expected to increase local innovative activity (Jaffe 1989; Anselin, Varga, 

and Acs 1997; Adams 2002; Ponds, van Oort, and Frenken 2010; Kantor and Whalley 2014) and 

is also likely correlated with the primary human capital variables.  Therefore, university research 

expenditures are obtained from the IPEDS and included as a control variable.   

Summary statistics for the cross-sectional analysis variables are included in Table 1.  A 

few things are particularly noteworthy.  First, non-STEM graduates are generally a substantially 

larger share of the adult population than are STEM graduates; the mean share for the former is 

more than three times that of the latter.  In fact, no metropolitan area in the U.S. has more STEM 
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graduates than non-STEM graduates.  Second, the mean share of native STEM graduates is more 

than four times the mean share of foreign STEM graduates, indicating that most metropolitan 

areas rely much more heavily on native STEM graduates than foreign ones despite the influx of 

foreign graduates in recent years.  However, metropolitan areas do differ substantially in their 

concentration of STEM majors and in their relative dependence on foreign STEM majors.  Table 

2 reports the population shares for each of the four college graduate variables for the 25 

metropolitan areas with the highest shares of STEM graduates.  Not surprisingly, San Jose, CA 

tops the list with an impressive 21.6 percent of the adult population with a STEM degree.  San 

Jose also has the highest foreign STEM graduate population share in the nation and has nearly 

twice as many foreign STEM graduates as native STEM graduates.  Boulder-Longmont, CO has 

the second highest total STEM graduate share and the highest native STEM graduate share.  

Furthermore, Boulder-Longmont has more than six times as many native STEM graduates as 

foreign ones.  Table 1 also reports the minimum values for the human capital shares.  Tables 1 

and 2 together confirm that there is considerable variation in STEM and non-STEM graduate 

stocks and in relative dependence on domestic and foreign STEM graduates across the country. 

 Cross-sectional OLS estimates help understand the relationship between various types of 

human capital stocks and regional innovation, but they may not provide unbiased estimates of 

causal effects.  For example, reverse causality may exist if STEM graduates sort into innovative 

areas, and omitted variable bias may exist if both innovation and STEM graduate stocks are 

driven by some unobservable characteristic even after the inclusion of the metropolitan area 

control variables.  Furthermore, the human capital variables are measured using a one percent 

sample of the population which will lead to some degree of measurement error due to sampling, 

especially for relatively small areas.  Measurement error due to sampling will attenuate 
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coefficients toward zero, and this attenuation bias is likely exacerbated by including multiple 

related measures and a detailed set of control variables that reduce the signal to noise ratio.   

 

2.2 Cross-Sectional Instrumental Variables Methods 

 The preferred estimates in this study utilize instrumental variables to estimate 2SLS 

regressions.  I identify the effects of foreign-born STEM graduates using an instrument similar to 

Hunt and Gauthier-Loiselle (2010) and Peri et al. (2014).  More specifically, I compute the 

predicted share of foreign STEM workers in each metropolitan area based on metropolitan area 

immigrant STEM worker shares for various origin countries in 1980 and the U.S. national 

growth in the immigrant STEM workforce from those source countries between 1980 and 2010.   

 I first define a set of workers as STEM workers (more details below) and combine 

foreign origin countries into 14 groups.12  I next use the 1980 decennial census 5% PUMS to 

compute the STEM worker share of each foreign nationality group, 𝑛, in each metropolitan area, 

𝑐, relative to the total adult population of the metropolitan area in 1980,13 i.e., 

𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐𝑛,1980 =
#𝑜𝑓 𝑆𝑇𝐸𝑀 𝑊𝑜𝑟𝑘𝑒𝑟𝑠𝑐𝑛,1980

𝑇𝑜𝑡𝑎𝑙 𝐴𝑑𝑢𝑙𝑡 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐,1980
 .  

I then combine the 1980 5% PUMS with the 2010 ACS to compute the national growth factor in 

the number of STEM workers from each origin group, i.e., 

𝐺𝑟𝑜𝑤𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟𝑛,1980−2010 =
#𝑜𝑓 𝑆𝑇𝐸𝑀 𝑊𝑜𝑟𝑘𝑒𝑟𝑠𝑛,2010

#𝑜𝑓 𝑆𝑇𝐸𝑀 𝑊𝑜𝑟𝑘𝑒𝑟𝑠𝑛,1980
. 

                                                 
12 I follow Peri et al. (2014) and use the following 14 country groups: Canada, Mexico, Rest of Americas (excluding 

the U.S.), Western Europe, Eastern Europe, China, Japan, Korea, Philippines, India, Rest of Asia, Africa, Oceania, 

and Other. 
13 Census microdata geographic boundaries changed between 1980 and 2010, and I can only identify 307 

metropolitan areas in 1980 as noted above. 
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Finally, I compute the predicted share of foreign STEM workers in each metropolitan area in 

2010 by multiplying the 1980 STEM share for each origin group in each metropolitan area by the 

national growth factor and adding up across origin groups for each metropolitan area, i.e.,  

𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐,2010
𝐹𝑜𝑟𝑒𝑖𝑔𝑛̂ = ∑ 𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐𝑛,1980 × 𝐺𝑟𝑜𝑤𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟𝑛,1980−2010𝑛 . 

 This approach computes the predicted foreign STEM worker share that each metropolitan 

area would experience in 2010 if its origin-specific foreign STEM workforce grew at the national 

average since 1980.14  The motivation for this instrument is based on three stylized facts.  First, 

the foreign STEM workforce has historically been disproportionately concentrated in certain 

areas relative to the native population.  Second, there has been a large influx of skilled foreigners 

to the U.S. since 1980, much of which can be attributed to the H-1B visa program.  Third, 

recently arriving foreigners tend to concentrate in areas that already have a relatively high share 

of foreigners from their country of origin.   

 I follow Peri et al. (2014) and choose 1980 as the base year for employment shares for 

several reasons.  First, census microdata geographic identifiers prior to 1980 greatly reduce the 

number of identifiable metropolitan areas.  Second, 1980 precedes the creation of the H-1B visa 

program, so that base-year STEM shares are not affected by inflows due to the H-1B visa 

program.  Third, 1980 precedes the computer and internet technology revolution, so that base-

year STEM shares primarily reflect initial worker concentrations in other STEM fields. 

 There are some caveats about the foreign STEM share instrument.  First, the potentially 

endogenous explanatory variable is the metropolitan area share of foreign STEM graduates, and 

instrument is the predicted share of foreign STEM workers, which is based primarily on 

                                                 
14 This IV approach also holds metropolitan area population at its 1980 level, but multiplying the population for each 

metropolitan area by a common factor to account for national population growth does not affect the 2SLS second-

stage results since the first-stage coefficient on the instrument will adjust accordingly.  Using actual metropolitan 

area population growth in the instrument would create concerns that the population growth is endogenous.   
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occupation.  Occupation and college major are not perfectly collinear, but there is likely no better 

way to instrument for foreign STEM graduates.  Fortunately, most workers in STEM 

occupations have college degrees in STEM fields, so STEM graduates and STEM workers are 

very closely related.  Because I am ultimately intending to measure the effects of STEM 

graduates on innovation, all measures of STEM workers in this study are restricted to persons 

who have completed at least a bachelor’s degree and are working in a STEM occupation.   

A second major caveat is that there is no universally agreed upon definition of STEM 

occupations.  Therefore, I experiment with three measures of STEM occupations for my 

instrument.15  My first STEM occupation measure is the most restrictive; it only includes persons 

employed as engineers, mathematicians, computer scientists, software developers, and natural 

scientists.  The second STEM occupation group includes those in the first group and adds health-

diagnosing professionals (physicians, dentists, etc.) and pharmacists since these typically require 

an undergraduate degree in a STEM field.  My third definition of STEM occupations is the most 

inclusive measure; it includes all occupations in the first two definitions and all other 

occupations where at least 25% of occupation members in the ACS possessed a bachelor’s 

degree with a major in a STEM field.  Examining the robustness to these three different 

measures should increase confidence in the results. 

To identify the effects of native STEM graduates on innovation, I use predicted flows of 

domestic STEM graduates from U.S. colleges and universities to metropolitan areas based on the 

1980 decennial census and the 1980 IPEDS.  I begin by using the 1980 5% PUMS to compute 

migration flows from each county group origin area 𝑜 to each of the 307 identifiable 

metropolitan areas 𝑐 for native-born college graduates who were ages 23-27 and not enrolled in 

                                                 
15 A full list of STEM occupations and corresponding IPUMS occupation codes are included in Appendix Table B. 
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school at the time of the survey, 𝑅𝑒𝑐𝑒𝑛𝑡𝐺𝑟𝑎𝑑𝐹𝑙𝑜𝑤𝑐𝑜,1980.16  I treat place of residence five years 

prior as the place where they earned their bachelor’s degree.  The 1980 Census did not ask 

respondents about college major, so I merge the 1980 census flows with data from the IPEDS.  

Specifically, I use the 1980 IPEDS to compute the number of bachelor’s degrees earned in 

STEM and non-STEM fields in each U.S. county.  I then match IPEDS county level degree 

production to 1980 census county group origin areas.  For each county group origin area, I 

compute the share of all 1980 bachelor’s degree graduates who majored in a STEM field, 

𝑃𝐶𝑇𝑆𝑇𝐸𝑀𝑜,1980.  I then multiply 𝑅𝑒𝑐𝑒𝑛𝑡𝐺𝑟𝑎𝑑𝐹𝑙𝑜𝑤𝑐𝑜,1980 by 𝑃𝐶𝑇𝑆𝑇𝐸𝑀𝑜,1980 to predict the 

number of recent graduates moving from 𝑜 to 𝑐 that are STEM graduates.  I then sum the 

predicted STEM flows across origin areas for each metropolitan destination area to compute the 

predicted native STEM flow to each metropolitan area, i.e., 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑎𝑡𝑖𝑣𝑒𝑆𝑇𝐸𝑀𝐹𝑙𝑜𝑤𝑐,1980 = ∑ 𝑅𝑒𝑐𝑒𝑛𝑡𝐺𝑟𝑎𝑑𝐹𝑙𝑜𝑤𝑐𝑜,1980 × 𝑃𝐶𝑇𝑆𝑇𝐸𝑀𝑜,1980𝑜 . 

I then divide 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑎𝑡𝑖𝑣𝑒𝑆𝑇𝐸𝑀𝐹𝑙𝑜𝑤𝑐,1980 by the metropolitan area adult population in 

1980 to obtain the predicted relative native STEM flow in 1980, which is what I use to 

instrument for the stock of STEM native graduates in the area in 2010.  I construct a similar 

instrument for non-STEM graduates by replacing 𝑃𝐶𝑇𝑆𝑇𝐸𝑀𝑜,1980 with 𝑃𝐶𝑇𝑁𝑂𝑁𝑆𝑇𝐸𝑀𝑜,1980, 

the share of all 1980 bachelor’s degree graduates who majored in a non-STEM field.   

The intuition behind the construction of the native STEM (non-STEM) graduate 

instrument is that the past flow of STEM (non-STEM) graduates is likely to affect the later stock 

                                                 
16 County groups are the lowest level of identifiable geography in the 1980 census microdata.  They are conceptually 

similar to PUMAs but the boundaries differ.  My sample includes all county group origin areas including non-

metropolitan ones, but only the 307 metropolitan areas as destination areas.  College graduates in 1980 are defined 

as persons who report completing at least 4 years of college.  This sample also excludes persons who did not reside 

in the U.S. five years prior to the census and by necessity excludes persons who are not in the migration sample.  

Only half of the PUMS members were included in the migration sample and asked about their residential location 

five years prior to the census. 
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of STEM (non-STEM) graduates in the area for several reasons.17  First, some of the past in-

migrants will likely still be in the same metropolitan area 30 years later.  Second, many of the 

original STEM (non-STEM) in-migrants will have adult children by 2010, and intergenerational 

transmission of education and college majors will further increase the STEM (non-STEM) stock 

in 2010.  Third and perhaps most importantly, population flows tend to be highly persistent.  The 

relative flow of STEM graduates in 1980 is likely highly correlated with the relative flow of 

STEM graduates in proceeding and subsequent years.  Furthermore, this persistence is likely 

strengthened by proximity to various colleges and universities and the different academic 

orientations of those institutions.  If a given metropolitan area receives a large inflow of STEM 

(non-STEM) graduates from a nearby college or university or set of higher education institutions 

that produce a high percentage of STEM (non-STEM) graduates, this will likely be quite 

persistent. 

 There are additional considerations in constructing the native STEM and non-STEM 

instruments worth noting.  First, as noted above, census PUMS before 1980 identify far fewer 

metropolitan areas.  Additionally, the 1980 IPEDS is the earliest available source that reports 

degree production by fields for all colleges and universities in the U.S.  Also as noted above, 

1980 precedes the computer and internet technology revolution, so that the native STEM 

graduate instrument primarily reflects initial concentrations in other STEM fields. 

 

2.3 Time-Differenced Instrumental Variables Methods 

                                                 
17 Previous researchers have investigated the relationship between the production and stock of college graduates in 

an area (Bound et al. 2004; Abel and Deitz 2012; Winters 2014b).  The relationship differs depending on the level of 

analysis (e.g. states vs. metropolitan areas) and the time period considered, but researchers typically find at least a 

modest positive correlation between the production and stock of college graduates in an area. 



16 

 

 There is some concern that the cross-sectional IV estimates may not measure causal 

effects.  In particular, the instruments could be correlated with unobserved time-invariant 

metropolitan area characteristics that also increase innovation.  To address this concern, I next 

estimate time-differenced 2SLS regressions that account for time-invariant metropolitan area 

fixed effects.  However, there are difficulties with doing so because I am unable to measure 

metropolitan area stocks of STEM and non-STEM graduates before 2009 when the ACS began 

asking about college major.   

One possible approach would be to utilize short-run variation in the local stocks of STEM 

and non-STEM graduates between 2009 and 2012 (the most recent year of the ACS available at 

the time this paper was written).  However, I choose not to follow that approach because short 

run fluctuations in STEM and non-STEM graduate stocks are highly affected by measurement 

error due to sampling.  Each year of the ACS includes only a 1% sample of the U.S. population, 

so there is some degree of sampling error.  Measurement error from sampling is exacerbated by 

time differencing, especially over very short periods.18  This is especially problematic for 

relatively small metropolitan areas.  Measurement error causes attenuation bias in OLS estimates 

and weakens the relationship between the endogenous explanatory variable(s) and the 

instrument(s) in 2SLS estimates.  Thus, short-run time differenced estimate are not credible if 

measurement error is significant.19 

 This paper uses 10-year time differences by combining the 2010 ACS microdata with the 

2000 decennial census 5% PUMS.  Unfortunately, college major information is not available in 

                                                 
18 A further problem is that PUMA boundaries were changed between 2011 and 2012, which further increases 

measurement error problems.  Of course, one could limit the sample to the 2009-2011 ACS, but that is an even 

shorter time period. 
19 An additional problem with using short-run differences is that innovations may respond to changes in the stocks 

of skilled workers with a non-trivial time lag.  Once a new skilled worker joins the labor force of a given 

metropolitan area, it could be a year or more before their efforts results in patentable innovations.  Therefore, skilled 

worker increases in one year may affect patenting primarily over the next year or two, which would cause serious 

problems for short-run time differenced estimates. 



17 

 

the 2000 census data.  Therefore, I cannot use the 2000-2010 time-differenced regressions to 

directly estimate separate effects of STEM and non-STEM graduates.  However, I can use the 

time-differenced regressions to assess the contributions of STEM-driven increases in foreign and 

native college graduates on innovation.  More specifically, I can indirectly identify the effects of 

foreign and native STEM graduates by using STEM-motivated instruments and making 

assumptions about the effects of the instruments on non-STEM graduates.   I use similar 

instruments as in the cross-section analysis.  I instrument for the change in the share of foreign-

born college graduates using the 2000-2010 predicted change in the foreign STEM worker share: 

∆𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐,2000−2010
𝐹𝑜𝑟𝑒𝑖𝑔𝑛̂ = 𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐,2010

𝐹𝑜𝑟𝑒𝑖𝑔𝑛̂ − 𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐,2000
𝐹𝑜𝑟𝑒𝑖𝑔𝑛̂

 

, where 𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐,2010
𝐹𝑜𝑟𝑒𝑖𝑔𝑛̂

 is the cross-sectional instrument defined above and 

𝑆𝑇𝐸𝑀𝑆ℎ𝑎𝑟𝑒𝑐,2000
𝐹𝑜𝑟𝑒𝑖𝑔𝑛̂

 is constructed similarly for 2000.  Using the instrument and interpreting the 

results as I do assumes that the instrument captures increases in the population share of foreign 

STEM graduates and is uncorrelated with the time-difference in foreign non-STEM graduates. 

I instrument for the change in the share of native-born college graduates using a STEM-

motivated instrument in an attempt to estimate the effects of STEM-driven increases in the share 

of native college graduates on patent intensity.  The instrument used is the predicted relative 

native STEM flow in 1980, which is the same as the instrument used for native STEM graduates 

in the cross-sectional 2SLS analysis.  As explained in more detail later, using the instrument and 

interpreting the results as I do assumes that the instrument predicts increases in the population 

share of native STEM graduates but is uncorrelated with changes in the population share of non-

STEM graduates.  In other words, the analysis assumes that the instrument captures variation in 



18 

 

the 2000-2010 change in the native college share that is attributable to STEM graduates and does 

not capture variation due to increases in non-STEM graduates. 

 

3. Empirical Results 

3.1 Cross-Sectional OLS Estimates 

 Table 3 presents cross-sectional regression results that treat the human capital stock 

variables as exogenous.  The various columns include different combinations of the human 

capital variables, but all regressions include the full set of control variables listed in Table 1.  

The first column includes the STEM graduate population share; OLS regression yields a 

coefficient estimate of 24.40 that is highly statistically significant.  The coefficient suggests that 

increasing the share of the adult population with a STEM degree by one percentage point (i.e., 

increasing the share by 0.01) would increase log patents per 100,000 population by about 0.244.  

Since the dependent variable is measured in logs, we can interpret this result as a roughly 24.4 

percent increase in patent intensity due to a one percentage point increase in the STEM graduate 

share.  Multiplying the coefficient by the variable standard deviation of 0.029, suggests that a 

one standard deviation increase in the STEM graduate share would increase patent intensity by 

just over 70 percent.  This is a very considerable magnitude and suggests a very important effect 

of STEM graduates on innovation as measured by patent intensity.  However, assessing the 

validity of this effect requires further analysis  

 Column 2 of Table 3 simultaneously includes the STEM graduate population share and 

the non-STEM graduate population share as explanatory variables.  The coefficient for the 

STEM graduate share is reduced to 22.11, but the difference from column 1 is not statistically 

significant.  The coefficient estimate for the non-STEM graduate share is 1.797 but is not 
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statistically significant at conventional levels.  Thus, though STEM graduates appear to have a 

considerable effect on innovation, non-STEM graduates do not appear to meaningfully affect 

patent intensity.  Expectations suggested that STEM graduates would have a greater effect on 

innovation than non-STEM graduates, but the disparity in the effects is striking.  This is a new 

result that supports policy efforts to increase regional and national stocks of STEM graduates. 

 I next decompose the STEM graduate share into the native born and foreign born 

components in an attempt to assess their relative contributions to patenting.  Columns 3 and 4 

separately examine the effects of the native and foreign STEM graduate shares without including 

any other human capital variables.  Column 5 includes the native and foreign STEM graduate 

shares simultaneously, and column 6 adds the non-STEM graduate share to the specification in 

column 5.  Column 3 reports a coefficient of 30.34 for the native STEM graduate share and 

column 4 reports a coefficient of 24.80 for the foreign STEM graduate share.  However, 

including the native and foreign STEM graduate share variables simultaneously in column 5 

gives coefficient estimates of 28.00 and 18.51, respectively.  The reduction from columns 3 and 

4 likely suggests that each variable is picking up some of the effect of the other variable when 

the other is omitted from the regression.  Adding the non-STEM graduate share in column 6 

again indicates a relatively small and insignificant effect of non-STEM graduates on patenting.  

Column 6 reports coefficients for the native and foreign STEM graduate shares of 25.69 and 

17.33, respectively.  Taking these estimates at face value suggests that native STEM graduates 

have a larger effect on metropolitan area patenting than foreign STEM graduates.  Furthermore, 

the differences in coefficients in columns 5 and 6 are statistically significant at the five percent 

and 10 percent level, respectively.  However, the more important result is likely not the 
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differences between native and foreign STEM graduates, but the indication that both have 

statistically significant effects on patenting that are large in magnitude. 

 

3.2 Cross-Sectional IV Estimates 

 Table 4 presents the main results for the cross-sectional 2SLS regressions.20  First-stage 

results are included in panel A and second-stage results for the explanatory variables of interest 

are in panel B.  All models again include the control variables listed in Table 1.  Column 1 

includes the native STEM graduate share as a potentially endogenous explanatory variable and 

instruments for it with the predicted native STEM graduate relative flow in 1980.  The 

instrument is highly significant in the first stage and the F-statistic greatly exceeds 10, which 

indicates that weak instrument concerns are very minimal (Stock, Wright and Yogo 2002; 

Angrist and Pischke 2009).  The second-stage regression yields a statistically significant 

coefficient for the native STEM graduate share of 37.72, which is actually larger than the 

corresponding OLS estimate in column 3 of Table 3, though the difference is not significant.   

Column 2 of Table 4 modifies the specification in column 1 to also include the non-

STEM graduate share as a potentially endogenous explanatory variable and adds the predicted 

relative flow of non-STEM graduates in 1980 as an instrument.  The predicted STEM relative 

flow instrument again has a strong effect on the native STEM graduate share in the first stage, 

and the predicted non-STEM relative flow instrument also has a strong effect on the non-STEM 

graduate share in the first stage.  In the second stage, the native STEM graduate share has a 

                                                 
20 In results not shown, I also experimented with instrumenting for the STEM graduate share using the landgrant 

dummy variable used by Moretti (2004) and others.  Doing so yielded a second-stage coefficient for the STEM 

graduate share of 19.85, which is qualitatively similar and not statistically significantly different from the 

corresponding estimate in column 1 of Table 3.  However, the first-stage F-statistic was only 5.48 which does not 

reject the possibility that the landgrant dummy is a weak instrument.  Furthermore, landgrant institutions appear to 

increase the stock of both STEM and non-STEM graduates and having only one instrument does not allow me to 

separate the effects of the two.   
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significant coefficient estimate of 31.87, which is smaller than in column 1 but the difference is 

not significant.  The second-stage coefficient for non-STEM graduates is 2.47 and not 

statistically significant.  These results are, therefore, qualitatively consistent with the finding 

from OLS regression that STEM graduates have a large significant effect on patent intensity but 

non-STEM graduates have a relatively small effect that is statistically indistinguishable from 

zero. 

Column 3 of Table 4 includes the foreign STEM graduate share as the only human capital 

variable and instruments for it using the predicted foreign STEM occupation share definition 1 

(D1).  The instrument is highly significant in the first stage, and the foreign STEM graduate 

share has a significant positive effect on patent intensity in the second stage with a coefficient of 

42.28.  This coefficient is a bit larger than that for the native STEM graduate share but the 

difference is not statistically significant. 

Column 4 of Table 4 includes the native and foreign STEM graduate shares 

simultaneously and instruments for them using the predicted relative native STEM flow in 1980 

and the predicted foreign STEM occupation share D1.  Interestingly, both instruments have a 

significant positive effect on native STEM graduates in the first stage.  The positive effect of the 

native STEM instrument on native STEM graduates was to be expected, but the positive effect of 

predicted foreign STEM workers on the native STEM graduate share suggests that areas with 

high levels of foreign STEM workers also have high levels of native STEM graduates.  This 

suggests that we should simultaneously account for both native and foreign STEM graduates 

when examining their effects on regional innovation.  Additionally, the predicted foreign STEM 

instrument has a significant effect on the share of foreign STEM graduates as expected, while the 

native STEM instrument has a negative but insignificant effect on the share of foreign STEM 
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graduates.  First stage F-statistics are both greater than 10.  The second-stage results in column 4 

suggest that both native STEM graduates and foreign STEM graduates have significant positive 

effects on patent intensity with coefficients of 34.29 and 28.54, respectively, and the difference is 

not statistically significant. 

 Column 5 of Table 4 includes the shares of native and foreign STEM and non-STEM 

graduates simultaneously and instruments for these using the three variables used previously.  

Results are largely similar to before.  Native and foreign STEM graduates have significant 

positive effects on patent intensity with coefficients of 30.96 and 28.42, respectively, and non-

STEM graduates have a relatively small and statistically insignificant effect on patent intensity 

with a coefficient estimate of 1.41.  These results suggest that both native and foreign STEM 

graduates considerably increase local innovation but non-STEM graduates have a minimal effect. 

 Table 5 replicates columns 3-5 of Table 4 using alternative STEM occupational 

definitions for the foreign STEM instrument.  Columns 1-3 of Table 5 use the predicted foreign 

STEM occupation share definition 2 (D2); columns 4-6 use the predicted foreign STEM 

occupation share definition 3 (D3).  The results are largely similar to those in Table 4, but the 

coefficient magnitudes change somewhat.  Specifically, the coefficient on the foreign STEM 

graduate share is now “only” 23.09 in column 3 using the D2 instrument and 19.83 in column 6 

using the D3 instrument.  These coefficients are now a good bit smaller than the native STEM 

graduate coefficients but the differences are not significant.  Rather than debating the merits of 

the three foreign STEM instruments, I instead focus on the qualitative consistency of the results.  

Even the most modest coefficient still indicates an economically large effect of foreign STEM 

graduates on patent intensity.  Furthermore, though the coefficients using the alternative foreign 

STEM instruments are a good bit smaller than the native STEM graduate coefficients, the 
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differences are not statistically significant.  Echoing the discussion of the OLS results, the key 

finding from the cross-section IV results is likely not the differences between native and foreign 

STEM graduates, but the indication that both have economically large and statistically 

significant effects on patenting. 

 

3.3 Time-Differenced IV Estimates 

I next consider 2000-2010 time-differenced 2SLS regressions.  Because time-differencing 

removes time-invariant metropolitan area characteristics, region dummies are excluded as are the 

variables for climate (which can vary over time but are measured as averages over time and 

hence time-invariant) and distance to the urban hierarchy (which is largely time-invariant and 

only changes due to a nearby area crossing a given threshold).21  Summary statistics for the 

variables in the time-differenced regressions are reported in Table 6. 

As discussed above, college major information is not available in the 2000 census data, 

so the explanatory variables of interest are the changes in the population shares of native and 

foreign college graduates, without differentiating between STEM and non-STEM.  However, I 

can indirectly identify the effects of foreign and native STEM graduates by using the STEM-

motivated instruments and assuming that the instruments are correlated with the growth in the 

college graduate share attributable to STEM graduates and uncorrelated with the growth in the 

college graduate share due to non-STEM graduates.  I am unable to test this assumption, but it 

seems plausible based on the construction of the instruments.  However, if this assumption does 

not hold, non-STEM graduates will affect second-stage results and the direction of the effect 

depends on 1) the partial correlation between the instrument and the change in the share of non-

                                                 
21 As a practical matter, one can include the excluded time-invariant characteristics in the time-differenced 

regressions.  Doing so weakens the explanatory power of the instruments but gives qualitatively similar second-

stage results.  Results are available from the author by request. 
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STEM graduates and 2) the effect of non-STEM graduates on patent intensity.  The cross-section 

results suggest that non-STEM graduates have a zero to small effect on patent intensity.  If we 

also assume that any partial correlation between the instrument and the change in the share of 

non-STEM graduates is non-negative, which seems likely22, then any effect of non-STEM 

graduates on the time-differenced regression estimates would likely be to reduce the estimated 

coefficient on the change in the share of college graduates relative to the effect that would result 

solely from an increase in the share of STEM graduates.  However, one should likely use some 

care in interpreting the time-differenced regression results. 

Column 1 of Table 7 reports 2SLS estimates for the effect of a STEM-driven increase in 

native college graduates on patent intensity.  The instrument has a strong positive effect on the 

change in the native college graduate share in the first stage with an F-statistic greater than 10.  

The second-stage results suggest that a STEM-driven one percentage point increase in the share 

of native college graduates in an area increases patents per capita by 33.2 percent.  This is an 

economically large effect that is qualitatively similar to the cross-sectional IV estimates. 

Column 2 of Table 7 reports 2SLS results for the effects of foreign college graduates on 

patent intensity.  The instrument is a strong predictor in the first stage.  The second-stage results 

suggest that a STEM-driven one percentage point increase in the share of foreign college 

graduates in an area increases patents per capita by 17.4 percent.  This effect is a good bit smaller 

than the effect of natives in column 1 but the differences are not statistically significant. 

Column 3 of Table 7 includes the increase in native and foreign college graduates 

simultaneously.  Both instruments are statistically significant and F-statistics exceed 10 for both 

first stage regressions.  The first-stage results also provide interesting insights on how exogenous 

                                                 
22Cross-sectional comparisons suggest that areas with a high share of STEM graduates also have a high share of 

non-STEM graduates, but I am unable to empirically assess the relationship between the time-changes in the shares 

of STEM and non-STEM graduates.   
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inflows of native and foreign STEM graduates affect the net flow of the other.  The first-stage 

regression for the change in native graduates suggests that past native inflows have a positive 

effect on native inflows but predicted inflows of foreign STEM workers actually reduces native 

inflows, i.e. inflows of foreign STEM graduates appear to be crowding out native STEM 

graduates from metropolitan areas.  Furthermore, crowd out is a two-way street.  The first-stage 

change in foreign graduates is positively affected by predicted inflows of foreign STEM but is 

negatively affected by past inflows of native STEM graduates.  These crowd out effects are also 

quite large in magnitude.  Finding evidence of crowd out is interesting in itself and fairly novel 

in the literature.23  Furthermore, there has been very little investigation of whether natives crowd 

out foreigners from local labor markets. 

The second-stage results for column 3 of Table 7 again suggest that STEM-driven 

increases in both native and foreign college graduate shares increase innovation.  The coefficient 

for natives is reduced slightly from column 1 to 31.3.  However, the coefficient for foreign 

graduates increases from column 2 to 29.1 and is therefore much closer to the native coefficient.   

Interpreting these results requires some care.  If we are considering policy changes to 

increase/decrease the stock of foreign graduates in a given local labor market, we are likely more 

interested in the local total effect rather than the local partial effect.  If foreign (STEM) graduates 

crowd out native (STEM) graduates from local labor markets, then controlling for the change in 

native (STEM) graduates will give a partial effect and not the total effect.  The same is true for 

interpreting the effects of native graduates on innovation.  In such a case, the estimates in 

                                                 
23A notable exception for STEM graduates is Orrenius and Zavodny (2014) who find that foreign inflows crowd out 

native college students from majoring in STEM fields, but they suggest that the magnitudes are relatively small.  

More generally, Kerr and Lincoln (2010) and Peri et al. (2014) find no evidence that skilled foreigners crowd out 

employment of skilled natives.  Lewis and Peri (2014) conclude that the bulk of previous literature examining the 

effects of foreigners on the location decisions of natives has found little evidence of crowd out though there are 

some exceptions noted above.   
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columns 1 and 2 are the primary ones of interest.  However, interpreting the results at a national 

level requires understanding what happens to the group that is crowded out.  If foreign STEM 

graduates crowd native STEM graduates out of one local labor market and into another, it seems 

sensible that the crowded out natives will increase innovation in the areas in which they are 

pushed into.  If so, the total effects of increased foreign graduates at the national level will 

exceed the effects at the local level; thus, the estimated effects of STEM-driven increases in 

foreign graduates in column 2 are likely a lower bound of national level effects.24  If crowded out 

natives are just as innovative in their new locations, then the foreign coefficient in column 3 

likely gives a reasonable estimate of the national-level effect of foreign STEM graduates on 

patent intensity.25  A similar interpretation holds for natives crowding out foreigners except that 

natives may crowd foreign graduates out of the country, which would reduce the effect on 

innovation at the national level.  The estimated effect of native graduates in column 3 is actually 

slightly lower than in column 1 and may provide a reasonable lower bound for the national level 

effects of native STEM graduates on patent intensity.26   

Table 8 reports time-differenced 2SLS results that use the alternative definitions of 

STEM occupations for the foreign STEM instruments.  Columns 1-2 of Table 8 use the foreign 

STEM definition 2 (D2) instrument, and columns 3-4 of Table 8 use the foreign STEM definition 

3 (D3) instrument.  These results are qualitatively similar to the baseline results in Table 7.  All 

                                                 
24 Global effects, however, might be smaller if foreigners would have created innovations in their origin countries 

had they located there.  Of course, there is good reason to believe that working to an innovative country like the U.S. 

would make a skilled foreigner more innovative than they would be in a less innovative origin country if they are 

combined with more and better resources useful for innovation (Kahn and MacGarvie 2014).  In particular, 

concentrating (foreign and native) STEM graduates in U.S. metropolitan areas increases a skilled immigrants 

interactions with other skilled workers and is expected to create agglomeration economies such as learning, 

knowledge spillovers and cross-fertilization of ideas. 
25 However, the Orrenius and Zavodny (2014) finding that foreigners crowd out natives from STEM college majors 

would reduce national effects. 
26 Another important benefit of estimating effects of native and foreign graduates simultaneously in column 3 is to 

ensure that the variables are not capturing the same underlying source of variation.  The fact that both instruments 

are highly significant in the first-stage regressions and both college share variables are highly significant in the 

second-stage rules out this concern. 
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instruments are significant in all first-stage regressions and the first-stage results suggest that 

predicted foreign graduate inflows crowd out native graduates and past native graduate inflows 

crowd out foreign graduates.  The foreign and native college graduate shares are significantly 

positive in all second-stage regressions in which they are included.  The results in columns 1 and 

3 that do not partial out the effect of the change in native graduates give coefficients of 16.9 and 

19.8 for the change in foreign graduates.  These are similar in magnitude to the corresponding 

estimate of 17.4 in Table 7.  The foreign STEM graduate coefficients increase to 24.0 and 25.9 in 

columns 2 and 4, respectively, when the change in the share of natives is controlled for.  The 

coefficients for native graduates in Table 8 are very similar to that in column 3 of Table 7. 

Overall, the time-differenced IV estimates suggest that STEM-driven increases in both 

native and foreign STEM graduates have statistically significant and economically large effects 

on innovation as measured by patent intensity.  These results are qualitatively consistent with the 

cross-sectional 2SLS results, which increases confidence in the general conclusions of the 

analyses.     

 

4. Conclusion 

Technological innovation is widely regarded as a key driver of economic growth both for 

nations and regions, and human capital is thought to play an important role in fueling innovation.  

However, some types of human capital may have greater effects on innovation than others.  In 

particular, STEM graduates are typically expected to have greater effects on innovation than 

non-STEM graduates, but there is relatively little empirical evidence to support this contention.  

A few researchers and policymakers have also suggested that foreign and native college 

graduates may have differing effects on innovation.  This paper examines differences in patent 
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intensity across U.S. metropolitan areas to assess the importance of different types of human 

capital on innovation.   

 Using cross-sectional OLS and cross-sectional 2SLS regressions, I find that both native 

and foreign-born STEM graduates have statistically significant and economically large effects on 

innovation as measured by patent intensity.  However, the results suggest that non-STEM 

graduates have little to no effect on patent intensity.  Given the importance of innovation for 

economic growth and overall well-being, these results suggest that policies that increase the 

stock of STEM graduates can have substantial benefits for nations and regions. 

 Increasing the stock of STEM graduates can be achieved by either increasing domestic 

production or increasing (net) in-migration of STEM graduates.  This raises interest in whether 

native or foreign STEM graduates have larger effects on innovation.  Cross-sectional OLS results 

suggest that native STEM graduates have statistically significantly larger effects on patent 

intensity than foreign STEM graduates.  Cross-sectional 2SLS results also suggest a possibly 

larger effect on innovation from native STEM graduates than foreign STEM graduates but the 

differences are not statistically significant.   

I also use time-differenced 2SLS regressions to examine the effects of STEM-driven 

increases in the stocks of native and foreign college graduates.  Time-differencing allows me to 

control for area fixed effects that might be correlated with both skill levels and innovation.  The 

results again suggest that both native and foreign STEM graduates have statistically significant 

and economically large effects on innovation.  The estimates are again somewhat larger for 

native STEM graduates than their foreign counterparts but the differences are not statistically 

significant.   
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I also find evidence that native and foreign STEM graduates crowd each other out of 

local labor markets, so the correct interpretation of the results depends on whether one is 

interested in local or national effects.   Using local estimates to infer lower bounds for national 

effects suggests that a one percentage point increase in the percentage of the nation’s population 

that is a native STEM graduate would increase patenting by 31 percent or more.  Similarly, a one 

percentage point increase in the population share of foreign STEM graduates would increase 

patenting per capita by 17 percent at the local level and perhaps as much as 29 percent at the 

national level.  Rather than focusing on differences in the effects of native and foreign STEM 

graduates, I interpret the results to indicate that both have statistically significant and 

economically large effects on innovation.  Increasing the stock of foreign and native STEM 

graduates could provide large benefits. 
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Figure 1: Bivariate Relationship between Patent Intensity and STEM Graduate Share for 2010 
 

 
 

        

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         Figure 2: Bivariate Relationship between Patent Intensity and Non-STEM Graduate Share for 

2010 
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Figure 3: Bivariate Relationship between Patent Intensity and Native STEM Graduate Share for 

2010 
 

 
 

        

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         Figure 4: Bivariate Relationship between Patent Intensity and Foreign STEM Graduate Share 

for 2010 
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Table 1: Summary Statistics for 2010 Cross-Section Analysis 

     Mean Std. Dev. Min Max 

Dependent variable 

    Log of patents per 100K population 2.765 1.235 -0.949 6.335 

     Explanatory variables of interest 

    STEM graduate population share 0.065 0.029 0.015 0.216 

Native STEM graduate share 0.052 0.021 0.013 0.147 

Foreign STEM graduate share 0.013 0.015 0.000 0.139 

Non-STEM graduate share 0.206 0.058 0.089 0.439 

     Instruments 

    Predicted native STEM graduate relative flow 1980 0.002 0.001 0.000 0.007 

Predicted native non-STEM graduate relative flow 1980 0.009 0.004 0.001 0.023 

Predicted foreign STEM occupation share D1 0.007 0.009 0.000 0.084 

Predicted foreign STEM occupation share D2 0.009 0.009 0.000 0.071 

Predicted foreign STEM occupation share D3 0.013 0.012 0.000 0.077 

     Control variables 

    Midwest region dummy 0.244 0.430 0 1 

South region dummy 0.381 0.486 0 1 

West region dummy 0.192 0.395 0 1 

Unemployment rate 0.088 0.025 0.023 0.171 

Mean age of adult labor force 44.6 1.1 40.9 47.8 

Log metropolitan area population 13.0 1.0 11.3 16.1 

Mean January temperature 35.7 13.0 6.8 73.0 

Mean July temperature 76.3 5.6 58.4 94.1 

Mean precipitation 38.3 13.8 3.0 66.3 

Distance to metro w/ pop>250K 25.7 45.7 0.0 384.6 

Incremental distance to metro w/ pop>500K 28.8 90.8 0.0 1430.7 

Incremental distance to metro w/ pop>1500K 52.1 151.8 0.0 2394.4 

Mean firm size (# of Employees) 4618.3 1266.2 2553.4 13935.1 

University research expenditure per capita 199.9 504.2 0.0 4750.6 

Note: Sample includes 307 metropolitan areas. 
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Table 2: College Graduate Shares for the Top 25 STEM Graduate Share Metropolitan Areas 

 

MSA/PMSA Name 

STEM graduate 

population 

share 

Native STEM 

graduate 

share 

Foreign STEM  

graduate 

 share 

Non-STEM 

graduate 

share 

San Jose, CA PMSA 0.216 0.077 0.139 0.246 

Boulder-Longmont, CO PMSA 0.170 0.147 0.024 0.368 

State College, PA MSA 0.168 0.114 0.053 0.246 

Yolo, CA PMSA 0.149 0.101 0.049 0.223 

Middlesex-Somerset-Hunterdon, NJ PMSA 0.149 0.059 0.090 0.282 

Columbia, MO MSA 0.145 0.112 0.033 0.361 

Champaign-Urbana, IL MSA 0.140 0.101 0.039 0.270 

Fort Collins-Loveland, CO MSA 0.137 0.123 0.014 0.326 

Huntsville, AL MSA 0.134 0.119 0.015 0.218 

San Francisco, CA PMSA 0.133 0.077 0.056 0.351 

Raleigh-Durham-Chapel Hill, NC MSA 0.130 0.098 0.032 0.289 

Bryan-College Station, TX MSA 0.130 0.082 0.048 0.243 

Nashua, NH PMSA 0.129 0.103 0.026 0.263 

Gainesville, FL MSA 0.129 0.089 0.040 0.267 

Iowa City, IA MSA 0.127 0.094 0.033 0.388 

Washington, DC-MD-VA-WV PMSA 0.127 0.080 0.047 0.331 

Boston, MA-NH PMSA 0.126 0.082 0.044 0.333 

Madison, WI MSA 0.125 0.100 0.024 0.342 

Oakland, CA PMSA 0.121 0.058 0.063 0.273 

Charlottesville, VA MSA 0.121 0.097 0.024 0.313 

Seattle-Bellevue-Everett, WA PMSA 0.121 0.077 0.044 0.288 

Rochester, MN MSA 0.114 0.089 0.025 0.243 

Ann Arbor, MI PMSA 0.113 0.089 0.024 0.258 

Trenton, NJ PMSA 0.110 0.056 0.054 0.282 

Lafayette, IN MSA 0.109 0.083 0.026 0.197 
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Table 3: Cross-Sectional OLS Results 

       (1) (2) (3) (4) (5) (6) 

STEM graduate population share 24.400 22.110 
    

 
(2.223)*** (2.283)*** 

    
Native STEM graduate share 

  
30.344 

 
28.003 25.694 

   
(3.218)*** 

 
(3.220)*** (3.335)*** 

Foreign STEM graduate share 
   

24.802 18.514 17.330 

    
(3.916)*** (2.948)*** (3.022)*** 

Non-STEM graduate share 
 

1.797 
   

1.476 

    (1.137)       (1.135) 

Notes: Dependent variable is the log of patents per 100K population.  All regressions include control variables listed in 

Table 1.  Standard errors in parentheses are robust to heteroskedasticity. 

***Statistically significantly different from zero at 1% level. 
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Table 4: Cross-Sectional 2SLS Results 

 
 

     (1) (2) (3) (4) (5) 

A. First-Stage Results   
 

      

Endogenous Variable: Native STEM graduate share 
     

Predicted native STEM graduate relative flow 1980 10.296 11.276 
 

9.886 10.946 

 
(1.159)*** (1.944)*** 

 
(1.126)*** (1.879)*** 

Predicted foreign STEM occupation share D1    
0.182 0.185 

    
(0.084)** (0.085)** 

Predicted native non-STEM graduate relative flow 1980 -0.312 
  

-0.339 

  
(0.451) 

  
(0.447) 

F-statistic 78.94 39.60 
 

40.64 27.31 

      
Endogenous Variable: Foreign STEM graduate share 

     

Predicted native STEM graduate relative flow 1980    
-1.002 -1.612 

    
(0.763) (1.064) 

Predicted foreign STEM occupation share D1   
0.975 0.996 0.995 

   
(0.189)*** (0.192)*** (0.193)*** 

Predicted native non-STEM graduate relative flow 1980    
0.195 

     
(0.288) 

F-statistic 
  

26.53 14.35 9.58 

      
Endogenous Variable: Non-STEM graduate share 

     

Predicted native STEM graduate relative flow 1980  
-5.233 

  
-6.030 

  
(5.659) 

  
(5.784) 

Predicted foreign STEM occupation share D1     
0.445 

     
(0.371) 

Predicted native non-STEM graduate relative flow 1980 9.406 
  

9.340 

  
(1.356)*** 

  
(1.352)*** 

F-statistic 
 

58.24 
  

40.29 

      
B. Second-Stage Results 

     

Native STEM graduate share 37.721 31.870 
 

34.286 30.959 

 
(6.384)*** (8.454)*** 

 
(6.477)*** (8.087)*** 

Foreign STEM graduate share   
42.280 28.540 28.421 

   
(11.763)*** (7.494)*** (7.358)*** 

Non-STEM graduate share  
2.474 

  
1.413 

    (2.840)     (2.812) 

Notes: The second-stage dependent variable is the log of patents per 100K population.  All regressions include control variables 

listed in Table 1.  Standard errors in parentheses are robust to heteroskedasticity. 

*Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 
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Table 5: Cross-Sectional 2SLS Results Using Alternative Instruments for Foreign STEM 

     (1) (2) (3) (4) (5) (6) 

A. First-Stage Results           

 Endogenous Variable: Native STEM graduate share 
     

 Predicted native STEM graduate relative flow 1980 
 

10.006 11.189 

 

9.969 11.022 

  
(1.150)*** (1.908)*** 

 

(1.182)*** (1.950)*** 

Predicted foreign STEM occupation share D2 
 

0.177 0.184 

 
  

  
(0.091)* (0.093)** 

 
  

Predicted foreign STEM occupation share D3 
   

 

0.106 0.109 

    
 

(0.083) (0.084) 

Predicted native non-STEM graduate relative flow 1980 
 

-0.380 
  

-0.338 

   
(0.443) 

  
(0.446) 

F-statistic 
 

40.98 27.50 
 

39.68 26.53 

      
 Endogenous Variable: Foreign STEM graduate share 

     
 Predicted native STEM graduate relative flow 1980 

 
-0.400 -0.308 

 
-1.209 -1.684 

  
(0.706) (0.833) 

 
(0.840) (1.113) 

Predicted foreign STEM occupation share D2 0.994 1.001 1.001 
   

 
(0.209)*** (0.212)*** (0.214)*** 

   
Predicted foreign STEM occupation share D3 

   
0.768 0.795 0.793 

    
(0.181)*** (0.188)*** (0.189)*** 

Predicted native non-STEM graduate relative flow 1980 
 

-0.029 
  

0.152 

   
(0.266) 

  
(0.312) 

F-statistic 22.71 12.24 8.21 17.95 9.69 6.88 

      
 Endogenous Variable: Non-STEM graduate share 

     
 Predicted native STEM graduate relative flow 1980 

  
-5.502 

  
-6.178 

   
(5.748) 

  
(5.939) 

Predicted foreign STEM occupation share D2 
  

0.567 
   

   
(0.362) 

   
Predicted foreign STEM occupation share D3 

     
0.405 

      
(0.320) 

Predicted native non-STEM graduate relative flow 1980 
 

9.196 
  

9.310 

   
(1.335)*** 

  
(1.360)*** 

F-statistic 
  

40.37 
  

40.03 

      
 B. Second-Stage Results 

     
 Native STEM graduate share 

 
34.877 31.13 

 
35.271 31.235 

  
(6.422)*** (8.116)*** 

 
(6.386)*** (8.150)*** 

Foreign STEM graduate share 35.568 23.626 23.094 35.321 20.355 19.825 

 
(9.597)*** (7.065)*** (6.916)*** (9.570)*** (7.518)*** (7.378)*** 

Non-STEM graduate share 
  

1.612 
  

1.734 

      (2.795)     (2.774) 

Notes: The second-stage dependent variable is the log of patents per 100K population.  All regressions include control variables listed in 

Table 1.  Standard errors in parentheses are robust to heteroskedasticity. 

*Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 
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Table 6: Summary Statistics for 2000-2010 Time Difference Analysis 

    Mean Std. Dev. Min Max 

Dependent variable 

     Log patents per 100K population -0.109 0.500 -2.070 1.414 

     Explanatory variables of interest 

     Native college graduate share 0.024 0.018 -0.021 0.082 

 Foreign college graduate share 0.010 0.011 -0.008 0.066 

     Instruments 

    Predicted native STEM graduate relative flow 1980 0.002 0.001 0.000 0.007 

Predicted  in foreign STEM occupation share D1 0.002 0.003 0.000 0.022 

Predicted  in foreign STEM occupation share D2 0.003 0.003 0.000 0.018 

Predicted  in foreign STEM occupation share D3 0.004 0.003 0.000 0.021 

     Control variables 

     Unemployment rate 0.046 0.023 -0.016 0.121 

 Mean age of adult labor force 1.7 0.6 0.1 3.4 

 Log metropolitan area population 0.1 0.1 -0.1 0.3 

 Mean firm size (# of Employees) 62.4 524.2 -3964.3 2599.0 

 University research expenditure per capita 87.9 228.7 -68.0 2376.6 

Notes: Sample includes 307 metropolitan areas.  indicates change over time. 
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Table 7: Time-Differenced 2SLS Results 

     (1) (2) (3) 

A. First-Stage Results       

Endogenous Variable:  Native college graduate share 
   

Predicted native STEM graduate relative flow 1980 3.773 
 

5.006 

 
(1.094)*** 

 
(1.104)*** 

Predicted  in foreign STEM occupation share D1 
  

-1.300 

   
(0.372)*** 

F-statistic 11.90  
 

13.01  

    
Endogenous Variable:  Foreign college graduate share 

   
Predicted native STEM graduate relative flow 1980 

  
-1.937 

   
(0.747)*** 

Predicted  in foreign STEM occupation share D1 
 

2.104 2.302 

  
(0.335)*** (0.335)*** 

F-statistic 
 

39.35  23.62  

    
B. Second-Stage Results 

   
 Native college graduate share 33.208 

 
31.303 

 
(12.733)*** 

 
(11.957)*** 

 Foreign college graduate share 
 

17.386 29.132 

    (4.749)*** (8.585)*** 

Notes: The second-stage dependent variable is the change in log of patents per 100K population.  All regressions 

include control variables listed in Table 5.  Standard errors in parentheses are robust to heteroskedasticity. 

indicates change over time. 

***Significant at 1% level. 
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Table 8: Time-Differenced 2SLS Results Using Alternative Instruments for Foreign Graduates 

   (1) (2) (3) (4) 

A. First-Stage Results       

 Endogenous Variable:  Native college graduate share 
   

 Predicted native STEM graduate relative flow 1980 
 

4.600 

 

4.809 

  
(1.099)*** 

 

(1.113)*** 

Predicted  in foreign STEM occupation share D2 
 

-0.995 

 
 

  
(0.440)** 

 
 

Predicted  in foreign STEM occupation share D3 
  

 

-0.825 

   
 

(0.393)** 

F-statistic 

 

9.81 
 

9.91 

    
 Endogenous Variable:  Foreign college graduate share 

   
 Predicted native STEM graduate relative flow 1980 

 
-1.924 

 
-2.219 

  
(0.700)*** 

 
(0.745)*** 

Predicted  in foreign STEM occupation share D2 2.421 2.611 

  
 

(0.371)*** (0.380)*** 

  Predicted  in foreign STEM occupation share D3 
  

1.738 1.964 

   
(0.349)*** (0.360)*** 

F-statistic 42.59  23.59  24.76  15.08 

    
 B. Second-Stage Results 

   
  Native college graduate share 

 
31.641 

 
31.517 

  
(11.946)*** 

 
(11.939)*** 

 Foreign college graduate share 16.900 23.964 19.770 25.870 

  (4.509)*** (7.649)*** (5.597)*** (8.674)*** 

Notes: The second-stage dependent variable is the change in log of patents per 100K population.  All regressions 

include control variables listed in Table 5.  Standard errors in parentheses are robust to heteroskedasticity. 

indicates change over time. 

**Significant at 5% level; ***Significant at 1% level. 
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Table A: List of STEM Majors and ACS Codes 

  ACS Code and Description   

1103 Animal Sciences 2504 Mechanical Engineering Related Technologies 

1104 Food Science 2599 Miscellaneous Engineering Technologies 

1105 Plant Science and Agronomy 3600 Biology 

1106 Soil Science 3601 Biochemical Sciences 

1301 Environmental Science 3602 Botany 

1302 Forestry 3603 Molecular Biology 

2001 Communication Technologies 3604 Ecology 

2100 Computer and Information Systems 3605 Genetics 

2101 Computer Programming and Data Processing 3606 Microbiology 

2102 Computer Science 3607 Pharmacology 

2105 Information Sciences 3608 Physiology 

2106 Computer Information Mgmt. & Security 3609 Zoology 

2107 Computer Networking & Telecommunications 3611 Neuroscience 

2400 General Engineering 3699 Miscellaneous Biology 

2401 Aerospace Engineering 3700 Mathematics 

2402 Biological Engineering 3701 Applied Mathematics 

2403 Architectural Engineering 3702 Statistics and Decision Science 

2404 Biomedical Engineering 3801 Military Technologies 

2405 Chemical Engineering 4002 Nutrition Sciences 

2406 Civil Engineering 4003 Neuroscience 

2407 Computer Engineering 4005 Mathematics and Computer Science 

2408 Electrical Engineering 4006 Cognitive Science and Biopsychology 

2409 Engineering Mechanics, Physics, & Science 5000 Physical Sciences 

2410 Environmental Engineering 5001 Astronomy and Astrophysics 

2411 Geological and Geophysical Engineering 5002 Atmospheric Sciences and Meteorology 

2412 Industrial and Manufacturing Engineering 5003 Chemistry 

2413 Materials Engineering and Materials Science 5004 Geology and Earth Science 

2414 Mechanical Engineering 5005 Geosciences 

2415 Metallurgical Engineering 5006 Oceanography 

2416 Mining and Mineral Engineering 5007 Physics 

2417 Naval Architecture and Marine Engineering 5008 Materials Science 

2418 Nuclear Engineering 5098 Multi-disciplinary or General Science 

2419 Petroleum Engineering 5102 Nuclear, Industrial Radiology, & Biol. Tech. 

2499 Miscellaneous Engineering 5901 Transportation Sciences and Technologies 

2500 Engineering Technologies 6106 Health and Medical Preparatory Programs 

2501 Engineering and Industrial Management 6108 Pharmacy, Pharmaceutical Sciences, & Admin. 

2502 Electrical Engineering Technology 6202 Actuarial Science 

2503 Industrial Production Technologies 6212 Management Information Systems & Statistics 
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Table B: List of STEM Occupations and IPUMS Occ1990 Code for Different Definitions 

 Occ1990 and Description STEM Occ D1 STEM Occ D2 STEM Occ D3 

44 Aerospace engineer Yes Yes Yes 

45 Metallurgical and materials engineers Yes Yes Yes 

47 Petroleum, mining, and geological engineers Yes Yes Yes 

48 Chemical engineers Yes Yes Yes 

53 Civil engineers Yes Yes Yes 

55 Electrical engineer Yes Yes Yes 

56 Industrial engineers Yes Yes Yes 

57 Mechanical engineers Yes Yes Yes 

59 Not-elsewhere-classified engineers Yes Yes Yes 

64 Computer systems analysts & computer scientists Yes Yes Yes 

66 Actuaries Yes Yes Yes 

68 Mathematicians and mathematical scientists Yes Yes Yes 

69 Physicists and astronomers Yes Yes Yes 

73 Chemists Yes Yes Yes 

74 Atmospheric and space scientists Yes Yes Yes 

75 Geologists Yes Yes Yes 

76 Physical scientists, n.e.c. Yes Yes Yes 

77 Agricultural and food scientists Yes Yes Yes 

78 Biological scientists Yes Yes Yes 

79 Foresters and conservation scientists Yes Yes Yes 

83 Medical scientists Yes Yes Yes 

229 Computer software developers Yes Yes Yes 

84 Physicians No Yes Yes 

85 Dentists No Yes Yes 

86 Veterinarians No Yes Yes 

87 Optometrists No Yes Yes 

88 Podiatrists No Yes Yes 

89 Other health and therapy diagnosing occupations No Yes Yes 

96 Pharmacists No Yes Yes 

97 Dietitians and nutritionists No No Yes 

106 Physicians' assistants No No Yes 

154 Subject instructors (HS/college) No No Yes 

223 Biological technicians No No Yes 

226 Airplane pilots and navigators No No Yes 

258 Sales engineers No No Yes 

 


